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Abstract

We present data-dependent learning bounds for the general scenario of non-
stationary non-mixing stochastic processes. Our learning guarantees are expressed
in terms of a data-dependent measure of sequential complexity and a discrepancy
measure that can be estimated from data under some mild assumptions. We use
our learning bounds to devise new algorithms for non-stationary time series fore-
casting for which we report some preliminary experimental results.

1 Introduction

Time series forecasting plays a crucial role in a number of domains ranging from weather fore-
casting and earthquake prediction to applications in economics and finance. The classical statistical
approaches to time series analysis are based on generative models such as the autoregressive moving
average (ARMA) models, or their integrated versions (ARIMA) and several other extensions [En-
gle, 1982, Bollerslev, 1986, Brockwell and Davis, 1986, Box and Jenkins, 1990, Hamilton, 1994].
Most of these models rely on strong assumptions about the noise terms, often assumed to be i.i.d.
random variables sampled from a Gaussian distribution, and the guarantees provided in their support
are only asymptotic.

An alternative non-parametric approach to time series analysis consists of extending the standard
i.i.d. statistical learning theory framework to that of stochastic processes. In much of this work, the
process is assumed to be stationary and suitably mixing [Doukhan, 1994]. Early work along this
approach consisted of the VC-dimension bounds for binary classification given by Yu [1994] under
the assumption of stationarity and β-mixing. Under the same assumptions, Meir [2000] presented
bounds in terms of covering numbers for regression losses and Mohri and Rostamizadeh [2009]
proved general data-dependent Rademacher complexity learning bounds. Vidyasagar [1997] showed
that PAC learning algorithms in the i.i.d. setting preserve their PAC learning property in the β-mixing
stationary scenario. A similar result was proven by Shalizi and Kontorovitch [2013] for mixtures
of β-mixing processes and by Berti and Rigo [1997] and Pestov [2010] for exchangeable random
variables. Alquier and Wintenberger [2010] and Alquier et al. [2014] also established PAC-Bayesian
learning guarantees under weak dependence and stationarity.

A number of algorithm-dependent bounds have also been derived for the stationary mixing setting.
Lozano et al. [2006] studied the convergence of regularized boosting. Mohri and Rostamizadeh
[2010] gave data-dependent generalization bounds for stable algorithms for ϕ-mixing and β-mixing
stationary processes. Steinwart and Christmann [2009] proved fast learning rates for regularized
algorithms with α-mixing stationary sequences and Modha and Masry [1998] gave guarantees for
certain classes of models under the same assumptions.

However, stationarity and mixing are often not valid assumptions. For example, even for Markov
chains, which are among the most widely used types of stochastic processes in applications, station-
arity does not hold unless the Markov chain is started with an equilibrium distribution. Similarly,
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long memory models such as ARFIMA, may not be mixing or mixing may be arbitrarily slow [Bail-
lie, 1996]. In fact, it is possible to construct first order autoregressive processes that are not mixing
[Andrews, 1983]. Additionally, the mixing assumption is defined only in terms of the distribution
of the underlying stochastic process and ignores the loss function and the hypothesis set used. This
suggests that mixing may not be the right property to characterize learning in the setting of stochastic
processes.

A number of attempts have been made to relax the assumptions of stationarity and mixing. Adams
and Nobel [2010] proved asymptotic guarantees for stationary ergodic sequences. Agarwal and
Duchi [2013] gave generalization bounds for asymptotically stationary (mixing) processes in the
case of stable on-line learning algorithms. Kuznetsov and Mohri [2014] established learning guar-
antees for fully non-stationary β- and ϕ-mixing processes.

In this paper, we consider the general case of non-stationary non-mixing processes. We are not
aware of any prior work providing generalization bounds in this setting. In fact, our bounds appear
to be novel even when the process is stationary (but not mixing). The learning guarantees that we
present hold for both bounded and unbounded memory models. Deriving generalization bounds for
unbounded memory models even in the stationary mixing case was an open question prior to our
work [Meir, 2000]. Our guarantees cover the majority of approaches used in practice, including
various autoregressive and state space models.

The key ingredients of our generalization bounds are a data-dependent measure of sequential com-
plexity (expected sequential covering number or sequential Rademacher complexity [Rakhlin et al.,
2010]) and a measure of discrepancy between the sample and target distributions. Kuznetsov and
Mohri [2014] also give generalization bounds in terms of discrepancy. However, unlike the result
of Kuznetsov and Mohri [2014], our analysis does not require any mixing assumptions which are
hard to verify in practice. More importantly, under some additional mild assumption, the discrep-
ancy measure that we propose can be estimated from data, which leads to data-dependent learning
guarantees for non-stationary non-mixing case.

We devise new algorithms for non-stationary time series forecasting that benefit from our data-
dependent guarantees. The parameters of generative models such as ARIMA are typically estimated
via the maximum likelihood technique, which often leads to non-convex optimization problems. In
contrast, our objective is convex and leads to an optimization problem with a unique global solution
that can be found efficiently. Another issue with standard generative models is that they address non-
stationarity in the data via a differencing transformation which does not always lead to a stationary
process. In contrast, we address the problem of non-stationarity in a principled way using our
learning guarantees.

The rest of this paper is organized as follows. The formal definition of the time series forecasting
learning scenario as well as that of several key concepts is given in Section 2. In Section 3, we
introduce and prove our new generalization bounds. In Section 4, we give data-dependent learn-
ing bounds based on the empirical discrepancy. These results, combined with a novel analysis of
kernel-based hypotheses for time series forecasting (Appendix B), are used to devise new forecast-
ing algorithms in Section 5. In Appendix C, we report the results of preliminary experiments using
these algorithms.

