
A Proofs of Results

A.1 Proof of Theorem 2

Proof. We begin with (iv). By [12, eq. X1.3.4.5], which gives a very general result about infimal
convolutions, we have that the condition ΦS(r + dr) = 0 implies the existence of some π such that
∇ρi(ri + dri) = π for all i ∈ S. Conversely, we can appeal to [12, Prop X1.3.4.2], which again is
for general infimal convolutions, to conclude Φ(r + dr) = 0.

Now for y ∈ R consider F (y) := (∧i∈Sρi) (y), and let x =
∑
i∈S ri. By eq. (3) and the definition

of the conjugate, we have π = −∇F (x) = π∗S as defined in (v). Turning to (i), note that as
relintΠ ⊆ dom ρ∗i for all i by the expressiveness condition, we have relintΠ ⊆ ∩i∈S dom ρ∗i =
domF ∗. Now [12, Prop X1.3.4.1, eq. (XI.3.4.2)] gives us some r′ ∈ RN with

∑
i∈S r

′
i = x, and

r′i = ri for i /∈ S, such that F (x) =
∑
i∈S ρi(r

′
i), giving us ΦS(r) =

∑
i∈S ρi(ri) − F (x) =∑

i∈S ρi(ri)−
∑
i∈S ρi(r

′
i) <∞. As ΦS(r) ≥ 0 by definition, we have (i), and taking dr = r′− r,

which is a trade as
∑
i dri =

∑
i∈S r

′ −
∑
i∈S ri +

∑
i/∈S(r′i − ri) = x− x+ 0, we also have (ii).

We can now settle (iii): by cash invariance, it is clear that ∇ρi(ri + dri) = ∇ρi(ri + dri + zir$)
for all zi ∈ R, and the strict risk aversion property says that these are the only such positions with
the same derivative (otherwise convexity would imply ρi is flat in between, a contradiction). The
requirement that

∑
i dri = 0 ensures

∑
i zi = 0.

A.2 Proof of Theorem 8

Proof. Working with compressed positions, we have ρi(ri) = bρ(θi+ri/b)−bρ(θi), where we have
overloaded ρ(ri) = ρ(X[ri]). Taking r0

i = 0 for all i, by Theorem 7 and Theorem 2, the market
clearing price is the unique price such that ∇ρi(dri) = π∗ for all i, for some trade dr ∈ RN . By
definition of ρi we have∇ρi(dri) = ∇ρ(θi +dri/bi). Now letting b̄ =

∑N
j=1 bj , we see that taking

dri = bi
∑N
j=1 bjθj/b̄− biθi gives us a valid trade with

∑
i dri = b̄

∑N
j=1 bjθj/b̄−

∑N
i=1 biθi = 0,

and by symmetry we have π∗ = ∇ρ(
∑N
j=1 bjθj/b̄), meaning θ∗ =

∑N
j=1 bjθj/b̄ as desired.

B Bargaining and Equilibria in Trade Networks

The key result of Theorem 2 concerning efficient trades provide a wealth of structure to help us un-
derstand market behaviour. The next result shows that efficient trades are fixed points of a dynamic.
We say a state r ∈ RN is a fixed point of a dynamic D if rt = r implies rs = r for all s > t.

Theorem 6. Let D(S, p) be a connected trade dynamic. Then r ∈ RN is a fixed point of D if and
only if it is efficient.

Proof. If Φ(r) = 0, then dr = 0 is the only efficient monotone trade, so r is a fixed point of D.
Conversely, if r is a fixed point of D, then as p has full support, we must have ΦS(r) = 0 for
all S ∈ S; otherwise with constant probability we would have S = St for some t and thus some
efficient trade drt 6= 0 and rt+1 6= r. By Theorem 2 (iv), this means that for all S ∈ S and all
i, j ∈ S we have ∇ρi(ri) = ∇ρj(rj). This gives us an equivalence classes of derivatives for each
S, and by connectedness S, the equivalence classes in fact must coincide. Thus, we have some π
for which∇ρj(rj) = π for all j ∈ [N ], and again by Theorem 2 (iv) we conclude Φ(r) = 0.

