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Abstract

Motivated by various applications in machine learning, the problem of minimiz-
ing a convex smooth loss function with trace norm regularization has received
much attention lately. Currently, a popular method for solving such problem is
the proximal gradient method (PGM), which is known to have a sublinear rate of
convergence. In this paper, we show that for a large class of loss functions, the
convergence rate of the PGM is in fact linear. Our result is established without any
strong convexity assumption on the loss function. A key ingredient in our proof
is a new Lipschitzian error bound for the aforementioned trace norm–regularized
problem, which may be of independent interest.

1 Introduction

The problem of finding a low–rank matrix that (approximately) satisfies a given set of conditions
has recently generated a lot of interest in many communities. Indeed, such a problem arises in a
wide variety of applications, including approximation algorithms [18], automatic control [5], matrix
classification [23], matrix completion [6], multi–label classification [1], multi–task learning [2],
network localization [7], subspace learning [28], and trace regression [9], just to name a few. Due to
the combinatorial nature of the rank function, the task of recovering a matrix with the desired rank
and properties is generally intractable. To circumvent this, a popular approach is to use the trace
norm1 (also known as the nuclear norm) as a surrogate for the rank function. Such an approach is
quite natural, as the trace norm is the tightest convex lower bound of the rank function over the set
of matrices with spectral norm at most one [14]. In the context of machine learning, the trace norm
is typically used as a regularizer in the minimization of certain convex loss function. This gives rise
to convex optimization problems of the form

min
X∈Rm×n

{F (X) = f(X) + τ‖X‖∗} , (1)

where f : Rm×n → R is the convex loss function, ‖X‖∗ denotes the trace norm of X , and τ > 0
is a regularization parameter. By standard results in convex optimization [4], the above formulation
is tractable (i.e., polynomial–time solvable) for many choices of the loss function f . In practice,

1Recall that the trace norm of a matrix is defined as the sum of its singular values.
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however, one is often interested in settings where the decision variable X is of high dimension.
Thus, there has been much research effort in developing fast algorithms for solving (1) lately.

Currently, a popular method for solving (1) is the proximal gradient method (PGM), which exploits
the composite nature of the objective function F and certain smoothness properties of the loss func-
tion f [8, 22, 12]. The attractiveness of PGM lies not only in its excellent numerical performance,
but also in its strong theoretical convergence rate guarantees. Indeed, for the trace norm–regularized
problem (1) with f being convex and continuously differentiable and ∇f being Lipschitz continu-
ous, the standard PGM will achieve an additive error of O(1/k) in the optimal value after k itera-
tions. Moreover, this error can be reduced to O(1/k2) using acceleration techniques; see, e.g., [22].
The sublinear O(1/k2) convergence rate is known to be optimal if f is simply given by a first–order
oracle [13]. On the other hand, if f is strongly convex, then the convergence rate can be improved to
O(ck) for some c ∈ (0, 1) (i.e., a linear convergence rate) [17]. However, in machine learning, the
loss functions of interest are often highly structured and hence not just given by an oracle, but they
are not necessarily strongly convex either. For instance, in matrix completion, a commonly used loss
function is the square loss f(·) = ‖A(·)− b‖22/2, where A : Rm×n → R

p is a linear measurement
operator and b ∈ R

p is a given set of observations. Clearly, f is not strongly convex when A has a
non–trivial nullspace (or equivalently, when A is not injective). In view of this, it is natural to ask
whether linear convergence of the PGM can be established for a larger class of loss functions.

In this paper, we take a first step towards answering this question. Specifically, we show that when
the loss function f takes the form f(X) = h(A(X)), where A : R

m×n → R
p is an arbitrary

linear operator and h : Rp → R is strictly convex with certain smoothness and curvature properties,
the PGM for solving (1) has an asymptotic linear rate of convergence. Note that f need not be
strictly convex even if h is, as A is arbitrary. Our result covers a wide range of loss functions used
in the literature, such as square loss and logistic loss. Moreover, to the best of our knowledge, it
is the first linear convergence result concerning the application of a first–order method to the trace
norm–regularized problem (1) that does not require the strong convexity of f .

The key to our convergence analysis is a new Lipschitzian error bound for problem (1). Roughly,
it says that the distance between a point X ∈ R

m×n and the optimal solution set of (1) is on the
order of the residual norm ‖proxτ (X − ∇f(X)) − X‖F , where proxτ is the proximity operator
associated with the regularization term τ‖X‖∗. Once we have such a bound, a routine applica-
tion of the powerful analysis framework developed by Luo and Tseng [11] will yield the desired
linear convergence result. Prior to this work, Lipschitzian error bounds for composite function min-
imization are available for cases where the non–smooth part either has a polyhedral epigraph (such
as the ℓ1–norm) [26] or is the (sparse) group LASSO regularization [25, 29]. However, the ques-
tion of whether a similar bound holds for trace norm regularization has remained open, despite its
apparent similarity to ℓ1–norm regularization. Indeed, unlike the ℓ1–norm, the trace norm has a non–
polyhedral epigraph; see, e.g., [19]. Moreover, the existing approach for establishing error bounds
for ℓ1–norm or (sparse) group LASSO regularization is based on splitting the decision variables into
groups, where variables from different groups do not interfere with one another, so that each group
can be analyzed separately. However, the trace norm of a matrix is determined by its singular values,
and each of them depends on every single entry of the matrix. Thus, we cannot use the same split-
ting approach to analyze the entries of the matrix. To overcome the above difficulties, we make the
crucial observation that if X̄ is an optimal solution to (1), then both X̄ and −∇f(X̄) have the same
set of left and right singular vectors; see Proposition 4.2. As a result, we can use matrix perturbation
theory to get hold of the spectral structure of the points that are close to the optimal solution set. This
in turn allows us to establish a Lipschitzian error bound for the trace norm–regularized problem (1),
thereby resolving the aforementioned open question in the affirmative.