2 Preliminaries

We consider the following general time series prediction setting where the learner receives a real-
ization (X1, Y1), . . . , (XT , YT ) of some stochastic process, with (Xt, Yt) ∈ Z = X × Y . The ob-
jective of the learner is to select out of a specified family H a hypothesis h : X → Y that achieves a
small generalization error E[L(h(XT+1), YT+1)|Z1, . . . , ZT ] conditioned on observed data, where
L : Y × Y → [0,∞) is a given loss function. The path-dependent generalization error that we
consider in this work is a finer measure of the generalization ability than the averaged generaliza-
tion error E[L(h(XT+1), YT+1)] = E[E[L(h(XT+1), YT+1)|Z1, . . . , ZT ]] since it only takes into
consideration the realized history of the stochastic process and does not average over the set of all
possible histories. The results that we present in this paper also apply to the setting where the time
parameter t can take non-integer values and prediction lag is an arbitrary number l ≥ 0. That is, the
error is defined by E[L(h(XT+l), YT+l)|Z1, . . . , ZT ] but for notational simplicity we set l = 1.
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Our setup covers a larger number of scenarios commonly used in practice. The case X = Yp
corresponds to a large class of autoregressive models. Taking X = ∪∞p=1Yp leads to growing
memory models which, in particular, include state space models. More generally, X may contain
both the history of the process {Yt} and some additional side information.

To simplify the notation, in the rest of the paper, we will use the shorter notation f(z) = L(h(x), y),
for any z = (x, y) ∈ Z and introduce the family F = {(x, y) → L(h(x), y) : h ∈ H} containing
such functions f . We will assume a bounded loss function, that is |f | ≤ M for all f ∈ F for
some M ∈ R+. Finally, we will use the shorthand Zba to denote a sequence of random variables
Za, Za+1, . . . , Zb.

The key quantity of interest in the analysis of generalization is the following supremum of the
empirical process defined as follows:

Φ(ZT1 ) = sup
f∈F

(
E[f(ZT+1)|ZT1 ]−

T∑
t=1

qtf(Zt)

)
, (1)

where q1, . . . , qT are real numbers, which in the standard learning scenarios are chosen to be uni-
form. In our general setting, different Zts may follow different distributions, thus distinct weights
could be assigned to the errors made on different sample points depending on their relevance to
forecasting the future ZT+1. The generalization bounds that we present below are for an arbitrary
sequence q = (q1, . . . qT ) which, in particular, covers the case of uniform weights. Remarkably, our
bounds do not even require the non-negativity of q.

Our generalization bounds are expressed in terms of data-dependent measures of sequential com-
plexity such as expected sequential covering number or sequential Rademacher complexity [Rakhlin
et al., 2010]. We give a brief overview of the notion of sequential covering number and refer the
reader to the aforementioned reference for further details. We adopt the following definition of a
complete binary tree: a Z-valued complete binary tree z is a sequence (z1, . . . , zT ) of T mappings
zt : {±1}t−1 → Z , t ∈ [1, T ]. A path in the tree is σ = (σ1, . . . , σT−1). To simplify the notation we
will write zt(σ) instead of zt(σ1, . . . , σt−1), even though zt depends only on the first t−1 elements
of σ. The following definition generalizes the classical notion of covering numbers to sequential
setting. A set V of R-valued trees of depth T is a sequential α-cover (with respect to q-weighted `p
norm) of a function class G on a tree z of depth T if for all g ∈ G and all σ ∈ {±}T , there is v ∈ V
such that (

T∑
t=1

∣∣vt(σ)− g(zt(σ))
∣∣p) 1

p

≤ ‖q‖−1
q α,

where ‖ · ‖q is the dual norm. The (sequential) covering number Np(α,G, z) of a function class G
on a given tree z is defined to be the size of the minimal sequential cover. The maximal covering
number is then taken to beNp(α,G) = supzNp(α,G, z). One can check that in the case of uniform
weights this definition coincides with the standard definition of sequential covering numbers. Note
that this is a purely combinatorial notion of complexity which ignores the distribution of the process
in the given learning problem.

Data-dependent sequential covering numbers can be defined as follows. Given a stochastic process
distributed according to the distribution p with pt(·|zt−1

1 ) denoting the conditional distribution at
time t, we sample a Z × Z-valued tree of depth T according to the following procedure. Draw two
independent samples Z1, Z

′
1 from p1: in the left child of the root draw Z2, Z

′
2 according to p2(·|Z1)

and in the right child according to p2(·|Z ′2). More generally, for a node that can be reached by a
path (σ1, . . . , σt), we draw Zt, Z

′
t according to pt(·|S1(σ1), . . . , St−1(σt−1)), where St(1) = Zt

and St(−1) = Z ′t. Let z denote the tree formed using Zts and define the expected covering number
to be Ez∼T (p)[Np(α,G, z)], where T (p) denotes the distribution of z.

In a similar manner, one can define other measures of complexity such as sequential Rademacher
complexity and the Littlestone dimension [Rakhlin et al., 2015] as well as their data-dependent
counterparts [Rakhlin et al., 2011].
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The final ingredient needed for expressing our learning guarantees is the notion of discrepancy
between target distribution and the distribution of the sample:

∆ = sup
f∈F

(
E[f(ZT+1)|ZT1 ]−

T∑
t=1

qt E[f(Zt)|Zt−1
1 ]

)
. (2)

The discrepancy ∆ is a natural measure of the non-stationarity of the stochastic process Z with
respect to both the loss function L and the hypothesis set H . In particular, note that if the process
Z is i.i.d., then we simply have ∆ = 0 provided that qts form a probability distribution. It is also
possible to give bounds on ∆ in terms of other natural distances between distribution. For instance,
Pinsker’s inequality yields

∆ ≤M
∥∥∥PT+1(·|ZT1 )−

∑T
t=1 qtPt(·|Zt−1

1 )
∥∥∥

TV
≤
√

1
2D
(
PT+1(·|ZT1 ) ‖

∑T
t=1 qtPt(·|Zt−1

1 )
)
,

where ‖ · ‖TV is the total variation distance and D(· ‖ ·) the relative entropy, Pt+1(·|Zt1) the condi-
tional distribution of Zt+1, and

∑T
t=1 qtPt(·|Zt−1

1 ) the mixture of the sample marginals. Alterna-
tively, if the target distribution at lag l, P = PT+l is a stationary distribution of an asymptotically
stationary process Z [Agarwal and Duchi, 2013, Kuznetsov and Mohri, 2014], then for qt = 1/T
we have

∆ ≤ M

T

T∑
t=1

‖P−Pt+l(·|Zt−∞)‖TV ≤ φ(l),

where φ(l) = sups supz[‖P − Pl+s(·|zs−∞)‖TV] is the coefficient of asymptotic stationarity. The
process is asymptotically stationary if liml→∞φ(l) = 0. However, the most important property of
the discrepancy ∆ is that, as shown later in Section 4, it can be estimated from data under some
additional mild assumptions. [Kuznetsov and Mohri, 2014] also give generalization bounds for
non-stationary mixing processes in terms of a related notion of discrepancy. It is not known if the
discrepancy measure used in [Kuznetsov and Mohri, 2014] can be estimated from data.