We observe that the combination of Theorems 2 and 6 means that for connected trade dynamics D,
the fixed point of D corresponds to the efficient price π∗ and hence the efficient trade for the overall
market.

The result of Theorem 6 is somewhat surprising — not only is there a unique equilibrium (up to cash
transfers) for all connected dynamics, but all connected dynamics have the same equilibrium! If one
restricts to connected graphical networks, this means that the equilibrium does not depend on the
network structure. The power of our framework is that the equilibrium analysis holds regardless of
the way agents interact, as long as information is allowed to spread to all agents eventually. In fact,
one could even consider an arbitrary process choosing subsets St of agents to trade at each time t; if
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the set S of subsets which are visited infinitely often yields a connected hypergraph, then the proof
Theorem 6 still applies.

We now explore two other types of equilibria in this setting. The first is a natural game-theoretic
equilibrium where no group of agents can trade for mutual gain. The second, in the following
subsection, looks at the classical market clearing condition in this setting.
Proposition 1. Given connected S, a point r is a game-theoretic equilibrium, meaning there is no
set of agents S ∈ S which can mutually benefit by trading, if and only if r is efficient.

Proof. Following the same logic as the proof of Theorem 6, we first argue that ΦS(r) = 0 for all
S, and by connectedness this gives us some π such that ∇ρi(r) = −π for all i, from which we
conclude Φ(r) = 0.

B.1 Market clearing

Viewing the basis positions φ(·)i as goods in a marketplace, and the initial (compact) positions
r0
i ∈ R as the endowments of the agents, it is natural to ask if there is a set of prices for the goods

which clears the market. That is, if we set some price vector π ∈ Π such that each agent buys some
vector dri at those prices, we wish to find π such that

∑
i dri = 0.

Let us examine the optimization problem for each agent. Upon purchasing a bundle of goods dri ∈
R at prices π, for a total cost of dri ·π, the agent has net position r0

i +dri−(dri ·π)r$ . In particular,
it is now clear that we must have r$ · π = 1; otherwise, if e.g. r$ · π < 1, an agent purchasing λr$

at cost would have final position λ(1− r$ · π)r$ , which corresponds to an arbitrarily large risk-free
payoff. Finally, as we simply factor the price of a bundle back into the position itself, the agent’s
purchasing decision is equivalent to choosing some dri such that dri · π = 0.

As the utility of the agent is entirely captured by its risk measure ρi, we can clearly state the agent’s
optimization problem: given price vector π, agent i chooses a bundle of goods dri given by

dri ∈ arg min
x:x·π=0

ρi(r
0
i + x) . (6)

Via the method of Lagrange multipliers, a minimizing bundle dri in (6) must satisfy the constraint
∇ρi(r0

i + dri) = λπ for some λ ∈ R. By cash invariance, we know that for all π′ ∈ −∇ρi(·) we
have r$ · π′ = 1, and as r$ · π = 1 by the above argument, we must have λ = 1. We now have
∇ρi(r0

i + dri) = −π for all i. If we assume that π clears the market, then we additionally have∑
i dri = 0, meaning dr is a valid trade, and thus Theorem 2 implies Φ(r0 + dr) = 0. Again by

Theorem 2, we conclude that in fact π = π∗ = arg minπ∈Π

∑
i αi(π)−

〈
π,
∑
i r

0
i

〉
.

Of course, it remains to show that the market clearing condition can be satisfied given the constraint
dri · π∗ = 0. By Theorem 2 (ii), we know there exists an efficient trade dr′, and by (iii) it is
unique up to zero-sum cash transfers. Thus, taking dri = dr′i − (dr′i · π∗)r$ , which is zero-sum as∑
i dr
′
i = 0, we see that there is a unique optimal allocation r = r0 + dr to the agents, and which

clears the market.

