A Proofs for Section 2
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Proof of Proposition 2.5. Let 1 = 7, X --- x 7. Since ¢ is injective by assumption, we have
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as was to be shown. ]
B Proofs for Section 3
B.1 Effect on loss
Proof of Proposition 3.1. Note that we have
L* = Ep[~logpe-(y | x)] (22)
= ]EP* [_ 1Og EZN;DQ* [S(Zv y)“ (23)
(a)
> Ep [~ 108 Enp,. [exp(879(2,9))]] (24)
=Ep [~ logE.p,. [ps(y | 2) exp(A(B))]] (25)
=Ep-[logpe- s(y | z) — A(B)] (26)
= L(0",8) — A(B) @7
Q]
> L(05,8) — A(B). (28)

Here (a) follows because S(z,y) < exp(37(z,y)), since the latter is non-negative and is 1 when
S(z,y) = 1; (b) follows because 0} is the minimizer of L(-, 3). Continuing:

L(85,) = A(B) = By [~ 10g Ean,. [exp(8T4(2,9))] (29)
S By [ 108 E. . [exp(~ (1 S(z.9))] (30)
= Ep- [~ log(po; (v | #) + (1 = poz (y | 7)) exp(—fmin))] G1)
= By [~ log(1 — (1~ pas (y | 2))(1 — exp(—Busin)))] (32)
By 11— 903 (5 | 2)(1 — exp(—Buin))] 33

Again, (c) follows because 874(2,9) < —Bmin(1 — S(z,¥)), and (d) follows because — log(1 —
z) = x for x < 1. Putting these together, we have L* > (1 — exp(—fBmin))Ep-[1 — pos (y | )],
which yields the desired result. O
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Proof of Lemma 3.2. We will show a stronger result: any model and relaxation can be slightly mod-
ified to cause E,- [pg; (y | )] to be zero, in a way that is demonstrated below (though the modified

model will no longer be an exponential family).

Given any Sy.j, construct a new point zo such that S;.(z0,y) = 1 for all y, and add a new con-
straint So(z,y) = [z # 2o]. Then S(zg,y) = 0 for all y, so we never want to place mass on z
under the unrelaxed supervision. In addition, extend the model family to allow the single additional
distribution p’(z | ) = [z = zo].

Now, suppose S1.x = oo and Sy = Bmin- Then, for any 6, we have L(6,3) = A(B) + L(6, o),
since py places no mass on zo; therefore, L(6, ) > A(S)+ L* for all §. On the other hand, we have
Ly, B) = A(B) + Bmin- If Bmin < L*, we will thus use p’ and shift all of the mass to 2, thereby
placing zero mass on the correct answer. O

Note that the proof required constructing a “bad” z that satisfied almost all the constraints for many
values of y at once. It seems straightforward to avoid this in practice, and so it would be interesting
to find assumptions under which we obtain a better relative loss bound than Proposition 3.1.

B.2 Amount of data needed to learn

For the next few derivations we will make extensive use of the relation logpg g(y | =) =

A0, B;x,y) — A(; ), where A0, 8;x,y) def log (ZZ exp (HTQS(I, 2) + BTY(z, y))) Note that
the preceding definition is consistent with (13) since we assume throughout Section 3 that T = 1.
We will also use the following properties of log-partition functions:

V@A(a,ﬂ;i,y) = ]Ezwpg,g(-m,y) [qi)(x,z)] (34)
_ B[00, 2) exp(870(2,9)) )
Ez~pe(~|x) [eXp(ﬁTw(Z, y))} ’
VAW, Biw,y) = —(VoA) (Vo A) | + Eupy (1.8, 2) @ 6(x, 2)] (36)
Ezwpg(-|.t) [(¢($, Z) ® ¢(.’E, Z)) eXp(5T1/)(Z, y))]
Ez~pg(-|a:) [exp(ﬁTw(z, y))]
Here we use VA as short-hand for Vg A(f, 8;x,y). These VoA terms will always cancel out
in the sequel, so they can be safely ignored. (The cancellation occurs because we always end up
subtracting two log-normalization constants, whose gradients must be equal by first-order optimality
conditions.) Analogous properties to those above hold for A(6; z):
VOA('gv :Z?) = Ez~p9(~|z) [¢(xa Z)L (38)
VA0 2) = —(VoA)(VoA) T + Eenpy o) [0(2,2) @ d(z, 2)]. (39)

= —(VoA)(VoA) " + (37

In this case, VA is short-hand for Vo A(0; z).