3 Generalization Bounds

In this section, we prove new generalization bounds for forecasting non-stationary time series. The
first step consists of using decoupled tangent sequences to establish concentration results for the
supremum of the empirical process Φ(ZT1 ). Given a sequence of random variables ZT1 we say that
Z′T1 is a decoupled tangent sequence if Z ′t is distributed according to P(·|Zt−1

1 ) and is independent
of Z∞t . It is always possible to construct such a sequence of random variables [De la Peña and Giné,
1999]. The next theorem is the main result of this section.
Theorem 1. Let ZT1 be a sequence of random variables distributed according to p. Fix ε > 2α > 0.
Then, the following holds:

P
(
Φ(ZT1 )−∆ ≥ ε

)
≤ E

v∼T (p)

[
N1(α,F ,v)

]
exp

(
− (ε− 2α)2

2M2‖q‖22

)
.

Proof. The first step is to observe that, since the difference of the suprema is upper bounded by the
supremum of the difference, it suffices to bound the probability of the following event{

sup
f∈F

(
T∑
t=1

qt(E[f(Zt)|Zt−1
1 ]− f(Zt))

)
≥ ε

}
.

By Markov’s inequality, for any λ > 0, the following inequality holds:

P

(
sup
f∈F

(
T∑
t=1

qt(E[f(Zt)|Zt−1
1 ]− f(Zt))

)
≥ ε

)

≤ exp(−λε) E

[
exp

(
λ sup
f∈F

(
T∑
t=1

qt(E[f(Zt)|Zt−1
1 ]− f(Zt))

))]
.
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Since Z′T1 is a tangent sequence the following equalities hold: E[f(Zt)|Zt−1
1 ] = E[f(Z ′t)|Zt−1

1 ] =
E[f(Z ′t)|ZT1 ]. Using these equalities and Jensen’s inequality, we obtain the following:

E
[

exp
(
λ sup
f∈F

T∑
t=1

qt
(

E[f(Zt)|Zt−1
1 ]− f(Zt)

))]

= E
[

exp
(
λ sup
f∈F

E
[ T∑
t=1

qt
(
f(Z ′t)− f(Zt)

)
|ZT1

])]

≤ E
[

exp
(
λ sup
f∈F

T∑
t=1

qt
(
f(Z ′t)− f(Zt)

))]
,

where the last expectation is taken over the joint measure of ZT1 and Z′T1 . Applying Lemma 5
(Appendix A), we can further bound this expectation by

E
(z,z′)∼T (p)

E
σ

[
exp

(
λ sup
f∈F

T∑
t=1

σtqt

(
f(z′t(σ))− f(zt(σ))

))]

≤ E
(z,z′)∼T (p)

E
σ

[
exp

(
λ sup
f∈F

T∑
t=1

σtqtf(z′t(σ)) + λ sup
f∈F

T∑
t=1

−σtqtf(zt(σ))
)]

≤ 1
2 E

(z,z′)
E
σ

[
exp

(
2λ sup

f∈F

T∑
t=1

σtqtf(z′t(σ))
)]

+ 1
2 E

(z,z′)
E
σ

[
exp

(
2λ sup

f∈F

T∑
t=1

σtqtf(zt(σ))
)]

= E
z∼T (p)

E
σ

[
exp

(
2λ sup

f∈F

T∑
t=1

σtqtf(zt(σ))
)]
,

where for the second inequality we used Young’s inequality and for the last equality we used sym-
metry. Given z let C denote the minimal α-cover with respect to the q-weighted `1-norm of F on
z. Then, the following bound holds

sup
f∈F

T∑
t=1

σtqtf(zt(σ)) ≤ max
c∈C

T∑
t=1

σtqtct(σ) + α.

By the monotonicity of the exponential function,

E
σ

[
exp

(
2λ sup

f∈F

T∑
t=1

σtqtf(zt(σ))
)]
≤ exp(2λα) E

σ

[
exp

(
2λmax

c∈C

T∑
t=1

σtqtct(σ)
)]

≤ exp(2λα)
∑
c∈C

E
σ

[
exp

(
2λ

T∑
t=1

σtqtct(σ)
)]
.

Since ct(σ) depends only on σ1, . . . , σT−1, by Hoeffding’s bound,

E
σ

[
exp

(
2λ

T∑
t=1

σtqtct(σ)
)]

= E
[

exp
(

2λ
T−1∑
t=1

σtqtct(σ)
)

E
σT

[
exp

(
2λσT qT cT (σ)

)∣∣∣∣σT−1
1

]]

≤ E
[

exp
(

2λ
T−1∑
t=1

σtqtct(σ)
)

exp(2λ2q2
TM

2)
]

and iterating this inequality and using the union bound, we obtain the following:

P
(

sup
f∈F

T∑
t=1

qt(E[f(Zt)|Zt−1
1 ]−f(Zt)) ≥ ε

)
≤ E
v∼T (p)

[N1(α,G,v)] exp
(
−λ(ε−2α)+2λ2M2‖q‖22

)
.

Optimizing over λ completes the proof.

An immediate consequence of Theorem 1 is the following result.
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Corollary 2. For any δ > 0, with probability at least 1− δ, for all f ∈ F and all α > 0,

E[f(ZT+1)|ZT1 ] ≤
T∑
t=1

qtf(Zt) + ∆ + 2α+M‖q‖2

√
2 log

Ev∼T (P)[N1(α,G,v)]
δ

.

We are not aware of other finite sample bounds in a non-stationary non-mixing case. In fact, our
bounds appear to be novel even in the stationary non-mixing case. Using chaining techniques
bounds, Theorem 1 and Corollary 2 can be further improved and we will present these results in
the full version of this paper.

