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Abstract

This work addresses the problem of regret minimization in non-stochastic multi-
armed bandit problems, focusing on performance guarantees that hold with high
probability. Such results are rather scarce in the literature since proving them re-
quires a large deal of technical effort and significant modifications to the standard,
more intuitive algorithms that come only with guarantees that hold on expectation.
One of these modifications is forcing the learner to sample arms from the uniform
distribution at least Ω(

√
T ) times over T rounds, which can adversely affect per-

formance if many of the arms are suboptimal. While it is widely conjectured that
this property is essential for proving high-probability regret bounds, we show in
this paper that it is possible to achieve such strong results without this undesirable
exploration component. Our result relies on a simple and intuitive loss-estimation
strategy called Implicit eXploration (IX) that allows a remarkably clean analy-
sis. To demonstrate the flexibility of our technique, we derive several improved
high-probability bounds for various extensions of the standard multi-armed bandit
framework. Finally, we conduct a simple experiment that illustrates the robustness
of our implicit exploration technique.

1 Introduction

Consider the problem of regret minimization in non-stochastic multi-armed bandits, as defined in
the classic paper of Auer, Cesa-Bianchi, Freund, and Schapire [5]. This sequential decision-making
problem can be formalized as a repeated game between a learner and an environment (sometimes
called the adversary). In each round t = 1, 2, . . . , T , the two players interact as follows: The
learner picks an arm (also called an action) It ∈ [K] = {1, 2, . . . ,K} and the environment selects
a loss function `t : [K] → [0, 1], where the loss associated with arm i ∈ [K] is denoted as `t,i.
Subsequently, the learner incurs and observes the loss `t,It . Based solely on these observations, the
goal of the learner is to choose its actions so as to accumulate as little loss as possible during the
course of the game. As traditional in the online learning literature [10], we measure the performance
of the learner in terms of the regret defined as

RT =

T∑
t=1

`t,It − min
i∈[K]

T∑
t=1

`t,i.

We say that the environment is oblivious if it selects the sequence of loss vectors irrespective of
the past actions taken by the learner, and adaptive (or non-oblivious) if it is allowed to choose `t
as a function of the past actions It−1, . . . , I1. An equivalent formulation of the multi-armed bandit
game uses the concept of rewards (also called gains or payoffs) instead of losses: in this version,
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the adversary chooses the sequence of reward functions (rt) with rt,i denoting the reward given
to the learner for choosing action i in round t. In this game, the learner aims at maximizing its
total rewards. We will refer to the above two formulations as the loss game and the reward game,
respectively.

Our goal in this paper is to construct algorithms for the learner that guarantee that the regret grows
sublinearly. Since it is well known that no deterministic learning algorithm can achieve this goal
[10], we are interested in randomized algorithms. Accordingly, the regret RT then becomes a ran-
dom variable that we need to bound in some probabilistic sense. Most of the existing literature on
non-stochastic bandits is concerned with bounding the pseudo-regret (or weak regret) defined as

R̂T = max
i∈[K]

E

[
T∑
t=1

`t,It −
T∑
t=1

`t,i

]
,

where the expectation integrates over the randomness injected by the learner. Proving bounds on
the actual regret that hold with high probability is considered to be a significantly harder task that
can be achieved by serious changes made to the learning algorithms and much more complicated
analyses. One particular common belief is that in order to guarantee high-confidence performance
guarantees, the learner cannot avoid repeatedly sampling arms from a uniform distribution, typically
Ω
(√
KT

)
times [5, 4, 7, 9]. It is easy to see that such explicit exploration can impact the empirical

performance of learning algorithms in a very negative way if there are many arms with high losses:
even if the base learning algorithm quickly learns to focus on good arms, explicit exploration still
forces the regret to grow at a steady rate. As a result, algorithms with high-probability performance
guarantees tend to perform poorly even in very simple problems [25, 7].

In the current paper, we propose an algorithm that guarantees strong regret bounds that hold with
high probability without the explicit exploration component. One component that we preserve from
the classical recipe for such algorithms is the biased estimation of losses, although our bias is of
a much more delicate nature, and arguably more elegant than previous approaches. In particular,
we adopt the implicit exploration (IX) strategy first proposed by Kocák, Neu, Valko, and Munos
[19] for the problem of online learning with side-observations. As we show in the current pa-
per, this simple loss-estimation strategy allows proving high-probability bounds for a range of non-
stochastic bandit problems including bandits with expert advice, tracking the best arm and bandits
with side-observations. Our proofs are arguably cleaner and less involved than previous ones, and
very elementary in the sense that they do not rely on advanced results from probability theory like
Freedman’s inequality [12]. The resulting bounds are tighter than all previously known bounds and
hold simultaneously for all confidence levels, unlike most previously known bounds [5, 7]. For the
first time in the literature, we also provide high-probability bounds for anytime algorithms that do
not require prior knowledge of the time horizon T . A minor conceptual improvement in our analysis
is a direct treatment of the loss game, as opposed to previous analyses that focused on the reward
game, making our treatment more coherent with other state-of-the-art results in the online learning
literature1.