2 Preliminaries

2.1 Basic Setup

We consider the trace norm–regularized optimization problem (1), in which the loss function f :
R

m×n → R takes the form
f(X) = h(A(X)), (2)

where A : Rm×n → R
p is a linear operator and h : Rp → R is a function satisfying the following

assumptions:
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Assumption 2.1

(a) The effective domain of h, denoted by dom(h), is open and non–empty.

(b) The function h is continuously differentiable with Lipschitz–continuous gradient on dom(h)
and is strongly convex on any convex compact subset of dom(h).

Note that Assumption 2.1(b) implies the strict convexity of h on dom(h) and the Lipschitz continuity
of ∇f . Now, let X denote the set of optimal solutions to problem (1). We make the following
assumption concerning X :

Assumption 2.2 The optimal solution set X is non–empty.

The above assumptions can be justified in various applications. For instance, in matrix completion,
the square loss f(·) = ‖A(·) − b‖22/2 induced by the linear measurement operator A and the set
of observations b ∈ R

p is of the form (2), with h(·) = ‖(·) − b‖22/2. Moreover, it is clear that
such an h satisfies Assumptions 2.1 and 2.2. In multi–task learning, the loss function takes the form

f(·) =
∑T

t=1 ℓ(At(·), yt), where T is the number of learning tasks, At : R
m×n → R

p is the linear
operator defined by the input data for the t–th task, yt ∈ R

p is the output data for the t–th task, and
ℓ : Rp × R

p → R measures the learning error. Note that f can be put into the form (2), where
A : Rm×n → R

Tp is given by A(X) = (A1(X),A2(X), . . . ,AT (X)), and h : RTp → R is

given by h(z) =
∑T

t=1 ℓ(zt, yt) with zt ∈ R
p for t = 1, . . . , T and z = (z1, . . . , zT ). Moreover,

in the case where ℓ is, say, the square loss (i.e., ℓ(zt, yt) = ‖zt − yt‖22/2) or the logistic loss (i.e.,
ℓ(zt, yt) =

∑p

i=1 log(1 + exp(−ztiyti))), it can be verified that Assumptions 2.1 and 2.2 hold.

2.2 Some Facts about the Optimal Solution Set

Since f(·) = h(A(·)) by (2) and h(·) is strictly convex on dom(h) by Assumption 2.1(b), it is easy
to verify that the map X 7→ A(X) is invariant over the optimal solution set X . In other words, there
exists a z̄ ∈ dom(h) such that for any X∗ ∈ X , we have A(X∗) = z̄. Thus, we can express X as

X =
{

X ∈ R
m×n : τ‖X‖∗ = v∗ − h(z̄), A(X) = z̄

}

,

where v∗ > −∞ is the optimal value of (1). In particular, X is a non–empty convex compact set.
This implies that every X ∈ R

m×n has a unique projection X̄ ∈ X onto X , which is given by the
solution to the following optimization problem:

dist(X,X ) = min
Y ∈X

‖X − Y ‖F .

In addition, since X is bounded and F is convex, it follows from [15, Corollary 8.7.1] that the level
set {X ∈ R

m×n : F (X) ≤ ζ} is bounded for any ζ ∈ R.

2.3 Proximal Gradient Method and the Residual Map

To motivate the PGM for solving (1), we recall an alternative characterization of the optimal solution
set X . Consider the proximity operator proxτ : Rm×n → R

m×n, which is defined as

proxτ (X) = arg min
Z∈Rm×n

{

τ‖Z‖∗ +
1

2
‖X − Z‖2F

}

. (3)

By comparing the optimality conditions for (1) and (3), it is immediate that a solution X∗ ∈ R
m×n

is optimal for (1) if and only if it satisfies the following fixed–point equation:

X∗ = proxτ (X
∗ −∇f(X∗)). (4)

This naturally lead to the following PGM for solving (1):
{

Y k+1 = Xk − αk∇f(Xk),
Xk+1 = proxταk

(Y k+1),
(5)

where αk > 0 is the step size in the k–th iteration, for k = 0, 1, . . .; see, e.g., [8, 22, 12]. As is
well–known, the proximity operator defined above can be expressed in terms of the so–called matrix
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shrinkage operator. To describe this result, we introduce some definitions. Let µ > 0 be given. The
non–negative vector shrinkage operator sµ : Rp

+ → R
p
+ is defined as (sµ(z))i = max{0, zi − µ},

where i = 1, . . . , p. The matrix shrinkage operator Sµ : Rm×n → R
m×n is defined as Sµ(X) =

UΣµV
T , where X = UΣV T is the singular value decomposition of X with Σ = Diag(σ(X)) and

σ(X) being the vector of singular values of X , and Σµ = Diag(sµ(σ(X))). Then, it can be shown
that

proxτ (X) = Sτ (X); (6)

see, e.g., [12, Theorem 3].

Our goal in this paper is to study the convergence rate of the PGM (5). Towards that end, we need a
measure to quantify its progress towards optimality. One natural candidate would be dist(·,X ), the
distance to the optimal solution set X . Despite its intuitive appeal, such a measure is hard to compute
or analyze. In view of (4) and (6), a reasonable alternative would be the norm of the residual map
R : Rm×n → R

m×n, which is defined as

R(X) = Sτ (X −∇f(X))−X. (7)

Intuitively, the residual map measures how much a solution X ∈ R
m×n violates the optimality

condition (4). In particular, X is an optimal solution to (1) if and only if R(X) = 0. However, since
‖R(·)‖F is only a surrogate of dist(·,X ), we need to establish a relationship between them. This
motivates the development of a so–called error bound for problem (1).