While Rakhlin et al. [2015] give high probability bounds for a different quantity than the quantity of
interest in time series prediction,

sup
f∈F

(
T∑
t=1

qt(E[f(Zt)|Zt−1
1 ]− f(Zt))

)
, (3)

their analysis of this quantity can also be used in our context to derive high probability bounds for
Φ(ZT1 ) − ∆. However, this approach results in bounds that are in terms of purely combinatorial
notions such as maximal sequential covering numbersN1(α,F). While at first sight, this may seem
as a minor technical detail, the distinction is crucial in the setting of time series prediction. Consider
the following example. Let Z1 be drawn from a uniform distribution on {0, 1} and Zt ∼ p(·|Zt−1)
with p(·|y) being a distribution over {0, 1} such that p(x|y) = 2/3 if x = y and 1/3 otherwise. Let G
be defined by G = {g(x) = 1x≥θ : θ ∈ [0, 1]}. Then, one can check that Ev∼T (P)[N1(α,G,v)] = 2,
while N1(α,G) ≥ 2T . The data-dependent bounds of Theorem 1 and Corollary 2 highlight the fact
that the task of time series prediction lies in between the familiar i.i.d. scenario and adversarial
on-line learning setting.

However, the key component of our learning guarantees is the discrepancy term ∆. Note that in the
general non-stationary case, the bounds of Theorem 1 may not converge to zero due to the discrep-
ancy between the target and sample distributions. This is also consistent with the lower bounds of
Barve and Long [1996] that we discuss in more detail in Section 4. However, convergence can be
established in some special cases. In the i.i.d. case our bounds reduce to the standard covering num-
bers learning guarantees. In the drifting scenario, with ZT1 being a sequence of independent random
variables, our discrepancy measure coincides with the one used and studied in [Mohri and Muñoz
Medina, 2012]. Convergence can also be established in asymptotically stationary and stationary
mixing cases. However, as we show in Section 4, the most important advantage of our bounds is
that the discrepancy measure we use can be estimated from data.

4 Estimating Discrepancy

In Section 3, we showed that the discrepancy ∆ is crucial for forecasting non-stationary time se-
ries. In particular, if we could select a distribution q over the sample ZT1 that would minimize the
discrepancy ∆ and use it to weight training points, then we would have a better learning guarantee
for an algorithm trained on this weighted sample. In some special cases, the discrepancy ∆ can
be computed analytically. However, in general, we do not have access to the distribution of ZT1
and hence we need to estimate the discrepancy from the data. Furthermore, in practice, we never
observe ZT+1 and it is not possible to estimate ∆ without some further assumptions. One natural
assumption is that the distribution Pt of Zt does not change drastically with t on average. Under
this assumption the last s observations ZTT−s+1 are effectively drawn from the distribution close to
PT+1. More precisely, we can write

∆ ≤ sup
f∈F

(
1
s

T∑
t=T−s+1

E[f(Zt)|Zt−1
1 ]−

T∑
t=1

qt E[f(Zt)|Zt−1
1 ]

)

+ sup
f∈F

(
E[f(ZT+1)|ZT1 ]− 1

s

T∑
t=T−s+1

E[f(Zt)|Zt−1
1 ]

)
.

We will assume that the second term, denoted by ∆s, is sufficiently small and will show that the first
term can be estimated from data. But, we first note that our assumption is necessary for learning in
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this setting. Observe that

sup
f∈F

(
E[ZT+1|ZT1 ]− E[f(Zr)|Zr−1

1 ]
)
≤

T∑
t=r

sup
f∈F

(
E[f(Zt+1)|Zt1]− E[f(Zt)|Zt−1

1 ]
)

≤M
T∑
t=r

‖Pt+1(·|Zt1)−Pt(·|Zt−1
1 )‖TV,

for all r = T − s+ 1, . . . , T . Therefore, we must have

∆s ≤
1
s

∑
t=T−s+1

sup
f∈F

(
E[ZT+1|ZT1 ]− E[f(Zt)|Zt1]

)
≤ s+ 1

2
Mγ,

where γ=supt‖Pt+1(·|Zt1)−Pt(·|Zt−1
1 )‖TV. Barve and Long [1996] showed that [VC-dim(H)γ]

1
3

is a lower bound on the generalization error in the setting of binary classification where ZT1 is a
sequence of independent but not identically distributed random variables (drifting). This setting is a
special case of the more general scenario that we are considering.

The following result shows that we can estimate the first term in the upper bound on ∆.
Theorem 3. Let ZT1 be a sequence of random variables. Then, for any δ > 0, with probability at
least 1− δ, the following holds for all α > 0:

sup
f∈F

(
T∑
t=1

(pt − qt) E[f(Zt)|Zt−1
1 ]

)
≤ sup
f∈F

(
T∑
t=1

(pt − qt)f(Zt)

)
+B,

whereB = 2α+M‖q−p‖2
√

2 log Ez∼T (p)[N1(α,G,z)]

δ and where p is the uniform distribution over
the last s points.

The proof of this result is given in Appendix A. Theorem 1 and Theorem 3 combined with the union
bound yield the following result.
Corollary 4. Let ZT1 be a sequence of random variables. Then, for any δ > 0, with probability at
least 1− δ, the following holds for all f ∈ F and all α > 0:

E[f(ZT+1)|ZT1 ] ≤
T∑
t=1

qtf(Zt) + ∆̃ + ∆s + 4α+M
[
‖q‖2 + ‖q− p‖2

]√
2 log 2 Ev∼T (p)[N1(α,G,z)]

δ ,

where ∆̃ = supf∈F
(∑T

t=1(pt − qt)f(Zt)
)

.