The rest of the paper is organized as follows. In Section 2, we review the known techniques for prov-
ing high-probability regret bounds for non-stochastic bandits and describe our implicit exploration
strategy in precise terms. Section 3 states our main result concerning the concentration of the IX
loss estimates and shows applications of this result to several problem settings. Finally, we conduct
a set of simple experiments to illustrate the benefits of implicit exploration over previous techniques
in Section 4.

2 Explicit and implicit exploration

Most principled learning algorithms for the non-stochastic bandit problem are constructed by using
a standard online learning algorithm such as the exponentially weighted forecaster ([26, 20, 13])
or follow the perturbed leader ([14, 18]) as a black box, with the true (unobserved) losses replaced
by some appropriate estimates. One of the key challenges is constructing reliable estimates of the
losses `t,i for all i ∈ [K] based on the single observation `t,It . Following Auer et al. [5], this is

1In fact, studying the loss game is colloquially known to allow better constant factors in the bounds in many
settings (see, e.g., Bubeck and Cesa-Bianchi [9]). Our result further reinforces these observations.
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traditionally achieved by using importance-weighted loss/reward estimates of the form

̂̀
t,i =

`t,i
pt,i

I{It=i} or r̂t,i =
rt,i
pt,i

I{It=i} (1)

where pt,i = P [It = i| Ft−1] is the probability that the learner picks action i in round t, conditioned
on the observation history Ft−1 of the learner up to the beginning of round t. It is easy to show that
these estimates are unbiased for all i with pt,i > 0 in the sense that Ềt,i = `t,i for all such i.

For concreteness, consider the EXP3 algorithm of Auer et al. [5] as described in Bubeck and Cesa-
Bianchi [9, Section 3]. In every round t, this algorithm uses the loss estimates defined in Equation (1)
to compute the weights wt,i = exp

(
−η
∑t−1
s=1

̂̀
s−1,i

)
for all i and some positive parameter η that

is often called the learning rate. Having computed these weights, EXP3 draws arm It = i with
probability proportional to wt,i. Relying on the unbiasedness of the estimates (1) and an optimized
setting of η, one can prove that EXP3 enjoys a pseudo-regret bound of

√
2TK logK. However, the

fluctuations of the loss estimates around the true losses are too large to permit bounding the true
regret with high probability. To keep these fluctuations under control, Auer et al. [5] propose to use
the biased reward-estimates

r̃t,i = r̂t,i +
β

pt,i
(2)

with an appropriately chosen β > 0. Given these estimates, the EXP3.P algorithm of Auer et al. [5]
computes the weights wt,i = exp

(
η
∑t−1
s=1 r̃s,i

)
for all arms i and then samples It according to the

distribution
pt,i = (1− γ)

wt,i∑K
j=1 wt,j

+
γ

K
,

where γ ∈ [0, 1] is the exploration parameter. The argument for this explicit exploration is that it
helps to keep the range (and thus the variance) of the above reward estimates bounded, thus enabling
the use of (more or less) standard concentration results2. In particular, the key element in the analysis
of EXP3.P [5, 9, 7, 6] is showing that the inequality

T∑
t=1

(rt,i − r̃t,i) ≤
log(K/δ)

β

holds simultaneously for all i with probability at least 1 − δ. In other words, this shows that the
cumulative estimates

∑T
t=1 r̃t,i are upper confidence bounds for the true rewards

∑T
t=1 rt,i.

In the current paper, we propose to use the loss estimates defined as

˜̀
t,i =

`t,i
pt,i + γt

I{It=i}, (3)

for all i and an appropriately chosen γt > 0, and then use the resulting estimates in an exponential-
weights algorithm scheme without any explicit exploration. Loss estimates of this form were first
used by Kocák et al. [19]—following them, we refer to this technique as Implicit eXploration, or,
in short, IX. In what follows, we argue that that IX as defined above achieves a similar variance-
reducing effect as the one achieved by the combination of explicit exploration and the biased reward
estimates of Equation (2). In particular, we show that the IX estimates (3) constitute a lower con-
fidence bound for the true losses which allows proving high-probability bounds for a number of
variants of the multi-armed bandit problem.

3 High-probability regret bounds via implicit exploration

In this section, we present a concentration result concerning the IX loss estimates of Equation (3),
and apply this result to prove high-probability performance guarantees for a number of non-
stochastic bandit problems. The following lemma states our concentration result in its most general
form:

2Explicit exploration is believed to be inevitable for proving bounds in the reward game for various other
reasons, too—see Bubeck and Cesa-Bianchi [9] for a discussion.
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Lemma 1. Let (γt) be a fixed non-increasing sequence with γt ≥ 0 and let αt,i be nonnegative
Ft−1-measurable random variables satisfying αt,i ≤ 2γt for all t and i. Then, with probability at
least 1− δ,

T∑
t=1

K∑
i=1

αt,i

(˜̀
t,i − `t,i

)
≤ log (1/δ) .