From the above discussion, we have the following result which refines the equilibrium concepts
above; instead of a unique equilibrium up to zero-sum cash transfers, the market clearing allocation
fixes a single position for each agent.
Theorem 7. Let goods {φ(·)i}ki=1, initial endowments r0 ∈ RN , and (negative) utilities {ρi}Ni=1
be given. Then the unique market clearing price π∗ is given by Theorem 2 (v) and yields a unique
and efficient allocation dr, which satisfies dri · π∗ = 0 for all i.

Intuitively, the market clearing allocation gives us a benchmark for the proper way to “divide up
the surplus” among the agents; given an efficient trade dr, perhaps the outcome of bargaining, each
agent i should readjust by subtracting dr · π∗ in cash.

C Optimal Allocation for Risk Compatible Traders

The price matching property of efficient trades (Theorem 2) allows us to find closed form solutions
for the optimal allocation of risk in a market when the traders’ risks are suitably “compatible”.
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These risk measures are derived from a base risk ρ which allows us to capture a notion of beliefs
and varying levels of risk aversion, as follows. Let

ρb,s(r) := bρ(s+ r/b)− bρ(s), (7)

where b > 0 is the risk tolerance and s ∈ R is some reference position. We will call the risk
measures ρb,s compatible with ρ and can view them as a combination of a translation ρ(r) = ρ(s+
r)− ρ(s), which simulates the additional risk imposed by r having already taken on position s, and
a perspective transform ρ(r) = bρ(r/b), where a higher b corresponds to a less risk-averse agent.3

In general, for an agent with risk measure ρ : R → R, we can think of−∇ρ(0) as the agent’s belief.
This can be justified in two ways: (1) when ρ is the (negative) certainty equivalent for exponential
utility, for an agent with belief ps, then −∇ρ(0) = ps; (2) the penalty function α, which specifies
how “surprising” each distribution p ∈ ∆Ω is, is minimized at p = −∇ρ(0). For this reason, and
the fact that ∇ρb,s(0) = ∇ρ(s) = −ps, we may think of ρb,s as the risk of an agent with initial
belief ps and risk tolerance b.

Consider agents with inital beliefs psi and risk tolerances bi > 0, meaning ρi = ρbi,si . What is
the final market price in terms of these parameters? Motivated by the prediction market setting, we
would in particular like to see some sort of sensible aggregation of these beliefs. As we now show,
the market clearing price corresponds to a risk-tolerance-weighted average of the agents’ parameters.

Theorem 8. Let ρ be a risk measure, and let each agent i have compatible risk measures ρbi,si
initial belief psi and risk tolerance parameter bi > 0. Then the market clearing price is given by
ps∗ , where

s∗ =

∑
i bisi∑
i bi

. (8)

This result generalizes those in §5 of [2], where traders are assumed to maximize an expected utility
of the form Ub(w) = −b exp(−w/b) under beliefs drawn from an exponential family with sufficient
statistic given by the securities φ. The above result shows that exactly the same weighted distribu-
tion of positions at equilibrium occurs for any family of risk-based agents, not just those derived
from exponential utility via certainty equivalents [4]. In addition, this generalization shows that the
agents need not have exponential family beliefs: their positions θi act as general natural parameters,
and 1/bi acts as a general measure of risk aversion. Finally, applying Theorem 4 or 5 establishes
convergence rates for this setting, which addresses the future work in [2].

D Random Subspace Descent

For the analysis, we introduce a seminorm ‖ · ‖A which will measure the progress per iteration, and
its dual ‖ · ‖∗A.

‖x‖A :=

(
m∑
i=1

pi
Li
‖Πix‖22

)1/2

. (9)

‖y‖∗A :=

{
〈A+y, y〉1/2 if y ∈ im(A)

∞ otherwise.
(10)

Note that ‖ · ‖A is a Euclidean seminorm ‖x‖A = 〈Ax, x〉 with A =
∑
i
pi
Li

Πi. One can check that
‖ · ‖∗A is indeed the dual norm of ‖ · ‖A, in the sense that

(
1
2‖ · ‖

2
A

)∗
= 1

2‖ · ‖
∗ 2
A , where the first ∗

denotes the convex conjugate.