3 Main Results

Key to our convergence analysis of the PGM (5) is the following error bound for problem (1), which
constitutes the main contribution of this paper:

Theorem 3.1 (Error Bound for Trace Norm Regularization) Suppose that in problem (1), f is of
the form (2), and Assumptions 2.1 and 2.2 are satisfied. Then, for any ζ ≥ v∗, there exist constants
η > 0 and ǫ > 0 such that

dist(X,X ) ≤ η‖R(X)‖F whenever F (X) ≤ ζ, ‖R(X)‖F ≤ ǫ. (8)

Armed with Theorem 3.1 and some standard properties of the PGM (5), we can apply the con-
vergence analysis framework developed by Luo and Tseng [11] to establish the linear conver-
gence of (5). Recall that a sequence of vectors {wk}k≥0 is said to converge Q–linearly (resp. R–
linearly) to a vector w∞ if there exist an index K ≥ 0 and a constant ρ ∈ (0, 1) such that
‖wk+1−w∞‖2/‖wk−w∞‖2 ≤ ρ for all k ≥ K (resp. if there exist constants γ > 0 and ρ ∈ (0, 1)
such that ‖wk − w∞‖2 ≤ γ · ρk for all k ≥ 0).

Theorem 3.2 (Linear Convergence of the Proximal Gradient Method) Suppose that in problem
(1), f is of the form (2), and Assumptions 2.1 and 2.2 are satisfied. Moreover, suppose that the step
size αk in the PGM (5) satisfies 0 < α < αk < ᾱ < 1/Lf for k = 0, 1, 2, . . ., where Lf is the

Lipschitz constant of ∇f , and α, ᾱ are given constants. Then, the sequence of solutions {Xk}k≥0

generated by the PGM (5) converges R–linearly to an element in the optimal solution set X , and the
associated sequence of objective values {F (Xk)}k≥0 converges Q–linearly to the optimal value v∗.

Proof. Under the given setting, it can be shown that there exist scalars κ1, κ2, κ3 > 0, which depend
on α, ᾱ, and Lf , such that

F (Xk)− F (Xk+1) ≥ κ1‖X
k −Xk+1‖2F , (9)

F (Xk+1)− v∗ ≤ κ2

[

(dist(Xk,X ))2 + ‖Xk+1 −Xk‖2F
]

, (10)

‖R(Xk)‖F ≤ κ3‖X
k −Xk+1‖F ; (11)

see the supplementary material. Since {F (Xk)}k≥0 is a monotonically decreasing sequence by (9)

and F (Xk) ≥ v∗ for all k ≥ 0, we conclude, again by (9), that Xk − Xk+1 → 0. This, together
with (11), implies that R(Xk) → 0. Thus, by (9), (10) and Theorem 3.1, there exist an index K ≥ 0
and a constant κ4 > 0 such that for all k ≥ K ,

F (Xk+1)− v∗ ≤ κ4‖X
k −Xk+1‖2F ≤

κ4

κ1
(F (Xk)− F (Xk+1)).
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It follows that

F (Xk+1)− v∗ ≤
κ4

κ1 + κ4
(F (Xk)− v∗), (12)

which establishes the Q–linear convergence of {F (Xk)}k≥0 to v∗. Using (9) and (12), we can

show that {‖Xk+1 −Xk‖2F }k≥0 converges R–linearly to 0, which, together with (11), implies that

{Xk}k≥0 converges R–linearly to a point in X ; see the supplementary material. �

4 Proof of the Error Bound

The structure of our proof of Theorem 3.1 largely follows that laid out in [25, Section 6]. However,
as explained in Section 1, some new ingredients are needed in order to analyze the spectral properties
of a point that is close to the optimal solution set X . Before we proceed, let us set up the notation
that will be used in the proof. Let L > 0 denote the Lipschitz constant of ∇h and ∂‖ · ‖∗ denote the
subdifferential of ‖ · ‖∗. Given a sequence {Xk}k≥0 ∈ R

m×n\X , define

Rk = R(Xk), X̄k = argminY ∈X ‖Xk − Y ‖F , δk = ‖Xk − X̄k‖F ,

zk = A(Xk), Gk = ∇f(Xk) = A∗(∇h(zk)), Ḡ = A∗(∇h(z̄)), (13)

where A∗ is the adjoint operator of A. The crux of the proof of Theorem 3.1 is the following lemma:

Lemma 4.1 Under the setting of Theorem 3.1, suppose that there exists a convergent sequence
{Xk}k≥0 ∈ R

m×n\X satisfying

F (Xk) ≤ ζ for all k ≥ 0, Rk → 0,
Rk

δk
→ 0. (14)

Then, the following hold:

(a) (Asymptotic Optimality) The limit point X̄ of {Xk}k≥0 belongs to X .

(b) (Bounded Iterates) There exists a convex compact subset Z of dom(h) such that zk, z̄ ∈ Z
for all k ≥ 0. Consequently, there exists a constant σ ∈ (0, L] such that for all k ≥ 0,

(∇h(zk)−∇h(z̄))T (zk − z̄) ≥ σ‖zk − z̄‖22. (15)

(c) (Restricted Invertibility) There exists a constant κ > 0 such that

‖Xk − X̄k‖F ≤ κ‖zk − z̄‖2 = κ‖A(Xk − X̄k)‖2 for all k ≥ 0. (16)

It is clear that ‖A(Xk − X̄k)‖2 ≤ ‖A‖ · ‖Xk − X̄k‖F , where ‖A‖ = sup‖Y ‖F=1 ‖A(Y )‖2 is

the spectral norm of A. Thus, the key element in Lemma 4.1 is the restricted invertibility property
(16). For the sake of continuity, let us proceed to prove Theorem 3.1 by assuming the validity of
Lemma 4.1.

Proof. [Theorem 3.1] We argue by contradiction. Suppose that there exists ζ ≥ v∗ such that (8) fails
to hold for all η > 0 and ǫ > 0. Then, there exists a sequence {Xk}k≥0 ∈ R

m×n\X satisfying (14).
Since {X ∈ R

m×n : F (X) ≤ ζ} is bounded (see Section 2.2), by passing to a subsequence if
necessary, we may assume that {Xk}k≥0 converges to some X̄ . Hence, the premises of Lemma 4.1
are satisfied. Now, by Fermat’s rule [16, Theorem 10.1], for each k ≥ 0,

Rk ∈ argmin
D

{

〈Gk +Rk, D〉+ τ‖Xk +D‖∗
}

. (17)

Hence, we have

〈Gk +Rk, Rk〉+ τ‖Xk +Rk‖∗ ≤ 〈Gk +Rk, X̄k −Xk〉+ τ‖X̄k‖∗.