A particularly important special case of the above lemma is the following:
Corollary 1. Let γt = γ ≥ 0 for all t. With probability at least 1− δ,

T∑
t=1

(˜̀
t,i − `t,i

)
≤ log (K/δ)

2γ
.

simultaneously holds for all i ∈ [K].

This corollary follows from applying Lemma 1 to the functions αt,i = 2γI{i=j} for all j and
applying the union bound. The full proof of Lemma 1 is presented in the Appendix. For didactic
purposes, we now present a direct proof for Corollary 1, which is essentially a simpler version of
Lemma 1.

Proof of Corollary 1. For convenience, we will use the notation β = 2γ. First, observe that

˜̀
t,i =

`t,i
pt,i + γ

I{It=i} ≤
`t,i

pt,i + γ`t,i
I{It=i} =

1

2γ
· 2γ`t,i/pt,i

1 + γ`t,i/pt,i
I{It=i} ≤

1

β
· log

(
1 + β ̂̀t,i) ,

where the first step follows from `t,i ∈ [0, 1] and last one from the elementary inequality z
1+z/2 ≤

log(1 + z) that holds for all z ≥ 0. Using the above inequality, we get that

E
[

exp
(
β ˜̀t,i)∣∣∣Ft−1

]
≤E

[
1 + β ̂̀t,i∣∣∣Ft−1

]
≤ 1 + β`t,i ≤ exp (β`t,i) ,

where the second and third steps are obtained by using E
[ ̂̀
t,i

∣∣∣Ft−1

]
≤ `t,i that holds by definition

of ̂̀t,i, and the inequality 1 + z ≤ ez that holds for all z ∈ R. As a result, the process Zt =

exp
(
β
∑t
s=1

(˜̀
s,i− `s,i

))
is a supermartingale with respect to (Ft): E [Zt| Ft−1] ≤ Zt−1. Observe

that, since Z0 = 1, this implies E [ZT ] ≤ E [ZT−1] ≤ . . . ≤ 1, and thus by Markov’s inequality,

P

[
T∑
t=1

(˜̀
t,i − `t,i

)
> ε

]
≤ E

[
exp

(
β

T∑
t=1

(˜̀
t,i − `t,i

))]
· exp(−βε) ≤ exp(−βε)

holds for any ε > 0. The statement of the lemma follows from solving exp(−βε) = δ/K for ε and
using the union bound over all arms i.

In what follows, we put Lemma 1 to use and prove improved high-probability performance guaran-
tees for several well-studied variants of the non-stochastic bandit problem, namely, the multi-armed
bandit problem with expert advice, tracking the best arm for multi-armed bandits, and bandits with
side-observations. The general form of Lemma 1 will allow us to prove high-probability bounds for
anytime algorithms that can operate without prior knowledge of T . For clarity, we will only provide
such bounds for the standard multi-armed bandit setting; extending the derivations to other settings
is left as an easy exercise. For all algorithms, we prove bounds that scale linearly with log(1/δ) and
hold simultaneously for all levels δ. Note that this dependence can be improved to

√
log(1/δ) for a

fixed confidence level δ, if the algorithm can use this δ to tune its parameters. This is the way that
Table 1 presents our new bounds side-by-side with the best previously known ones.
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Setting Best known regret bound Our new regret bound
Multi-armed bandits 5.15

√
TK log(K/δ) 2

√
2TK log(K/δ)

Bandits with expert advice 6
√
TK log(N/δ) 2

√
2TK log(N/δ)

Tracking the best arm 7
√
KTS log(KT/δS) 2

√
2KTS log(KT/δS)

Bandits with side-observations Õ
(√
mT

)
Õ
(√
αT
)

Table 1: Our results compared to the best previously known results in the four settings considered
in Sections 3.1–3.4. See the respective sections for references and notation.

3.1 Multi-armed bandits

Algorithm 1 EXP3-IX
Parameters: η > 0, γ > 0.
Initialization: w1,i = 1.
for t = 1, 2, . . . , T , repeat

1. pt,i =
wt,i∑K

j=1 wt,j
.

2. Draw It ∼ pt = (pt,1, . . . , pt,K).
3. Observe loss `t,It .

4. ˜̀t,i ← `t,i
pt,i+γ

I{It=i} for all i ∈ [K].

5. wt+1,i ← wt,ie
−η˜̀t,i for all i ∈ [K].

In this section, we propose a variant of the
EXP3 algorithm of Auer et al. [5] that uses the
IX loss estimates (3): EXP3-IX. The algorithm
in its most general form uses two nonincreasing
sequences of nonnegative parameters: (ηt) and
(γt). In every round, EXP3-IX chooses action
It = i with probability proportional to

pt,i ∝ wt,i = exp

(
−ηt

t−1∑
s=1

˜̀
s,i

)
, (4)

without mixing any explicit exploration term
into the distribution. A fixed-parameter version
of EXP3-IX is presented as Algorithm 1.

Our theorem below states a high-probability bound on the regret of EXP3-IX. Notably, our bound
exhibits the best known constant factor of 2

√
2 in the leading term, improving on the factor of 5.15

due to Bubeck and Cesa-Bianchi [9]. The best known leading constant for the pseudo-regret bound
of EXP3 is

√
2, also proved in Bubeck and Cesa-Bianchi [9].