Define X(A) = {x0 + y : y ∈ span{im(Πi)}i} to be the optimization domain, so that Fmin =
minx∈X(A) F (x), and let F arg := arg minx∈X(A) F (x) denote the minimizers of F . Then we
define the constantR(x0) by

R(x0) := max
x∈X(A):F (x)≤F (x0)

max
x∗∈F arg

‖x− x∗‖∗A , (11)

3Note that agents are never risk-seeking; only in the limit as b→∞ do the traders become risk-neutral.

12



the maximum distance, according to ‖ · ‖∗A, between any minimizer of F and any feasible point at
least as good as x0.

We now have the foundation to prove Theorem 3.

Proof of Theorem 3. To begin, suppose subspace i is chosen at step t, and consider the update
xt+1 = xt − y for y ∈ im(Πi). The drop in the objective can be bounded using eq. (4),

F (xt)− F (xt − y) ≥
〈
∇F (xt), y

〉
− Li

2
‖y‖22 . (12)

By properties of orthogonal projections, we have

arg max
y∈im(Πi)

〈
∇F (xt), y

〉
− Li

2
‖y‖22 = arg min

y∈im(Πi)

∥∥∥y − 1
Li
∇F (xt)

∥∥∥
2

= 1
Li

Πi∇F (xt) ,

and choice of y gives our update in Algorithm 1. Substituting this y into eq. (12) gives

F (xt)− F (xt+1) ≥
〈
∇F (xt), 1

Li
Πi∇F (xt)

〉
− Li

2
‖ 1
Li

Πi∇F (xt)‖22

=
1

2Li
‖Πi∇F (xt)‖22 .

Now looking at the expected drop in the objective, we have

F (xt)− E
[
F (xt+1)|xt

]
≥

m∑
i=1

pi
1

2Li
‖Πi∇F (xt)‖22 =

1

2
‖∇F (xt)‖2A . (13)

To relate our per-round progress to the gap remaining, we observe that

F (xt)− Fmin ≤ max
x∗∈arg minx F (x)

〈
∇F (xt), x∗ − xt

〉
≤ max
x∗∈arg minx F (x)

‖∇F (xt)‖A ‖x∗ − xt‖∗A

≤ ‖∇F (xt)‖A max
x∗∈arg minF

max
x:F (x)≤F (x0)

‖x∗ − x‖∗A

= ‖∇F (xt)‖A R(x0) ,

where we used convexity of F , the definition of the dual norm, the fact that F (xt) is non-
increasing in t, and finally the definition of R. We now have F (xt) − E

[
F (xt+1)|xt

]
≥

(F (xt) − Fmin)2/(2R2(x0)). The remainder of the proof follows an argument of [16] by ana-
lyzing ∆t = E

[
F (xt)− Fmin

]
. From the last inequality we have ∆t+1 ≤ ∆t−∆2

t/2R2(x0), and
since 0 ≤ ∆t+1 ≤ ∆t, dividing by ∆t∆t+1 gives ∆−1

t ≤ ∆−1
t+1 − (2R2(x0))−1. Summing these

inequalities gives the result.

D.1 Faster Rates for RSD

Theorem 9. Let F , {Πi}i, {Li}i, x0, and p be given as in Algorithm 1, with the condition that F is
Li-Πi-smooth for all i, and additionally that F is µ-strongly convex with respect to ‖ · ‖∗A. Then we
have E

[
F (xt)− Fmin

]
≤ (1− µ)

t
(F (x0)− Fmin).