Since X̄k ∈ X and ∇f(X̄k) = Ḡ, we also have −Ḡ ∈ τ∂‖X̄k‖∗, which implies that

τ‖X̄k‖∗ ≤ 〈Ḡ,Xk +Rk − X̄k〉+ τ‖Xk +Rk‖∗.

Adding the two inequalities above and simplifying yield

〈Gk − Ḡ,Xk − X̄k〉+ ‖Rk‖2F ≤ 〈Ḡ−Gk, Rk〉+ 〈Rk, X̄k −Xk〉. (18)
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Since zk = A(Xk) and z̄ = A(X̄k), by Lemma 4.1(b,c),

〈Gk − Ḡ,Xk − X̄k〉 = (∇h(zk)−∇h(z̄))T (zk − z̄) ≥ σ‖zk − z̄‖22 ≥
σ

κ2
‖Xk − X̄k‖2F . (19)

Hence, it follows from (15), (18), (19) and the Lipschitz continuity of ∇h that
σ

κ2
‖Xk − X̄k‖2F + ‖Rk‖2F ≤ (∇h(z̄)−∇h(zk))TA(Rk) + 〈Rk, X̄k −Xk〉

≤ L‖A‖2‖Xk − X̄k‖F‖R
k‖F + ‖Xk − X̄k‖F ‖R

k‖F .

In particular, this implies that
σ

κ2
‖Xk − X̄k‖2F ≤ (L‖A‖2 + 1)‖Xk − X̄k‖F ‖R

k‖F

for all k ≥ 0, which, upon dividing both sides by ‖Xk − X̄k‖F , yields a contradiction to (14). �

4.1 Proof of Lemma 4.1

We now return to the proof of Lemma 4.1. Since Rk → 0 by (14) and R is continuous, we have
R(X̄) = 0, which implies that X̄ ∈ X . This establishes (a). To prove (b), observe that due to (a), the
sequence {Xk}k≥0 is bounded. Hence, the sequence {A(Xk)}k≥0 is also bounded, which implies

that the points zk = A(Xk) and z̄ = A(X̄) lie in a convex compact subset Z of dom(h) for all
k ≥ 0. The inequality (15) then follows from Assumption 2.1(b). Note that we have σ ≤ L, as ∇h
is Lipschitz continuous with parameter L.

To prove (c), we argue by contradiction. Suppose that (16) is false. Then, by further passing to a
subsequence if necessary, we may assume that

‖A(Xk)− z̄‖2
/

‖Xk − X̄k‖F → 0. (20)

In the sequel, we will also assume without loss of generality that m ≤ n. The following proposition
establishes a property of the optimal solution set X that will play a crucial role in our proof.

Proposition 4.2 Consider a fixed X̄ ∈ X . Let X̄ − Ḡ = Ū [Diag(σ̄) 0] V̄ T be the singular

value decomposition of X̄ − Ḡ, where Ū ∈ R
m×m, V̄ ∈ R

n×n are orthogonal matrices and σ̄
is the vector of singular values of X̄ − Ḡ. Then, the matrices X̄ and −Ḡ can be simultaneously
singular–value–decomposed by Ū and V̄ . Moreover, the set Xc ⊂ X , which is defined as

Xc =
{

X ∈ X : X = Ū [Diag(σ(X)) 0] V̄ T
}

,

is a non–empty convex compact set.

By Proposition 4.2, for every k ≥ 0, the point Xk has a unique projection X̃k ∈ Xc onto Xc. Let

γk = ‖Xk − X̃k‖F = min
Y ∈Xc

‖Xk − Y ‖F . (21)

Since Xc ⊂ X , we have γk = ‖Xk − X̃k‖F ≥ ‖Xk − X̄k‖F = δk. It follows from (20) that

‖A(Xk)− z̄‖2
/

‖Xk − X̃k‖F → 0. This is equivalent to A(Qk) → 0, where

Qk =
Xk − X̃k

γk
for all k ≥ 0. (22)

In particular, we have ‖Qk‖F = 1 for all k ≥ 0. By further passing to a subsequence if necessary,
we will assume that {Qk}k≥0 converges to some Q̄. Clearly, we have A(Q̄) = 0 and ‖Q̄‖F = 1.

4.1.1 Decomposing Q̄

Our goal now is to show that for k sufficiently large and ǫ > 0 sufficiently small, the point X̂ =
X̃k + ǫQ̄ belongs to Xc and is closer to Xk than X̃k is to Xk. This would then contradict the

fact that X̃k is the projection of Xk onto Xc. To begin, let σk be the vector of singular values of
Xk −Gk. Since Xk −Gk → X̄ − Ḡ, the sequence {σk}k≥0 is bounded. Hence, for i = 1, . . . ,m,

by passing to a subsequence if necessary, we can classify the sequence {σk
i }k≥0 into one of the

following three cases: (A) σk
i ≤ τ for all k ≥ 0; (B) σk

i > τ and σi(X̃
k) > 0 for all k ≥ 0; (C)

σk
i > τ and σi(X̃

k) = 0 for all k ≥ 0. The following proposition gives the key structural properties
of Q̄ that will lead to the desired contradiction:
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Proposition 4.3 The matrix Q̄ admits the decomposition Q̄ = Ū [Diag(λ) 0] V̄ T , where

λi



















= − lim
k→∞

σi(X̃
k)

γk
≤ 0 in Case (A),

∈ R in Case (B),

> 0 in Case (C),

for i = 1, . . . ,m.

It should be noted that the decomposition given in Proposition 4.3 is not necessarily the singular
value decomposition of Q̄, as λ could have negative components. A proof of Proposition 4.3 can be
found in the supplementary material.