Theorem 1. Fix an arbitrary δ > 0. With ηt = 2γt =
√

2 logK
KT for all t, EXP3-IX guarantees

RT ≤ 2
√

2KT logK +

(√
2KT

logK
+ 1

)
log (2/δ)

with probability at least 1−δ. Furthermore, setting ηt = 2γt =
√

logK
Kt for all t, the bound becomes

RT ≤ 4
√
KT logK +

(
2

√
KT

logK
+ 1

)
log (2/δ) .

Proof. Let us fix an arbitrary δ′ ∈ (0, 1). Following the standard analysis of EXP3 in the loss game
and nonincreasing learning rates [9], we can obtain the bound

T∑
t=1

(
K∑
i=1

pt,i ˜̀t,i − ˜̀t,j) ≤ logK

ηT
+

T∑
t=1

ηt
2

K∑
i=1

pt,i

(˜̀
t,i

)2

for any j. Now observe that
K∑
i=1

pt,i ˜̀t,i =

K∑
i=1

I{It=i}
`t,i (pt,i + γt)

pt,i + γt
− γt

K∑
i=1

I{It=i}
`t,i

pt,i + γt`t,i
= `t,It − γt

K∑
i=1

˜̀
t,i. (5)

Similarly,
∑K
i=1 pt,i

˜̀2
t,i ≤

∑K
i=1
˜̀
t,i holds by the boundedness of the losses. Thus, we get that

T∑
t=1

(`t,It − `t,j) ≤
T∑
t=1

(
`t,j − ˜̀t,j)+

logK

ηT
+

T∑
t=1

(ηt
2

+ γt

) K∑
i=1

˜̀
t,i

≤ log (K/δ′)

2γ
+

logK

η
+

T∑
t=1

(ηt
2

+ γt

) K∑
i=1

`t,i + log (1/δ′)
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holds with probability at least 1 − 2δ′, where the last line follows from an application of Lemma 1
with αt,i = ηt/2 + γt for all t, i and taking the union bound. By taking j = arg mini LT,i and
δ′ = δ/2, and using the boundedness of the losses, we obtain

RT ≤
log (2K/δ)

2γT
+

logK

ηT
+K

T∑
t=1

(ηt
2

+ γt

)
+ log (2/δ) .

The statements of the theorem then follow immediately, noting that
∑T
t=1 1/

√
t ≤ 2

√
T .

3.2 Bandits with expert advice

We now turn to the setting of multi-armed bandits with expert advice, as defined in Auer et al. [5],
and later revisited by McMahan and Streeter [22] and Beygelzimer et al. [7]. In this setting, we
assume that in every round t = 1, 2, . . . , T , the learner observes a set of N probability distributions
ξt(1), ξt(2), . . . , ξt(N) ∈ [0, 1]K over the K arms, such that

∑K
i=1 ξt,i(n) = 1 for all n ∈ [N ].

We assume that the sequences (ξt(n)) are measurable with respect to (Ft). The nthof these vectors
represent the probabilistic advice of the corresponding nth expert. The goal of the learner in this
setting is to pick a sequence of arms so as to minimize the regret against the best expert:

RξT =

T∑
t=1

`t,It − min
n∈[N ]

T∑
t=1

K∑
i=1

ξt,i(n)`t,i → min .

To tackle this problem, we propose a modification of the EXP4 algorithm of Auer et al. [5] that uses
the IX loss estimates (3), and also drops the explicit exploration component of the original algorithm.
Specifically, EXP4-IX uses the loss estimates defined in Equation (3) to compute the weights

wt,n = exp

(
−η

t−1∑
s=1

K∑
i=1

ξs,i(n)˜̀s,i)

for every expert n ∈ [N ], and then draw arm i with probability pt,i ∝
∑N
n=1 wt,nξt,i(n). We now

state the performance guarantee of EXP4-IX. Our bound improves the best known leading constant
of 6 due to Beygelzimer et al. [7] to 2

√
2 and is a factor of 2 worse than the best known constant in

the pseudo-regret bound for EXP4 [9]. The proof of the theorem is presented in the Appendix.

Theorem 2. Fix an arbitrary δ > 0 and set η = 2γ =
√

2 logN
KT for all t. Then, with probability at

least 1− δ, the regret of EXP4-IX satisfies

RξT ≤ 2
√

2KT logN +

(√
2KT

logN
+ 1

)
log (2/δ) .

3.3 Tracking the best sequence of arms

In this section, we consider the problem of competing with sequences of actions. Similarly to
Herbster and Warmuth [17], we consider the class of sequences that switch at most S times between
actions. We measure the performance of the learner in this setting in terms of the regret against the
best sequence from this class C(S) ⊆ [K]T , defined as

RST =

T∑
t=1

`t,It − min
(Jt)∈C(S)

T∑
t=1

`t,Jt .