5 Algorithms

In this section, we use our learning guarantees to devise algorithms for forecasting non-stationary
time series. We consider a broad family of kernel-based hypothesis classes with regression losses.
We present the full analysis of this setting in Appendix B including novel bounds on the sequential
Rademacher complexity. The learning bounds of Theorem 1 can be generalized to hold uniformly

over q at the price of an additional term inO
(
‖q−u‖1

√
log2 log2 ‖q− u‖−1

1

)
. We prove this result

in Theorem 8 (Appendix B). Suppose L is the squared loss and H = {x→ w ·Ψ(x) : ‖w‖H ≤ Λ},
where Ψ: X → H is a feature mapping from X to a Hilbert space H. By Lemma 6 (Appendix B),
we can bound the complexity term in our generalization bounds by

O
(

(log3 T )
Λr√
T

+ (log3 T )‖q− u‖1
)
,

where K is a PDS kernel associated with H such that supxK(x, x) ≤ r and u is the uniform
distribution over the sample. Then, we can formulate a joint optimization problem over both q and
w based on the learning guarantee of Theorem 8, which holds uniformly over all q:

min
0≤q≤1,w

{ T∑
t=1

qt(w ·Ψ(xt)− yt)2 + λ1

T∑
t=1

dtqt + λ2‖w‖2H + λ3‖q− u‖1
}
. (4)
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Here, we have upper bounded the empirical discrepancy term by
∑T
t=1 dtqt with each dt defined

by supw′≤Λ |
∑T
s=1 ps(w

′ · Ψ(xs) − ys)2 − (w′ · Ψ(xt) − yt)2|. Each dt can be precomputed
using DC-programming. For general loss functions, the DC-programming approach only guarantees
convergence to a stationary point. However, for the squared loss, our problem can be cast as an
instance of the trust region problem, which can be solved globally using the DCA algorithm of Tao
and An [1998]. Note that problem (4) is not jointly convex in q and w. However, using the dual
problem associated to w yields the following equivalent problem, it can be rewritten as follows:

min
0≤q≤1

{
max

α

{
− λ2

T∑
t=1

α2
t

qt
−αTKα + 2λ2α

TY
}

+ λ1(d·q) + λ3‖q− u‖1
}
, (5)

where d = (d1, . . . , dT )T , K is the kernel matrix and Y = (y1, . . . , yT )T . We use the change of
variables rt = 1/qt and further upper bound λ3‖q − u‖1 by λ′3‖r − T 2u‖2, which follows from
|qt − ut| = |qtut(rt − T )| and Hölder’s inequality. Then, this yields the following optimization
problem:

min
r∈D

{
max

α

{
− λ2

T∑
t=1

rtα
2
t −αTKα + 2λ2α

TY
}

+ λ1

T∑
t=1

dt
rt

+ λ3‖r− T 2u‖22
}
, (6)

where D = {r : rt ≥ 1, t ∈ [1, T ]}. The optimization problem (6) is convex since D is a convex set,
the first term in (6) is convex as a maximum of convex (linear) functions of r. This problem can be
solved using standard descent methods, where, at each iteration, we solve a standard QP in α, which
admits a closed-form solution. Parameters λ1, λ2, and λ3 are selected through cross-validation.

An alternative simpler algorithm based on the data-dependent bounds of Corollary 4 consists of
first finding a distribution q minimizing the (regularized) discrepancy and then using that to find a
hypothesis minimizing the (regularized) weighted empirical risk. This leads to the following two-
stage procedure. First, we find a solution q∗ of the following convex optimization problem:

min
q≥0

{
sup
w′≤Λ

( T∑
t=1

(pt − qt)(w′ ·Ψ(xt)− yt)2
)

+ λ1‖q− u‖1
}
, (7)

where λ1 and Λ are parameters that can be selected via cross-validation. Our generalization bounds
hold for arbitrary weights q but we restrict them to being positive sequences. Note that other reg-
ularization terms such as ‖q‖22 and ‖q − p‖22 from the bound of Corollary 4 can be incorporated
in the optimization problem, but we discard them to minimize the number of parameters. This
problem can be solved using standard descent optimization methods, where, at each step, we use
DC-programming to evaluate the supremum over w′. Alternatively, one can upper bound the supre-
mum by

∑T
t=1 qtdt and then solve the resulting optimization problem.

The solution q∗ of (7) is then used to solve the following (weighted) kernel ridge regression problem:

min
w

{ T∑
t=1

q∗t (w ·Ψ(xt)− yt)2 + λ2‖w‖2H
}
. (8)

Note that, in order to guarantee the convexity of this problem, we require q∗ ≥ 0.

6 Conclusion

We presented a general theoretical analysis of learning in the broad scenario of non-stationary non-
mixing processes, the realistic setting for a variety of applications. We discussed in detail several
algorithms benefitting from the learning guarantees presented. Our theory can also provide a finer
analysis of several existing algorithms and help devise alternative principled learning algorithms.
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A Proofs

Lemma 5. Given a sequence of random variables ZT1 with joint distribution p, let Z′T1 be a decou-
pled tangent sequence. Then, for any measurable function G, the following equality holds

E

[
G
(

sup
f∈F

T∑
t=1

qt(f(Z ′t)−f(Zt))
)]

= E
σ

E
z∼T (p)

[
G
(

sup
f

T∑
t=1

σtqt(f(z′t(σ))−f(zt(σ)))
)]
. (9)

The result also holds with the absolute value around the sums in (9).

Proof. The proof follows an argument in the proof of Theorem 3 of [Rakhlin et al., 2011]. We
only need to check that every step holds for an arbitrary weight vector q, in lieu of the uniform
distribution vector u, and for an arbitrary measurable function G, instead of the identity function.
Observe that we can write the left-hand side of (9) as

E
[
G
(

sup
f∈F

Σ(σ)
)]

= E
Z1,Z′1∼p1

E
Z2,Z′2∼p2(·|Z1)

· · · E
ZT ,Z′T∼pT (·|ZT−1

1 )

[
G
(

sup
f∈F

Σ(σ)
)]
,

where σ = (1, . . . , 1) ∈ {±1}T and Σ(σ) =
∑T
t=1 σtqt(f(Z ′t) − f(Zt)). Now, by definition of

decoupled tangent sequences, the value of the last expression is unchanged if we swap the sign of
any σi−1 to −1 since that is equivalent to permuting Zi and Z ′i. Thus, the last expression is in fact
equal to

E
Z1,Z′1∼p1

E
Z2,Z′2∼p2(·|S1(σ1))

· · · E
ZT ,Z′T∼pT (·|S1(σ1),...,ST−1(σT−1))

[
G
(

sup
f∈F

Σ(σ)
)]

for any sequence σ ∈ {±1}T , where St(1) = Zt and Z ′t otherwise. Since this equality holds for any
σ, it also holds for the mean with respect to uniformly distributed σ. Therefore, the last expression
is equal to

E
σ

E
Z1,Z′1∼p1

E
Z2,Z′2∼p2(·|S1(σ1))

· · · E
ZT ,Z′T∼pT (·|S1(σ1),...,ST−1(σT−1))

[
G
(

sup
f∈F

Σ(σ)
)]
.