4.1.2 Completing the Proof

Armed with Proposition 4.3, we are now ready to complete the proof of Lemma 4.1(c). Since

Qk 6= 0 for all k ≥ 0, it follows from (22) that 〈Xk − X̃k, Q̄〉 > 0 for all k sufficiently large. Fix

any such k and let X̂ = X̃k + ǫQ̄, where ǫ > 0 is a parameter to be determined. Since A(Q̄) = 0,

it follows from (13) that ∇f(X̂) = ∇f(X̃k) = Ḡ. Moreover, since X̃k ∈ Xc, by the optimality
condition (4) and Proposition 4.2, we have

max
{

0, σi(X̃
k) + σi(−Ḡ)− τ

}

= σi(X̃
k) for i = 1, . . . ,m. (23)

Now, we claim that for ǫ > 0 sufficiently small, X̂ satisfies

Sτ (X̂ − Ḡ)v̄i = X̂v̄i for i = 1, . . . , n, (24)

ūT
i Sτ (X̂ − Ḡ) = ūT

i X̂ for i = 1, . . . ,m,

where ūi (resp. v̄i) is the i–th column of Ū (resp. V̄ ). This would then imply that X̂ ∈ Xc. To prove
the claim, observe that for i = m + 1, . . . , n, both sides of (24) are equal to 0. Moreover, since

X̃k ∈ Xc, Propositions 4.2 and 4.3 give

X̂ − Ḡ = Ū
[

Diag(σ(X̃k) + ǫλ+ σ(−Ḡ)) 0

]

V̄ T .

Thus, it suffices to show that for ǫ > 0 sufficiently small,

σi(X̃
k) + ǫλi + σi(−Ḡ) ≥ 0 for i = 1, . . . ,m, (25)

sτ (σi(X̃
k) + ǫλi + σi(−Ḡ)) = σi(X̃

k) + ǫλi for i = 1, . . . ,m. (26)

Towards that end, fix an index i = 1, . . . ,m and consider the three cases defined in Section 4.1.1:

Case (A). If σi(X̃
k) = 0 for all k sufficiently large, then Proposition 4.3 gives λi = 0. Moreover,

we have σi(−Ḡ) ≤ τ by (23). This implies that both (25) and (26) are satisfied for any choice of

ǫ > 0. On the other hand, if σi(X̃
k) > 0 for all k sufficiently large, then Proposition 4.3 gives

λi < 0. Moreover, we have σi(−Ḡ) = τ by (23). By choosing ǫ > 0 so that σi(X̃
k) + ǫλi ≥ 0, we

can guarantee that both (25) and (26) are satisfied.

Case (B). Since σi(X̃
k) > 0 for all k ≥ 0, we have σi(−Ḡ) = τ by (23). Hence, both (25) and (26)

can be satisfied by choosing ǫ > 0 so that σi(X̃
k) + ǫλi ≥ 0.

Case (C). By Proposition 4.2, we have X̄ ∈ Xc. Since Xk → X̄ and γk = ‖Xk − X̃k‖F ≤
‖Xk − X̄‖F , we have X̃k → X̄ as well. It follows that σi(X̄) = 0, as σi(X̃

k) = 0 for all k ≥ 0 by
assumption. Now, since Xk −Gk → X̄ − Ḡ and σk

i > τ , we have σ̄i ≥ τ . Thus, Proposition 4.2
implies that τ ≤ σ̄i = σi(X̄ − Ḡ) = σi(X̄) + σi(−Ḡ) = σi(−Ḡ). This, together with (23), yields
σi(−Ḡ) = τ . Since λi > 0 by Proposition 4.3, we conclude that both (25) and (26) can be satisfied
by any choice of ǫ > 0.

Thus, in all three cases, the claim is established. In particular, we have X̂ ∈ Xc. This, together with

〈Xk − X̃k, Q̄〉 > 0 and ‖Q̄‖F = 1, yields

‖Xk − X̂‖2F = ‖Xk − X̃k − ǫQ̄‖2F = ‖Xk − X̃k‖2F − 2ǫ〈Xk − X̃k, Q̄〉+ ǫ2 < ‖Xk − X̃k‖2F

for ǫ > 0 sufficiently small, which contradicts the fact that X̃k is the projection of Xk onto Xc. This
completes the proof of Lemma 4.1(c).
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5 Numerical Experiments

In this section, we complement our theoretical results by testing the numerical performance of the
PGM (5) on two problems: matrix completion and matrix classification.

Matrix Completion: We randomly generate an n × n matrix M with a prescribed rank r. Then,
we fix a sampling ratio θ ∈ (0, 1] and sample p = ⌊θn2⌋ entries of M uniformly at random. This
induces a sampling operatorP : Rm×n → R

p and an observation vector b ∈ R
p. In our experiments,

we fix the rank r = 3 and use the square loss f(·) = ‖P(·) − b‖22/2 with regularization parameter
µ = 1 in problem (1). We then solve the resulting problem for different values of n and θ using the
PGM (5) with a fixed step size α = 1. We stop the algorithm when F (Xk) − F (Xk+1) < 10−8.
Figure 1 shows the semi–log plots of the error in objective value and the error in solution against the
number of iterations. It can be seen that as long as the iterates are close enough to the optimal set,
both the objective values and the solutions converge linearly.
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Figure 2: Matrix Classification

Matrix Classification: We consider a matrix classification problem under the setting described
in [24]. Specifically, we first randomly generate a low-rank matrix classifier X∗, which is an n× n
symmetric matrix of rank r. Then, we specify a sampling ratio θ ∈ (0, 1] and sample p = ⌊θn2⌋/2
independent n × n symmetric matrices W1, . . . ,Wp from the standard Wishart distribution with n
degrees of freedom. The label of Wi, denoted by yi, is given by sgn(〈X∗,Wi〉). In our experiments,
we fix the rank r = 3, the dimension n = 40, and use the logistic loss f(·) =

∑p
i=1 log(1 +

exp(−yi〈·,Wi〉)) with regularization parameter µ = 1 in problem (1). Since a good lower bound
on the Lipschitz constant Lf of ∇f is not readily available in this case, a backtracking line search
was adopted at each iteration to achieve an acceptable step size; see, e.g., [3]. We stop the algorithm
when F (Xk) − F (Xk+1) < 10−6. Figure 2 shows the convergence performance of the PGM (5)
as θ varies. Again, it can be seen that both the objective values and the solutions converge linearly.