Similarly to Auer et al. [5], we now propose to adapt the Fixed Share algorithm of Herbster and
Warmuth [17] to our setting. Our algorithm, called EXP3-SIX, updates a set of weights wt,· over
the arms in a recursive fashion. In the first round, EXP3-SIX sets w1,i = 1/K for all i. In the
following rounds, the weights are updated for every arm i as

wt+1,i = (1− α)wt,i · e−η
˜̀
t,i +

α

K

K∑
j=1

wt,j · e−η
˜̀
t,j .
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In round t, the algorithm draws arm It = i with probability pt,i ∝ wt,i. Below, we give the
performance guarantees of EXP3-SIX. Note that our leading factor of 2

√
2 again improves over the

best previously known leading factor of 7, shown by Audibert and Bubeck [3]. The proof of the
theorem is given in the Appendix.

Theorem 3. Fix an arbitrary δ > 0 and set η = 2γ =
√

2S̄ logK
KT and α = S

T−1 , where S̄ = S + 1.
Then, with probability at least 1− δ, the regret of EXP3-SIX satisfies

RST ≤ 2

√
2KTS̄ log

(
eKT

S

)
+

(√
2KT

S̄ logK
+ 1

)
log (2/δ) .

3.4 Bandits with side-observations

Let us now turn to the problem of online learning in bandit problems in the presence of side ob-
servations, as defined by Mannor and Shamir [21] and later elaborated by Alon et al. [1]. In this
setting, the learner and the environment interact exactly as in the multi-armed bandit problem, the
main difference being that in every round, the learner observes the losses of some arms other than
its actually chosen arm It. The structure of the side observations is described by the directed graph
G: nodes of G correspond to individual arms, and the presence of arc i→ j implies that the learner
will observe `t,j upon selecting It = i.

Implicit exploration and EXP3-IX was first proposed by Kocák et al. [19] for this precise setting.
To describe this variant, let us introduce the notations Ot,i = I{It=i} + I{(It→i)∈G} and ot,i =

E [Ot,i| Ft−1]. Then, the IX loss estimates in this setting are defined for all t, i as ˜̀t,i =
Ot,i`t,i
ot,i+γt

.
With these estimates at hand, EXP3-IX draws arm It from the exponentially weighted distribution
defined in Equation (4). The following theorem provides the regret bound concerning this algorithm.

Theorem 4. Fix an arbitrary δ > 0. Assume that T ≥ K2/(8α) and set η = 2γ =
√

logK
2αT log(KT ) ,

where α is the independence number of G. With probability at least 1− δ, EXP3-IX guarantees

RT ≤
(

4+2
√

log (4/δ)
)
·
√

2αT
(
log2K+logKT

)
+2

√
αT log(KT )

logK
log (4/δ)+

√
T log(4/δ)

2
.

The proof of the theorem is given in the Appendix. While the proof of this statement is significantly
more involved than the other proofs presented in this paper, it provides a fundamentally new result.
In particular, our bound is in terms of the independence number α and thus matches the minimax
regret bound proved by Alon et al. [1] for this setting up to logarithmic factors. In contrast, the only
high-probability regret bound for this setting due to Alon et al. [2] scales with the size m of the
maximal acyclic subgraph of G, which can be much larger than α in general (i.e., m may be o(α)
for some graphs [1]).

4 Empirical evaluation
We conduct a simple experiment to demonstrate the robustness of EXP3-IX as compared to EXP3
and its superior performance as compared to EXP3.P. Our setting is a 10-arm bandit problem where
all losses are independent draws of Bernoulli random variables. The mean losses of arms 1 through
8 are 1/2 and the mean loss of arm 9 is 1/2−∆ for all rounds t = 1, 2, . . . , T . The mean losses of
arm 10 are changing over time: for rounds t ≤ T/2, the mean is 1/2+ ∆, and 1/2−4∆ afterwards.
This choice ensures that up to at least round T/2, arm 9 is clearly better than other arms. In the
second half of the game, arm 10 starts to outperform arm 9 and eventually becomes the leader.

We have evaluated the performance of EXP3, EXP3.P and EXP3-IX in the above setting with T =
106 and ∆ = 0.1. For fairness of comparison, we evaluate all three algorithms for a wide range
of parameters. In particular, for all three algorithms, we set a base learning rate η according to the
best known theoretical results [9, Theorems 3.1 and 3.3] and varied the multiplier of the respective
base parameters between 0.01 and 100. Other parameters are set as γ = η/2 for EXP3-IX and
β = γ/K = η for EXP3.P. We studied the regret up to two interesting rounds in the game: up
to T/2, where the losses are i.i.d., and up to T where the algorithms have to notice the shift in the
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Figure 1: Regret of EXP3, EXP3.P, and EXP3-IX, respectively in the problem described in Sec-
tion 4.

loss distributions. Figure 1 shows the empirical means and standard deviations over 50 runs of the
regrets of the three algorithms as a function of the multipliers. The results clearly show that EXP3-
IX largely improves on the empirical performance of EXP3.P and is also much more robust in the
non-stochastic regime than vanilla EXP3.