Proof of (8). We have

Too = Vi[—10g po- 00 (y | 2)] (40)

= V; [A(0%;2) — A(6",00; 2, y)] (41)

= Ep+ [0(2, 2) ® ¢(x, 2)] Eyp 5(2.1)] (42)

= (P[-S]E¢-[¢ ® ¢ | =S] + P[S]E¢«[¢p ® ¢ | S]) — Eg-[¢p @ ¢ | §] (44)

= Py-[-S] (Eg- [p @ ¢ | =S| —Ep- [p @ ¢ |S]). (45)

The result follows by taking expectations. O
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Proof of (9). We have
Iy = Vi[—logpe; 5y | )] (46)

= Vi [A(5; ) — A6, B;2,y)] (47)

Eo; [(¢(x, 2) @ ¢(z, 2)) exp(8T )]

== EG;; [d)(xa Z) & QZ/)(LE, Z)} - Ee; [eXp(BTw)] (48)

_ Eg3[6 @ ¢]Eqs [exp(87 )] — Egs [(6 @ ) exp(B7 )] 49)

a Eg: [exp(8T¢)]

_ Cove: [ ® ¢, exp(B7 )]

=TT Ry (9] CO

(@)  Covg;[p@ ¢, 14579 +0(8°)] 1)
Eo:[1+ O (B)]

Y Cove; [p® 9, BT0] +0 (5%), (52)

where in (a) we used exp(8 ') = 1+ 8¢ + O (5%) and in (b) we used Cov[-, 1] = 0. The result
again follows by taking expectations. O

Note: Assuming that [y is small for most z (as measured by py: ), the O (?) term is small as
long as || B[|oc < 1. This assumption on > holds when Py: [S] ~ 1 (so that ¢) = 0 most of the time).

Proof of (10). Recall that we are assuming 3; = Bmin for all j, and that the =S; are all disjoint. In
this case, — 3 T@/J is equal to By if a constraint is violated and 0 if no constraints are violated. We
then have

Cove, [¢® ¢, —BT¢] (53)
= min Covoy (¢ ¢, 1[-S]] (54)
= BuinP[-S] (B[ ® ¢ | 8] — Eoz[6 © ¢]) (55)
= BuinP[~S] (Eo3 [0 @ ¢ | =] — P[-S]Eq; [0 @ ¢ | =] — PIS|Eg; [0 @ 6 |S])  (56)
= BuinPISIP[S] (B3 [0 © ¢ | =S] — Egs[60 ¢ | S]) (57)
as claimed. O

B.3 Optimizing 3

Proof of Proposition 3.3. We can re-express E, ,p«[—logp(y | z)] as KL (p* || p) + H(p*).
Hence, in particular, L(0, 8) = KL (p* || po,s) + H(p*) > H(p*),> with equality if and only if
po,3 = p*. On the other hand, py« o = pg= = p* by assumption, so equality is attainable, and
(6*, 00) is a global optimum of L.

Note that the normalization constant A(3) is important here, since if pg s did not (sub-)normalize
then the KL divergence would not necessarily be non-negative. [

“Here we use the fact that KL (p || q) def E,[logp — log ¢] is non-negative as long as p normalizes and ¢
sub-normalizes, which is true for ¢ = pg s by Proposition 2.5).

12



C Proofs for Section 4

Proof of (14). The acceptance rate is simply the expectation, over all z | z, of the acceptance
probability for that particular z. This can clearly be written as

> pox(z | x)exp (B74(2,y)) (58)
= T(zy)exp (07 d(x,2) — Ar(6;2,9)) exp (8 ¥(2,)) (59)
= exp (—Ar(6;2,9)) Y T(z,9) exp (07 (. 2) + BT (1)) (60)
= exp (A(0, Bz, y) — zz‘hr(@;x,y)) : (61)
Since (14) is the multiplicative inverse of (61), the result follows. O

Proof of (15). By convexity of A(0, 8;z,y), we have

A0, Bz, y) (62)
> A6, Bz, y) + (0 — 0) VoA, B;x,y) + (B — B)TVA®0, B;z,v) (63)
= A, B;z,y) + (0 — Q)TE%,B(_W@,) [o(x, 2)] + (B — B)TE%‘B(.‘E,y) [¥(z,y)] (64)
= A0, By2,y) + (0= 0)" o+ (8- 5) ", (65)
as was to be shown. O
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