6 Conclusion

In this paper, we have established the linear convergence of the PGM for solving a class of trace
norm–regularized problems. Our convergence result does not require the objective function to be
strongly convex and is applicable to many settings in machine learning. The key technical tool in
the proof is a Lipschitzian error bound for trace norm–regularized problems, which could be of
independent interest. A future direction is to study error bounds for more general matrix norm–
regularized problems and their implications on the convergence rates of first–order methods.

Acknowledgments The authors would like to thank the anonymous reviewers for their careful
reading of the manuscript and insightful comments. The research of A. M.–C. So is supported in
part by a gift grant from Microsoft Research Asia.
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Supplementary Material

A Proof of Theorem 3.2

By definition of the PGM (5), we have

ταk‖X
k+1‖∗ +

1

2
‖Xk − αk∇f(Xk)−Xk+1‖2F ≤ ταk‖X

k‖∗ +
1

2
α2
k‖∇f(Xk)‖2F ,

which implies that

τ‖Xk+1‖∗ + 〈∇f(Xk), Xk+1 −Xk〉+
1

2αk

‖Xk+1 −Xk‖2F ≤ τ‖Xk‖∗. (27)

Since ∇f is Lipschitz continuous with parameter Lf > 0, we have

f(Xk+1)− f(Xk) ≤ 〈∇f(Xk), Xk+1 −Xk〉+
Lf

2
‖Xk+1 −Xk‖2F ; (28)

see, e.g., [10]. It follows from (27) and (28) that

F (Xk+1)− F (Xk) ≤ 〈∇f(Xk), Xk+1 −Xk〉+
Lf

2
‖Xk+1 −Xk‖2F

+ τ
(

‖Xk+1‖∗ − ‖Xk‖∗
)

≤
Lf

2
‖Xk+1 −Xk‖2F −

1

2αk

‖Xk+1 −Xk‖2F

≤ −
1

2

(

1

ᾱ
− Lf

)

‖Xk+1 −Xk‖2F .

By taking κ1 = ((1/ᾱ)− Lf )/2, we obtain (9).

To establish (10), let X̄k be the projection of Xk onto X . Using again the definition of the PGM (5),
we have

ταk‖X
k+1‖∗ +

1

2
‖Xk − αk∇f(Xk)−Xk+1‖2F ≤ ταk‖X̄

k‖∗ +
1

2
‖Xk − αk∇f(Xk)− X̄k‖2F .

This implies that

τ
(

‖Xk+1‖∗ − ‖Xk‖∗
)

+ 〈∇f(Xk), Xk+1 − X̄k〉 ≤
1

2αk

‖X̄k −Xk‖2F ≤
1

2α
(dist(Xk,X ))2.

(29)

By the Mean Value Theorem, there exists an X̂k ∈ [X̄k, Xk+1] such that

f(Xk+1)− f(X̄k) = 〈∇f(X̂k), Xk+1 − X̄k〉. (30)
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Hence, we compute

F (Xk+1)− F (X̄k)

= f(Xk+1) + τ‖Xk+1‖∗ − f(X̄k)− τ‖X̄k‖∗

= 〈∇f(X̂k), Xk+1 − X̄k〉+ τ
(

‖Xk+1‖∗ − ‖Xk‖∗
)

(31)

= 〈∇f(Xk), Xk+1 − X̄k〉+ 〈∇f(X̂k)−∇f(Xk), Xk+1 − X̄k〉+ τ
(

‖Xk+1‖∗ − ‖Xk‖∗
)

≤ 〈∇f(Xk), Xk+1 − X̄k〉+ Lf‖X
k+1 − X̄k‖2F + τ

(

‖Xk+1‖∗ − ‖Xk‖∗
)

(32)

≤
1

2α
(dist(Xk,X ))2 + 2Lf

(

‖Xk+1 −Xk‖2F + ‖Xk − X̄k‖2F
)

(33)

≤

(

2Lf +
1

2α

)

(

(dist(Xk,X ))2 + ‖Xk+1 −Xk‖2F
)

,

where (31) follows from (30); (32) follows from the Lipschitz continuity of ∇f and the fact that

X̂k ∈ [X̄k, Xk+1]; (33) follows from (29) and the inequality

‖Xk+1−X̄k‖2F ≤
(

‖Xk+1 −Xk‖F + ‖Xk − X̄k‖F
)2

≤ 2
(

‖Xk+1 −Xk‖2F + ‖Xk − X̄k‖2F
)

.

Upon noting that F (X̄k) = v∗, we obtain (10) with κ2 = (2Lf + 1/(2α)).

Next, using the fact that for any Y, Z ∈ R
m×n, the map

η 7→
1

η
‖proxη(Y − ηZ)− Y ‖F

is decreasing in η > 0, and that the map

η 7→ ‖proxη(Y − ηZ)− Y ‖F

is increasing in η > 0 [20], we have

‖Xk+1 −Xk‖F = ‖proxταk
(Xk − αk∇f(Xk))−Xk‖F

≥ min{1, αk} · ‖proxτ (X
k −∇f(Xk))−Xk‖F

≥ min{1, α} · ‖R(Xk)‖F .

This establishes (11) with κ3 = 1/min{1, α}.