5 Discussion
In this paper, we have shown that, contrary to popular belief, explicit exploration is not necessary to
achieve high-probability regret bounds for non-stochastic bandit problems. Interestingly, however,
we have observed in several of our experiments that our IX-based algorithms still draw every arm
roughly

√
T times, even though this is not explicitly enforced by the algorithm. This suggests a need

for a more complete study of the role of exploration, to find out whether pulling every single arm
Ω(
√
T ) times is necessary for achieving near-optimal guarantees.

One can argue that tuning the IX parameter that we introduce may actually be just as difficult in
practice as tuning the parameters of EXP3.P. However, every aspect of our analysis suggests that
γt = ηt/2 is the most natural choice for these parameters, and thus this is the choice that we
recommend. One limitation of our current analysis is that it only permits deterministic learning-rate
and IX parameters (see the conditions of Lemma 1). That is, proving adaptive regret bounds in the
vein of [15, 24, 23] that hold with high probability is still an open challenge.

Another interesting direction for future work is whether the implicit exploration approach can help in
advancing the state of the art in the more general setting of linear bandits. All known algorithms for
this setting rely on explicit exploration techniques, and the strength of the obtained results depend
crucially on the choice of the exploration distribution (see [8, 16] for recent advances). Interestingly,
IX has a natural extension to the linear bandit problem. To see this, consider the vector Vt = eIt and
the matrix Pt = E [VtV

T
t ]. Then, the IX loss estimates can be written as ˜̀t = (Pt + γI)−1VtV

T
t `t.

Whether or not this estimate is the right choice for linear bandits remains to be seen.

Finally, we note that our estimates (3) are certainly not the only ones that allow avoiding explicit
exploration. In fact, the careful reader might deduce from the proof of Lemma 1 that the same
concentration can be shown to hold for the alternative loss estimates `t,iI{It=i}/ (pt,i + γ`t,i) and
log
(
1 + 2γ`t,iI{It=i}/pt,i

)
/(2γ). Actually, a variant of the latter estimate was used previously for

proving high-probability regret bounds in the reward game by Audibert and Bubeck [4]—however,
their proof still relied on explicit exploration. It is not hard to verify that all the results we presented
in this paper (except Theorem 4) can be shown to hold for the above two estimates, too.
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A The proof of Lemma 1

Fix any t. For convenience, we will use the notation βt = 2γt. First, observe that for any i,

˜̀
t,i =

`t,i
pt,i + γt

I{It=i} ≤
`t,i

pt,i + γt`t,i
I{It=i} =

1

2γt
· 2γt`t,i/pt,i

1 + γt`t,i/pt,i
I{It=i} ≤

1

βt
· log

(
1 + βt ̂̀t,i) ,

where the first step follows from `t,i ∈ [0, 1] and last one from the elementary inequality z
1+z/2 ≤

log(1 + z) that holds for all z ≥ 0.

Define the notations λ̃t =
∑K
i=1 αt,i

˜̀
t,i and λt =

∑K
i=1 αt,i`t,i. Using the above inequality, we get

that

E
[

exp
(
λ̃t
)∣∣∣Ft−1

]
≤E

[
exp

(
K∑
i=1

αt,i
βt
· log

(
1 + βt ̂̀t,i))

∣∣∣∣∣Ft−1

]

≤E

[
K∏
i=1

(
1 + αt,i ̂̀t,i)

∣∣∣∣∣Ft−1

]
= E

[
1 +

K∑
i=1

αt,i ̂̀t,i
∣∣∣∣∣Ft−1

]

≤1 +

K∑
i=1

αt,i`t,i ≤ exp

(
K∑
i=1

αt,i`t,i

)
= exp (λt) ,

(6)

where the second line follows from noting that αt,i ≤ βt, using the inequality x log(1+y) ≤ log(1+

xy) that holds for all y > −1 and x ∈ [0, 1] and the identity
∏K
i=1

(
1 + αt,i ̂̀t,i) = 1+

∑K
i=1 αt,i

̂̀
t,i

that follows from the fact that ̂̀t,i · ̂̀t,j = 0 holds whenever i 6= j. The last line is obtained by using

E
[ ̂̀
t,i

∣∣∣Ft−1

]
≤ `t,i that holds by definition of ̂̀t,i, and the inequality 1 + z ≤ ez that holds for all

z ∈ R.

As a result, the process Zt = exp
(∑t

s=1

(
λ̃s − λs

))
is a supermartingale with respect to (Ft):

E [Zt| Ft−1] ≤ Zt−1. Observe that, since Z0 = 1, this implies E [ZT ] ≤ E [ZT−1] ≤ . . . ≤ 1, and
thus by Markov’s inequality,

P

[
T∑
t=1

(
λ̃t − λt

)
> ε

]
≤ E

[
exp

(
T∑
t=1

(
λ̃t − λt

))]
· exp(−ε) ≤ exp(−ε)

holds for any ε > 0. The statement of the lemma follows from solving exp(−ε) = δ for ε.