This last expectation coincides with the expectation with respect to drawing a random tree z from
T (p) (and its tangent tree z′) and a random path σ to follow in that tree. That is, the last expectation
is equal to

E
σ

E
z∼T (p)

[
G
(

sup
f

T∑
t=1

σtqt(f(z′t(σ))− f(zt(σ)))
)]
,

which concludes the proof.

Theorem 3. Let ZT1 be a sequence of random variables. Then, for any δ > 0, with probability at
least 1− δ, the following holds for all α > 0:

sup
f∈F

(
T∑
t=1

(pt − qt) E[f(Zt)|Zt−1
1 ]

)
≤ sup
f∈F

(
T∑
t=1

(pt − qt)f(Zt)

)

+ α+M‖q− p‖2

√
log

Ez∼T (p)[N1(α,G, z)]
δ′

,

where p is the distribution the uniform on the last s points.

Proof. First, observe that

sup
f∈F

(
T∑
t=1

(pt − qt) E[f(Zt)|Zt−1
1 ]

)
− sup
f∈F

(
T∑
t=1

(pt − qt)f(Zt)

)

≤ sup
f∈F

(
T∑
t=1

(pt − qt)(E[f(Zt)|Zt−1
1 ]− f(Zt))

)
.

The result then follows using similar arguments to those used in the proof of Theorem 1.
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B Generalization Bounds for Kernel-Based Hypotheses with Regression
Losses

In this section, we present generalization bounds for kernel-based hypothesis with regression losses.
One of the main technical tools used in our analysis is the notion of sequential Rademacher complex-
ity. Let G be a set of functions from Z to R. The sequential Rademacher complexity of a function
class Z is defined as the following:

R
seq
T (G) = sup

z
E

[
sup
g∈G

T∑
t=1

σtqtg(zt(σ))

]
, (10)

where the supremum is taken over all complete binary trees of depth T with values in Z and where
σ is a sequence of Rademacher random variables. This a combinatorial measure of complexity
which makes bounds based on this notion coarser than those of Theorem 1, which are stated in
terms of expected covering numbers. However, it turns out that this coarser analysis is sufficient for
the derivation of our algorithms in Section 5. We also remark that most of the results in this section
can be tightened using the notion of distribution-dependent Rademacher complexity, but we defer
these results to the full version of the paper.

Our first result is a bound on the sequential Rademacher complexity of the kernel-based hypothesis
with regression losses.
Lemma 6. Let p ≥ 1 and F = {(x, y) → (w · Ψ(x) − y)p : ‖w‖H ≤ Λ} where H is a Hilbert
space and Ψ: X → H a feature map. Assume that the condition |w · x − y| ≤ M holds for all
(x, y) ∈ Z and all w such that ‖w‖H ≤ Λ. Then, the following inequalities hold:

R
seq
T (F) ≤ pMp−1CTR

seq
T (H) ≤ CT

(
pMp−1 Λr√

T
+ pMp‖q− u‖1

)
, (11)

where K is a PDS kernel associated toH, H = {x→ w ·Ψ(x) : ‖w‖H ≤ Λ}, r = supxK(x, x),
and CT = 8(1 + 4

√
2 log3/2(eT 2)).

Proof. We begin the proof by setting qtf(zt(σ)) = qt(w·Ψ(xt(σ))−yt(σ))2 = 1
T (w·x′(σ)−y′t)

2,
where x′t(σ) =

√
TqtΨ(xt(σ)) and y′t(σ) =

√
Tqtyt(σ). We let z′t = (x′t,y

′
t). Then we observe

that

R
seq
T (F) = sup

z′=(x′,y′)

E
σ

[
sup
w

1
T

T∑
t=1

σt(w · x′t(σ)− y′t(σ))p
]

= sup
z=(x,y)

E
σ

[
sup
w

T∑
t=1

qtσt(w · xt(σ)− yt(σ))p
]
.

Since x → |x|p is pMp−1-Lipschitz over [−M,M ], by Lemma 13 in [Rakhlin et al., 2015], the
following bound holds:

R
seq
T (F) ≤ pMp−1CTR

seq
T (H ′),

where H ′ = {(x, y)→ w ·Ψ(x)− y : ‖w‖H ≤ Λ}. Note that Lemma 13 requires that R
seq
T (H ′) >

1/T which is guaranteed by Khintchine’s inequality. By definition of the sequential Rademacher
complexity

R
seq
T (H ′) = sup

(x,y)

E
σ

[
sup
w

T∑
t=1

σtqt(w ·Ψ(xt(σ))− y(σ))

]

= sup
x

E
σ

[
sup
w

T∑
t=1

σtqtw ·Ψ(xt(σ))

]
+ sup

y
E
σ

[
T∑
t=1

σtqty(σ)

]
= R

seq
T (H),

where for the last equality we used the fact that σts are mean zero random variables and σt is
independent of y(σ) = y(σ1, σ2, . . . , σt−1). This proves the first result. To prove the second bound
we first observe that

R
seq
T (H) ≤ 1

T
sup
x

E
σ

[
sup
w

T∑
t=1

σtw ·Ψ(xt(σ))

]
+M‖q− u‖1.
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Next, the first term on the right-hand side can be bounded as follows:

1
T

sup
x

E
σ

[
sup
w

T∑
t=1

σtw ·Ψ(xt(σ))

]
≤ Λ
T

sup
x

E
σ

∥∥∥∥∥
T∑
t=1

σtΨ(xt(σ))

∥∥∥∥∥
H

≤ Λ
T

sup
x

√√√√E
σ

∥∥∥∥∥
T∑
t=1

σtΨ(xt(σ))

∥∥∥∥∥
2

H

=
Λ
T

sup
x

√√√√E
σ

[
T∑

t,s=1

σtσsΨ(xt(σ)) ·Ψ(xs(σ))

]

≤ Λ
T

sup
x

√√√√ T∑
t=1

E
σ

[K(xt(σ), xt(σ))]

≤ Λr√
T
,

where again we are using the fact that if s < t then

E
σ

[σtσsK(xt(σ), xs(σ))] = E
σ

[σt] E
σ

[σsK(xt(σ), xs(σ))] = 0

by the independence of σt from σs, xt(σ) = xt(σ1, . . . , σt−1) and xs(σ) = xs(σ1, . . . , σs).