To complete the proof of Theorem 3.2, it remains to show that the sequence {Xk}k≥0 converges R–
linearly to an element in the optimal solution set X . We have already shown that for some constant
ρ ∈ (0, 1),

F (Xk+1) ≤ ρF (Xk) + (1 − ρ)v∗

for k sufficiently large; see (12). It follows that for some constant γ > 0,

F (Xk)− v∗ ≤ γ · ρk

for all k ≥ 0. This, together with (9), implies that the sequence {‖Xk+1−Xk‖2F }k≥0 converges R–

linearly to 0. It then follows from (11) that the sequence {‖R(Xk)‖F }k≥0 converges R–linearly to

0, or equivalently, the sequence {Xk}k≥0 converges R–linearly to an element in the optimal solution
set X .

B Proof of Proposition 4.2

Let

X̄ − Ḡ = Ū [Diag(σ̄) 0] V̄ T
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be the singular value decomposition of X̄ − Ḡ, where Ū ∈ R
m×m, V̄ ∈ R

n×n are orthogonal
matrices and σ̄ is the vector of singular values of X̄ − Ḡ. Since X̄ ∈ X , by (4) and (6), we have

X̄ = Sτ (X̄ − Ḡ) = Ū [Diag(sτ (σ̄)) 0] V̄ T = X̄ − Ḡ− Ū [Diag(σ̄ − sτ (σ̄)) 0] V̄ T . (34)

It then follows from (34) and the uniqueness of singular values that

X̄ = Ū
[

Diag(σ(X̄)) 0
]

V̄ T , −Ḡ = Ū
[

Diag(σ(−Ḡ)) 0
]

V̄ T ,

where σ(X̄) is the vector of singular values of X̄ , and σ(−Ḡ) = σ̄ − sτ (σ̄) ≥ 0 is the vector
of singular values of −Ḡ. In other words, X̄ and −Ḡ can be singular–value–decomposed by the
orthogonal matrices Ū and V̄ . Now, consider the set

Xc =
{

X ∈ X : X = Ū [Diag(σ(X)) 0] V̄ T
}

.

Since X̄ ∈ Xc, we have Xc 6= ∅. Moreover, observe that Xc = X ∩ K, where

K =
{

X ∈ R
m×n : X = Ū [Diag(σ(X)) 0] V̄ T

}

.

Since K is convex and closed, and X is convex and compact (see Section 2.2), we conclude that Xc

is convex and compact. This completes the proof.

C Proof of Proposition 4.3

To begin, let Uk ∈ R
m×m and V k ∈ R

n×n be orthogonal matrices such that

Xk −Gk = Uk
[

Diag(σk) 0
]

(V k)T , (35)

where σk is the vector of singular values of Xk − Gk. By (22) and the fact that A(Q̄) = 0 and

X̃k ∈ Xc, we have
zk = A(Xk) = A(X̃k + γkQ

k) = z̄ + o(γk).
2

Since zk, z̄ ∈ Z , the above equation, together with (13) and the Lipschitz continuity of ∇h, implies
that

Gk = Ḡ+ o(γk). (36)

By letting R̄ = R(X̄) and using (7), (22), and (36), we compute

Rk − R̄ = (Xk − X̄)− (Gk − Ḡ)−
(

Uk
[

Σk
0
]

(V k)T − Ū
[

Σ̄ 0
]

V̄ T
)

− (Xk − X̄)

= o(γk)−
(

Uk
[

Σk
0
]

(V k)T − Ū
[

Σ̄ 0
]

V̄ T
)

,

where Σk = Diag(σk−sτ (σ
k)), and Σ̄ = Diag(σ̄−sτ (σ̄)). Since Rk = o(δk) by (14) and δk ≤ γk

by (13) and (21), we have Rk = o(γk). Moreover, since X̄ ∈ X , we have R̄ = 0. It follows that

Ū
[

Σ̄ 0
]

V̄ T = Uk
[

Σk
0
]

(V k)T + o(γk). (37)

Note that (37) holds for any Uk and V k satisfying (35). By [21, Lemma 4.3], given Ū and V̄ , there
exist Uk and V k satisfying (35) and (37), such that

uk
i = ūi + o(γk) for i = 1, . . . ,m and vkj = v̄j + o(γk) for j = 1, . . . , n, (38)

where uk
i (resp. vki ) is the i–th column of Uk (resp. V k), and similarly for ūi and v̄i. Now, fix such

Uk and V k. By (22) and (36),

Xk −Gk − (X̃k − Ḡ) = γkQ
k + o(γk). (39)

Since X̃k ∈ Xc, by Proposition 4.2, we have X̃k − Ḡ = Ū
[

Diag(σ̃k) 0
]

V̄ T , where σ̃k is the

vector of singular values of X̃k − Ḡ. By pre–multiplying (39) with (uk
i )

T and post–multiplying it

with vki and applying (38), we obtain

σk
i − σ̃k

i = γkū
T
i Q

kv̄i + o(γk) for i = 1, . . . ,m. (40)

2Given a matrix X ∈ R
m×n, we say that X = o(α) if ‖X‖F /|α| → 0 as α → 0.

12



Furthermore, using (35), we compute

Rkvki =

{

sτ (σ
k
i )u

k
i −Xkvki for i = 1, . . . ,m,

−Xkvki for i = m+ 1, . . . , n,
(41)

(uk
i )

TRk = sτ (σ
k
i )(v

k
i )

T − (uk
i )

TXk for i = 1, . . . ,m. (42)

Note that for i = m + 1, . . . , n, we have −Rkvki = Xkvki = X̃kvki + γkQ
kvki by (22) and (41).

Dividing both sides by γk and using (38) and the fact that Rk = o(γk), we obtain

Q̄v̄i = − lim
k→∞

X̃kvki
γk

= − lim
k→∞

X̃kv̄i + o(γk)

γk
= 0.

Thus, it remains to consider the case where i ∈ {1, . . . ,m}. Towards that end, we first observe that

since X̃k ∈ Xc, the optimality condition (4) and Proposition 4.2 give

max
{

0, σi(X̃
k) + σi(−Ḡ)− τ

}

= σi(X̃
k) for i = 1, . . . ,m. (43)

Now, let us consider the three cases introduced in Section 4.1.1 in turn.