B Further proofs

B.1 The proof of Theorem 2

Fix an arbitrary δ′. For ease of notation, let us define πt(n) = wt,n/
(∑N

m=1 wt,m
)
. By standard

arguments (along the lines of [5, 9]), we can obtain

T∑
t=1

K∑
i=1

(
pt,i − ξt,i(m)

)˜̀
t,i ≤

logK

η
+
η

2

T∑
t=1

N∑
n=1

πt(n)

(
K∑
i=1

ξt,i(n)˜̀t,i)2

for any fixed m ∈ [N ]. The last term on the right-hand side can be bounded as

N∑
n=1

πt(n)

(
K∑
i=1

ξt,i(n)˜̀t,i)2

≤
N∑
n=1

πt(n)

K∑
i=1

ξt,i(n)
(˜̀
t,i

)2

=

K∑
i=1

pt,i

(˜̀
t,i

)2

≤
K∑
i=1

˜̀
t,i,

where the first step uses Jensen’s inequality and the last uses pt,i ˜̀t,i ≤ 1. Now, we can apply
Lemma 1 and the union bound to show that

T∑
t=1

K∑
i=1

ξt,i(m)
(˜̀
t,i − `t,i

)
≤ log (N/δ′)

2γ
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holds simultaneously for all experts with probability at least 1 − δ′, and in particular for the best
expert, too. Putting this observation together with the above bound and Equation (5), we get that

RξT ≤
logN

η
+

log (N/δ′)

2γ
+
(η

2
+ γ
) T∑
t=1

K∑
i=1

˜̀
t,i

≤ logK

η
+

log (N/δ′)

2γ
+
(η

2
+ γ
) K∑
i=1

LT,i +
(η

2
+ γ
) log (1/δ′)

2γ

holds with probability at least 1 − 2δ′, where the last line follows from Lemma 1 and the union
bound. The proof is concluded by taking δ′ = δ/2 and plugging in the choices of γ and η.

B.2 The proof of Theorem 3

The proof of the theorem builds on the techniques of Cesa-Bianchi et al. [11] and Auer et al. [5].
Let us fix an arbitrary δ′ ∈ (0, 1) and denote the best sequence from C(S) by J∗1:T . Then, a
straightforward modification of Theorem 2 of [11] yields the bound3

T∑
t=1

(
K∑
i=1

pt,i ˜̀t,i − ˜̀t,J∗
t

)
≤ 2S̄ logK

η
− 1

η
log
(
αS(1−α)T−S̄

)
+
η

2

T∑
t=1

K∑
i=1

pt,i

(˜̀
t,i

)2

.

To proceed, let us apply Lemma 1 to obtain that

T∑
t=1

(˜̀
t,Jt − `t,Jt

)
≤

log
(
|C(S)| /δ

)
2γ

simultaneously holds for all sequences J1:T ∈ C(S). By standard arguments (see, e.g., the proof of
Theorem 22 in Audibert and Bubeck [3]), one can show that |C(S)| ≤ KS̄

(
eT
S

)S
. Now, combining

the above with Equation (5) and
∑K
i=1 pt,i

˜̀2
t,i ≤

∑K
i=1
˜̀
t,i, we get that

T∑
t=1

(
`t,It − `t,J∗

t

)
≤2S̄ logK

η
− 1

η
log
(
αS(1− α)T−S̄

)
+

log
(
T/(Sδ′)

)
+ 1

2γ
+
(η

2
+ γ
) T∑
t=1

K∑
i=1

˜̀
t,i

≤2S̄ logK

η
− 1

η
log
(
αS(1− α)T−S̄

)
+

log
(
T/(Sδ′)

)
+ 1

2γ

+
(η

2
+ γ
) K∑
i=1

Lt,i +
(η

2
+ γ
) log (1/δ′)

2γ
,

holds with probability at least 1 − 2δ′. where the last line follows from Lemma 1 and the union
bound. Then, after observing that the losses are bounded in [0, 1] and choosing δ′ = δ/2, we get
that

RST ≤
(S + 1) logK

η
− 1

η
log
(
αS(1− α)T−S−1

)
+

(S + 1) logK + S log
(

2eT
Sδ

)
2γ

+
(η

2
+ γ
)
KT +

(η
2

+ γ
) log (2/δ)

2γ

holds with probability at least 1 − δ. The only remaining piece required for proving the theorem is
showing that

− log
(
αS(1− α)T−S̄

)
≤ S log

(
eT

S

)
,

which follows from the proof of Corollary 1 in [11], and then substituting the choice of η and γ.

3Proving this bound requires replacing Hoeffding’s inequality in their Lemma 1 by the inequality e−z ≤
1− z + z2/2 that holds for all z ≥ 0.
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B.3 The proof of Theorem 4

Before we dive into the proof, we note that Lemma 1 does not hold for the loss estimates used by
this variant of EXP3-IX due to a subtle technical issue. Precisely, in this case

∏K
i=1

(
1 + ̂̀t,i) 6=∑K

i=1

(
1 + ̂̀t,i) prevents us from directly applying Lemma 1. However, Corollary 1 can still be

proven exactly the same way as done in Section 3. The only effect of this change is that the term
log(1/δ′) is replaced by K log(K/δ′).

Turning to the actual proof, let us fix an arbitrary δ′ ∈ (0, 1) and introduce the notation

Qt =

K∑
i=1

pt,i
ot,i + γ

.