Proof of Theorem 9. Our proof is essentially that of Nesterov [18, Thm 2] and Richtárik and
Takáč [22, Thm 12]. By definition of µ-strongly convex, we have for all y ∈ Rn,

F (y)− F (xt) ≥
〈
∇F (xt), y − xt

〉
+ µ

2 ‖y − x
t‖∗ 2
A .

Independently minimizing each side of this inequality over y, we obtain from [22, Lemma 10],

Fmin − F (xt) ≥ − 1
2µ‖∇F (xt)‖2A.

Now combining with eq. (13), we have

F (xt)− E
[
F (xt+1)|xt

]
≥ 1

2
‖∇F (xt)‖2A ≥ µ(F (xt)− Fmin) .

Taking expectations and rearranging, we have E
[
F (xt+1)− Fmin

]
≤ (1 − µ)E

[
F (xt)− Fmin

]
,

from which the result follows by induction.
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D.2 RSD for Graphs and Hypergraphs

In this section we consider a special case of Algorithm 1, where we have a linear constraint
∑
i xi =

c on the coordinates, and the subspaces correspond to graphs (overlapping pairs of coordinates), or
hypergraphs (overlapping subsets of coordinates).4 In the graphical case, we will leverage existing
results in spectral graph theory to analyze new graphs currently not considered in the literature. Note
that we focus here on uniform probabilities to highlight the connections to spectral graph theory; for
an analysis of the optimal probabilities, see Necoara et al. [16].

Let us first consider an optimization problem on the complete graph, which picks an edge (i, j)
uniformly at random and optimizes in coordinates i and j under the constraint that xt+1

i + xt+1
j =

xti+xtj . One can check that this corresponds to the projection matrix Π(i,j) = 1
2 (ei−ej)(ei−ej)>,

where ei is the ith standard unit vector. Assuming a global smoothness constant L, one can calculate

A = 2
Ln(n−1)

∑
(i,j)

Π(i,j) = 1
L(n−1)

(
I − 1

n11
>) , A+ = L(n− 1)(I − 1

n11
>) ,

where 1 is the all-ones vector. Now as im(A) = ker(1), this gives

‖x‖∗ 2
A = L(n− 1)‖x‖22 . (14)

Similarly, the complete rank-k hypergraph gives ‖x‖∗ 2
A = Ln−1

k−1‖x‖
2
2. (Compare to eq. (3.10)

and the top of p.21 of [16].) Letting C0 = 4Lmaxx∈X(A):F (x)≤F (x0) maxx∗∈F arg ‖x − x∗‖22,
which is independent of the (hyper)graph as long as it is connected, we thus have a convergence
rate of n−1

2 C0
1
t for the complete graph, and more generally n−1

2(k−1) C0
1
t for the complete k-graph.

Henceforth, we will consider the coefficient in front of C0 to be the convergence rate.

The above matrixA is a scaled version of what is known as the graph Laplacian; given graphGwith
adjacency matrix A(G) and degree matrix D(G) with the degrees of each vertex on the diagonal,
the Laplacian is the matrix

L = L(G) := D(G)−A(G) . (15)
One can check that indeed, L = 2

∑
(i,j)∈E(G) Π(i,j), meaning A = p

2LL, where p = 1/|E(G)| is
the uniform probability on edges.

The graph Laplacian is a well-studied object in spectral graph theory and other domains, and we
can use existing results to establish bounds for other graphs of interest. To draw this connection, we
note two facts: (1) for symmetric matricesB, the norm 〈Bx, x〉1/2 can be bounded by the maximum
eigenvalue of B, and (2) the maximum eigenvalue of B+ is equal to the inverse of the smallest
nonzero eigenvalue of B, provided again that B is symmetric.5 Putting these together, we can
therefore bound ‖ · ‖∗A using the smallest nonzero eigenvalue of A, and hence of L. It is easy to
see that the smallest eigenvalue is λ1(G) = 0 with eigenvector 1, and as G is connected, we will
have λ2(G) > 0. Thus, the smallest nonzero eigenvalue of A is simply p

2Lλ2(G), so we have the
following for any connected graph G:

‖x‖∗ 2
A ≤ 2L

|E(G)|
λ2(G)

‖x‖22 . (16)

Of course, by the above definition of C0 and Theorem 3, this yields the result

E
[
F (xt)− Fmin

]
≤ |E(G)|

λ2(G)
C0

1

t
, (17)

showing us how tightly related this eigenvalue is to rate of convergence of Algorithm 1.