Our next result establishes a high-probability learning guarantee for kernel-based hypothesis.

Theorem 7. Let p ≥ 1 and F = {(x, y) → (w · Ψ(x) − y)p : ‖w‖H ≤ Λ} where H is a Hilbert
space and Ψ: X → H a feature map. Assume that the condition |w · x − y| ≤ M holds for
all (x, y) ∈ Z and all w such that ‖w‖H ≤ Λ. If ZT1 = (XT

1 ,Y
T
1 ) is a sequence of random

variables then, for any δ > 0, with probability at least 1 − δ the following holds for all h ∈ {x →
w ·Ψ(x) : ‖w‖H ≤ Λ}:

E[(h(XT+1)− YT+1)p|ZT1 ] ≤
T∑
t=1

(h(Xt)− Yt)p + ∆

+MC̃T

√
log

8L
δ

(
pMp−1 Λr√

T
+ pMp‖q− u‖1

)
,

where L = max
{
e4,
∑∞
j=1N∞(2−j ,F)

}
, C̃T = c log3/2 T (1 + 4

√
2 log3/2(eT 2)) and where c is

an absolute constant. Thus, for p = 2,

E[(h(XT+1)− YT+1)2|ZT1 ] ≤
T∑
t=1

(h(Xt)− Yt)2 + ∆ +O

(
(log3 T )

Λr√
T

+ (log3 T )‖q− u‖1

)
.

Note that for this result to be non-trivial we need
∑∞
j=1N∞(2−j ,F) < ∞. This condition is easy

to verify in our case. First, observe that for any set of linear functions the inequality N∞(α,H) >
Λr/α holds and it follows that

∑∞
j=1N∞(2−j ,F) < 2Λr. The case of composition of H with

`p loss can be handled by realizing that this composition leads to a linear function in a higher
dimensional space corresponding to a polynomial kernel of degree p.

Proof. The beginning of the proof closely follows that of Theorem 1. The first step is to observe
that since the difference of the suprema is bounded by the supremum of the difference, it suffices to
bound the probability of the following event{

sup
f∈F

(
T∑
t=1

qt(E[f(Zt)|Zt−1
1 ]− f(Zt))

)
≥ ε

}
.
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Next, we note that qtf(Zt) = qt(w ·Ψ(Xt)− Yt)2 = 1
T (w ·X ′t − Y ′t )2, where X ′t =

√
TqtΨ(Xt)

and Y ′t =
√
TqtYt. We let Z ′t = (X ′t, Y

′
t ). Applying Lemma 15 from Rakhlin et al. [2015], we

obtain that for any δ > 0 with probability at least 1− δ, the following holds for all f ∈ F :

Φ(ZT1 )−∆ ≤MR
seq
T (F)(log3/2 T )

√
c log

8L
δ
,

where

R
seq
T (F) = sup

z′=(x′,y′)

E
σ

[
sup
w

1
T

T∑
t=1

σt(w · x′t(σ)− y′t(σ))p
]

= sup
z=(x,y)

E
σ

[
sup
w

T∑
t=1

qtσt(w · xt(σ)− yt(σ))p
]

is the sequential Rademacher complexity of F . Note that R
seq
T (F) > 1/T as in the proof of

Lemma 6. The desired result follows from Lemma 6.

The final result of this section extends Theorem 7 to hold uniformly over qs.

Theorem 8. Let p ≥ 1 and F = {(x, y) → (w · Ψ(x) − y)p : ‖w‖H ≤ Λ} where H is a Hilbert
space and Ψ: X → H a feature map. Assume that the condition |w · x − y| ≤ M holds for
all (x, y) ∈ Z and all w such that ‖w‖H ≤ Λ. Then, if ZT1 = (XT

1 ,Y
T
1 ) is a sequence of

random variables, for any δ > 0, with probability at least 1 − δ, the following bound holds for all
h ∈ H = {x→ w ·Ψ(x) : ‖w‖H ≤ Λ} and all q such that 0 < ‖q− u‖1 ≤ 1:

E[(h(XT+1)− YT+1)p|ZT1 ] ≤
T∑
t=1

(h(Xt)− Yt)p + ∆ + 4M‖q− u‖1

+MC̃T

(√
log

16L
δ

+
√

log log2 2‖q− u‖−1
)(
pMp−1 Λr√

T
+ pMp‖q− u‖1

)
,

where C̃T = c log3/2 T (1 + 4
√

2 log3/2(eT 2)), c is an absolute constant and L =
max

{
e4,
∑∞
j=1N∞(2−j ,F)

}
. Thus, for p = 2,

E[(h(XT+1)− YT+1)2|ZT1 ] ≤
T∑
t=1

(h(Xt)− Yt)2 + ∆

+O

(
(log3 T )

√
log log2 2‖q− u‖−1

( Λr√
T

+ ‖q− u‖1
))

.

This result suggests that we should try to minimize
∑T
t=1 qtf(Zt) + ∆ over q and w making sure

that q does not deviate from u by more than O(T−1/2). Theorem 1 can be extended in a similar
way to hold uniformly over qs and we will provide this result in the full version of the paper.