Case (A). In this case, we have sτ (σ
k
i ) = 0. Together with (41), this implies that Rkvki = −Xkvki

for all k ≥ 0. Since Rk → 0 and Xk → X̄ , we obtain X̄v̄i = σi(X̄)ūi = 0 by Proposition 4.2

and (38). Moreover, since −Rkvki = X̃kvki + γkQ
kvki , upon dividing both sides by γk and using

(38) and the fact that Rk = o(γk), we obtain

Q̄v̄i = − lim
k→∞

X̃kvki
γk

= − lim
k→∞

X̃kv̄i + o(γk)

γk
= − lim

k→∞

σi(X̃
k)ūi

γk
.

If Q̄v̄i 6= 0, then σi(X̃
k)ūi 6= 0 for all k sufficiently large. This implies that Q̄v̄i = λiūi, where

λi = − limk→∞ σi(X̃
k)/γk < 0. By repeating the above argument for (42), we also have ūT

i Q̄ =
λiv̄

T
i .

Case (B). Since σi(X̃
k) > 0 for all k ≥ 0, we have σi(−Ḡ) = τ by (43). This, together with (22),

(38), (40), (41) and the assumption that σk
i > τ for all k ≥ 0, yields

Rkvki = sτ (σ
k
i )u

k
i −Xkvki

= (σk
i − τ)uk

i − (X̃k − Ḡ)vki − γkQ
kvki − Ḡvki

= (σk
i − τ)ūi − (X̃k − Ḡ)v̄i − γkQ

kv̄i − Ḡv̄i + o(γk)

= (σk
i − σ̃k

i )ūi − γkQ
kv̄i − (τ − σi(−Ḡ))ūi + o(γk)

= (γkū
T
i Q

kv̄i)ūi − γkQ
kv̄i + o(γk).

Upon dividing both sides by γk and taking limit, we obtain Q̄v̄i = λiūi, where λi = ūT
i Q̄v̄i. By

repeating the above argument for (42), we also have ūT
i Q̄ = λiv̄

T
i .

Case (C). By Proposition 4.2, we have X̄ ∈ Xc. Since Xk → X̄ and γk = ‖Xk − X̃k‖F ≤
‖Xk − X̄‖F , we conclude that X̃k → X̄ as well. Since σi(X̃

k) = 0 for all k ≥ 0 in this case, it
follows that σi(X̄) = 0. Furthermore, by (37) and (38), we have σk

i → σ̄i. Hence, the assumption

σk
i > τ implies that τ ≤ σ̄i = σi(X̄) + σi(−Ḡ) = σi(−Ḡ), or equivalently, σi(−Ḡ) ≥ τ . On the

other hand, we have σi(−Ḡ) ≤ τ by (43). This leads to σi(−Ḡ) = τ , and the argument in Case (B)
yield Q̄v̄i = λiūi and ūT

i Q̄ = λiv̄
T
i .

To summarize, in all three cases above, we obtain

Q̄v̄i =

{

λiūi for i = 1, . . . ,m,
0 for i = m+ 1, . . . , n,

ūT
i Q̄ = λiv̄

T
i for i = 1, . . . ,m.

Hence, we have Q̄ = Ū [Diag(λ) 0] V̄ T , as desired. For Case (A), we have already shown that

λi = − limk→∞ σi(X̃
k)/γk ≤ 0. For Case (C), since σk

i > τ for all k ≥ 0, it follows from (17),

(35) and the expression for ∂‖ · ‖∗ [27] that Rk satisfies

Gkvki (u
k
i )

T +Rkvki (u
k
i )

T + τ
(Xk +Rk)vki (u

k
i )

T

‖(Xk + Rk)vki (u
k
i )

T ‖F
= 0. (44)
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Suppose that λi 6= 0. Then, we have Qkvki (u
k
i )

T = (Xkvki (u
k
i )

T + o(γk))/γk 6= 0 for all k
sufficiently large, so that by (44) and the fact that Rk = o(γk),

(uk
i )

T (−Gk)vki · (uk
i )

TQkvki

=
〈

−Gkvki (u
k
i )

T , (Qkvki (u
k
i )

T )T
〉

=

〈

Rkvki (u
k
i )

T , (Xkvki (u
k
i )

T )T
〉

+ o(γk)

γk
+ τ

〈

(Xk +Rk)vki (u
k
i )

T , (Xkvki (u
k
i )

T )T
〉

γk‖(Xk +Rk)vki (u
k
i )

T ‖F

=
o(γk)

γk
+ τ

‖Xkvki (u
k
i )

T ‖2F +
〈

Rkvki (u
k
i )

T , (Xkvki (u
k
i )

T )T
〉

γk‖(Xk +Rk)vki (u
k
i )

T ‖F

=
o(γk)

γk
+ τ

∥

∥

∥
Qkv̄iū

T
i + o(γk)

γk

∥

∥

∥

F
+
〈

Rkvk

i
(uk

i
)T

γk

,
(Xkvk

i
(uk

i
)T )T

‖Xkvk

i
(uk

i
)T ‖F

〉

∥

∥

∥

Xkvk

i
(uk

i
)T

‖Xkvk

i
(uk

i
)T ‖F

+
Rkvk

i
(uk

i
)T

‖Xkvk

i
(uk

i
)T ‖F

∥

∥

∥

F

, (45)

where the last equality follows from the fact that X̃kv̄iū
T
i = σi(X̃

k)ūiū
T
i = 0 and

Xkvki (u
k
i )

T

γk
= Qkv̄iū

T
i +

X̃kv̄iū
T
i

γk
+

o(γk)

γk
= Qkv̄iū

T
i +

o(γk)

γk
.

Upon taking limit on both sides of (45), we obtain σi(−Ḡ) · λi = τ |λi|, which implies that λi > 0.
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