The second-smallest eigenvalue λ2(G) is called the algebraic connectivity of G, and is itself thor-
oughly studied in spectral and algebraic graph theory. For example, it is known (and easy to check)
that λ2(Kn) = n, where Kn denotes the complete graph; this together with |E(Kn)| = n(n− 1)/2
immediately gives eq. (14). In [8], algebraic connectivities are also given for the path on n vertices
Pn, the cycle Cn, the bipartite complete graph K`,k for k < `, and the k-dimensional cube Bk. We
collect these eigenvalues together yields Table 2.

4Everything in this section also holds for a graphical or hypergraphical structure on blocks of coordinates;
just add Kronecker products with the appropriate identity matrix.

5These facts follow from the operator norm and singular-value decomposition for the pseudoinverse, re-
spectively, together with the fact that singular values are eigenvalues for symmetric matrices.
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Graph |V (G)| |E(G)| λ2(G)

Kn n n(n− 1)/2 n
Pn n n− 1 2(1−cosπn )
Cn n n 2(1−cos 2π

n )
K`,k `+ k `k k
Bk 2k k2k−1 2

Table 2: Algebraic connectivities for common graphs.

Figure 2: Average (in bold) of 30 runs of a separable ob-
jective for the complete and star graphs. The empirical
gap in iteration complexity is just under 2 (cf. Fig. 3).

Substituting the values in Table 2 into eq. (16), we can directly compare the theoretical convergence
rates for different graphs. For example, the star graph Kn−1,1 has rate (n − 1)(1)/(1) = (n − 1),
which is only a factor of 2 away from the complete graph.6 The path and cycle fare much worse,
yielding roughly n/2(n−2/2) = n3 as n becomes large (applying the Taylor expansion and ignoring
π terms). Finally, an interesting result due to Mohar [15] says that for any connected graph on n
vertices, we have λ2(G) ≥ 4/(ndiam(G)) where diam(G) is the diameter of G. Hence for any
connected graph,

E
[
F (xt)− Fmin

]
≤ n |E(G)|diam(G)

4
C0

1

t
, (18)

which is useful for sparse graphs of small diameter. See Appendix D.3 for more on hypergraphs.

D.3 Hypergraphs

Here we briefly show how to analyze general hypergraphs. Representing a hypergraph as a collection
S of hyperedges S ⊆ [n], we may define the degree matrix D(S) to be the diagonal matrix with
D(S)ii = #{S ∈ S : i ∈ S}, and the “adjacency” matrix to be A(S)ij =

∑
S∈S:i,j∈S 1/|S|.

Then for uniform probabilities we have A = p
L (D(S) − A(S)). This follows from observing that

for subset S, we have ΠS = IS − 1
|S|1S1

>
S , and counting as we sum. Taking the complete k-graph

yields D(S) =
(
n−1
k−1

)
I and A(S)ij = 1

k

(
n−2
k−2

)
= k−1

k(n−1)

(
n−1
k−1

)
for i 6= j and A(S)ii = 1

k

(
n−1
k−1

)
;

putting these together gives A = 1

L(n
k)
n
k
k−1
n−1

(
n−1
k−1

)
(I − 1

n11
>)) = n−1

L(k−1) (I − 1
n11

>). Similar

computations may be done for other hypergraphs of interest.

6While of course these are merely upper bounds on the true rates, they match Figures 2 and 3 quite well.
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Figure 3: Thirty runs of a separable objective under the complete and star graphs. The ratio between star and
complete of the number of iterations needed to achieve a given objective value is plotted, with the average in
bold.
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