Proof. Let (εk)∞k=0 and (q(k))∞k=0 be infinite sequences specified below. By Theorem 7, the fol-
lowing holds for each k

P
(

E[f(ZT+1)|ZT1 ] >
T∑
t=1

qt(k)f(Zt) + ∆(q(k)) + Cεk

)
≤ 8L exp(−ε2k),

where ∆(q(k)) denotes the discrepancy computed with respect to the weights q(k) and C is equal
to

MC̃T

(
pMp−1 Λr√

T
+ pMp‖q(k)− u‖1

)
.
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Table 1: Average squared error (standard deviation)
ads1 ads2 ads3

DBF 0.0001 (0.0001) 0.0002 (0.0001) 0.0047 (0.0001)
WAR 0.0099 (0.0155) 0.0997 (0.1449) 0.1026 (0.1509)

ARIMA 0.1432 (0.2091) 0.4797 (0.6942) 0.2598 (0.3696)

Let εk = ε+
√

2 log k. Then, by the union bound we can write

P

(
∃k : E[f(ZT+1)|ZT1 ] >

T∑
t=1

qt(k)f(Zt) + ∆(q(k)) + Cεk

)
≤
∞∑
k=1

8L exp(−ε2k)

≤
∞∑
k=1

8L exp(−ε2 − log k2)

≤ 16L exp(−ε2).

We choose the sequence q(k) to satisfy ‖q(k) − u‖1 = 2−k. Then, for any q such that 0 <
‖q− u‖1 ≤ 1, there exists k such that

‖q(k)− u‖1 < ‖q− u‖1 ≤ ‖q(k − 1)− u‖1 = 2‖q(k)− u‖1.

Thus, the following inequality holds:√
2 log k ≤

√
2 log log2 2‖q− u‖−1

1 .

Combining this with the observation that the following two inequalities hold:

T∑
t=1

qt(k)f(Zt) ≤
T∑
t=1

qtf(Zt) + 2M‖q− u‖1

∆(q(k)) ≤ ∆(q) + 2M‖q− u‖1,

shows that the event{
E[f(ZT+1)|ZT1 ] >

T∑
t=1

qtf(Zt) + ∆ + C
(
ε+

√
2 log log2 2‖q− u‖−1

1

)
+ 4M‖q− u‖1

}
implies the following one{

E[f(ZT+1)|ZT1 ] >
T∑
t=1

qt(k)f(Zt) + ∆(q(k)) + Cεk

}
,

which completes the proof.

C Experiments

In Section 5, we described an algorithm benefitting from our learning guarantees based on solving
the convex optimization problem (6). Due to submission time constraints, our experiments were
carried out instead by solving directly problem (4) using an alternating optimization method. This
is based on the observation that for a fixed q, problem (4) is a simple QP over w and, for a fixed w,
the problem reduces to an LP in q. This suggests an iterative scheme where we alternate between
each of these two problems.

We have compared our algorithm against a standard ARIMA model that is commonly used in prac-
tice for forecasting non-stationary time series, as well as a weighted autoregression algorithm (WAR)
that solves optimization problem in (8) with q tuned manually.

In our experiments, we have used three artificial datasets: ads1, ads2, ads3. For each dataset, we
have generated time series with 2,000 sample points, trained on the first 1,999 points and tested on
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the last point. To gain statistically significance, we repeat this procedure 1,000 times. To generate
these time series the following autoregressive processes have been used:

ads1: Yt = αtYt−1 + εt, αt = 1 if t < 1800 and −1 otherwise,
ads2: Yt = αtYt−1 + εt, αt = 0.9− 1.8(t/2000),
ads3: Yt = αtYt−1 + (1− αt)Yt−2 + εt, αt = 0.9t/2000,

where εt are independent standard Gaussian random variables.

The results of our experiments are summarized in Table 1. Observe that the results of each experi-
ment are statistically significant using paired t-test and in each case our discrepancy-based forecaster
(DBF) significantly outperforms other algorithms. Moreover, DBF has a better performance on at
least 90% of individual runs in each experiment.

D Optimization Problem

In this section, we provide a detailed derivation of the optimization problem in (6) starting with
optimization problem in (4). The first step is to appeal to the following chain of equalities:

min
w

{ T∑
t=1

qt(w ·Ψ(xt)− yt)2 + λ2‖w‖2H
}

= min
w

{ T∑
t=1

(w · x′t − y′t)2 + λ2‖w‖2H
}

= max
β

{
− λ2

T∑
t=1

β2
t −

T∑
s,t=1

βsβtx
′
sx
′
t + 2λ2

∑
t=1

βty
′
t

}

= max
β

{
− λ2

T∑
t=1

β2
t −

T∑
s,t=1

βsβt
√
qs
√
qtKs,t + 2λ2

∑
t=1

βt
√
qtyt

}

= max
α

{
− λ2

T∑
t=1

α2
t

qt
−αTKα + 2λ2α

TY
}
, (12)

where the first equality follows by substituting x′t =
√
qtΨ(xt) and y′t =

√
qtyt the second equality

uses the dual formulation of the kernel ridge regression problem and the last equality follows from
the following change of variables: αt =

√
qtβt.

By (12), optimization problem in (4) is equivalent to the following optimization problem

min
0≤q≤1

{
max

α

{
− λ2

T∑
t=1

α2
t

qt
−αTKα + 2λ2α

TY
}

+ λ1(d·q) + λ3‖q− u‖1
}
.

Next, we apply the change of variables rt = 1/qt, and upper bound the last term in the objective
λ3‖q− u‖1 by λ′3‖r− T 2u‖2, where we use the fact that |qt − ut| = |qtut(rt − T )| and Hölder’s
inequality. This leads to the following convex optimization problem:

min
r∈D

{
max

α

{
− λ2

T∑
t=1

rtα
2
t −αTKα + 2λ2α

TY
}

+ λ1

T∑
t=1

dt
rt

+ λ3
′′‖r− T 2u‖2

}
.

This optimization problem is convex, since the domain D = {r : rt ≥ 1,∀t ∈ [1, T ]} and the first
term in the objective is a maximum of convex (linear) functions of r and hence is a convex function
of r. The last term in the objective is equivalent to a constraint ‖r−T 2u‖2 ≤ Λ or ‖r−T 2u‖22 ≤ Λ2,
for some Λ. This allows us to write the optimization equivalently as

min
r∈D

{
max

α

{
− λ2

T∑
t=1

rtα
2
t −αTKα + 2λ2α

TY
}

+ λ1

T∑
t=1

dt
rt

+ λ3
′′‖r− T 2u‖22

}
,

which is exactly the problem in (6).
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