By the standard EXP3-analysis, we have

T∑
t=1

(
K∑
i=1

pt,i ˜̀t,i − ˜̀t,j) ≤ logK

η
+
η

2

T∑
t=1

K∑
i=1

pt,i

(˜̀
t,i

)2

.

Now observe that
T∑
t=1

K∑
i=1

pt,i

(˜̀
t,i

)2

=

T∑
t=1

K∑
i=1

pt,i
ot,i + γ

· ˜̀t,i
≤

T∑
t=1

K∑
i=1

pt,i
ot,i + γ

· `t,i +
K log(K/δ′)

2γ

≤
T∑
t=1

Qt +
K log(K/δ′)

2γ
,

holds with probability at least 1 − δ′ by an application of Corollary 1 for all i and taking a union
bound. Furthermore, we have

K∑
i=1

pt,i ˜̀t,i =

K∑
i=1

pt,i`t,i +

K∑
i=1

(Ot,i − ot,i − γ)
pt,i`t,i
ot,i + γ

≥
K∑
i=1

pt,i`t,i +

K∑
i=1

(Ot,i − ot,i)
pt,i`t,i
ot,i + γ

− γQt.

By the Hoeffding–Azuma inequality, we have

T∑
t=1

`t,It ≤
T∑
t=1

K∑
i=1

pt,i`t,i +

√
T log(1/δ′)

2

with probability at least 1− δ′. After putting the above inequalities together and applying Lemma 1,
we obtain the bound

RT ≤
logK

η
+

log(K/δ′)

2γ
+
(η

2
+ γ
) T∑
t=1

Qt +
η

2
· K log(K/δ′)

2γ
+

√
T log(1/δ′)

2

+

T∑
t=1

K∑
i=1

(ot,i −Ot,i)
pt,i`t,i
ot,i + γ

that holds with probability at least 1 − 3δ′ by the union bound. To bound the last term on the right
hand side, observe that

Xt =

K∑
i=1

(ot,i −Ot,i)
pt,i`t,i
ot,i + γ
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is a martingale-difference sequence for all i ∈ [K] with |Xt| ≤ K and conditional variance

σ2
t (Xt) =E

( K∑
i=1

(ot,i −Ot,i)
pt,i

ot,i + γ

)2
∣∣∣∣∣∣Ft−1


≤E

( K∑
i=1

Ot,i
pt,i

ot,i + γ

)2
∣∣∣∣∣∣Ft−1

 (since E [Ot,i| Ft−1] = ot,i)

=E

 K∑
i=1

K∑
j=1

Ot,iOt,j
pt,i

ot,i + γ
· pt,j
ot,j + γ

∣∣∣∣∣∣Ft−1


≤E

 K∑
i=1

K∑
j=1

Ot,i
pt,i

ot,i + γ
· pt,j
ot,j + γ

∣∣∣∣∣∣Ft−1

 (since Ot,j≤1)

=

K∑
i=1

K∑
j=1

pt,iot,i
ot,i + γ

· pt,j
ot,j + γ

≤
K∑
i=1

pt,i

K∑
j=1

pt,j
ot,j + γ

= Qt.

Thus, an application of Freedman’s inequality (see, e.g., Theorem 1 of Beygelzimer et al. [7]), we
can thus obtain the bound

T∑
t=1

Xt ≤
log(1/δ′)

ω
+ (e− 2)ω

T∑
t=1

Qt

that holds with probability at least 1− δ′ for all ω ≤ 1/K. Combining this result with the previous
bounds and using the union bound, we arrive at the bound

RT ≤
logK

η
+

log(K/δ′)

2γ
+

log(1/δ′)

ω
+
(η

2
+ γ + ω

) T∑
t=1

Qt +
η

2
· K log(K/δ′)

2γ
+

√
T log(1/δ′)

2

that holds with probability at least 1− 4δ′.

Invoking Lemma 1 of Kocák et al. [19] that states that

K∑
i=1

pt,i
ot,i + γ

≤ 2α log

(
1 +
dK2/γe+K

α

)
+ 2

holds almost surely and setting δ′ = δ/4, we obtain the bound

RT ≤
logK

η
+

log(4K/δ)

2γ
+

log(4/δ)

ω
+ (η + 2γ + 2ω)α′T +

η

2
· K log(4K/δ)

2γ
+

√
T log(4/δ)

2

that holds with probability at least 1− δ, where α′ = α log
(

1 + dK2/γe+K
α

)
+ 1.

Now notice that when setting η = 2γ =
√

logK
2αT log(KT ) and ω =

√
log(4/δ)

2αT log(KT ) , we have α′ ≤
2α log(KT ) and the above bound becomes

RT ≤
(

4 + 2
√

log (4/δ)
)
·
√

2αT
(
log2K + logKT

)
+

√
2αT log(KT )

logK
log (4/δ) +

+

√
T log(4/δ)

2
+
K log (4K/δ)

2
.

The proof is concluded by observing that the last term is bounded by the third one if T ≥ K2/(8α).
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