
A Details of the Implementation of the Model

The implementation details of the decoder for the MLP and convolutional models are presented in
the following section.

A.1 Decoder for Unsupervised Learning

When designing a suitable decoder to support unsupervised learning, we had to make a choice as
to what kind of distributions of the latent variables the decoder would optimally be able to denoise.
Based on preliminary analyses, we ultimately ended up choosing a parametrization that supports op-
timal denoising of latent variables that are independently distributed Gaussian variables conditional
on the values of the latent variables of the layer above. The distribution of the latent variables z

(l) is
therefore assumed to follow the distribution
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i ) has to be linear in order to minimize
the denoising cost with the assumption that both the noise and the latent variable have a Gaussian
distribution [1, Section 4.1]. The denoising function was therefore chosen to have the form
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where the matrix V

(l) has the same dimension as the transpose of W

(l) on the encoder side. The
projection vector u

(l) therefore has the same dimensionality as z
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10,i are the trainable parameters of the nonlinearity for each neuron i in each layer l.

For the lowest layer, ˆ

x =

ˆ

z

(0) and ˜

x =

˜

z

(0) by definition, and for the highest layer we chose
u

(L)
=

˜

y. This allows the highest-layer denoising function to utilize prior information about the
classes being mutually exclusive which seems to improve convergence in cases where there are very
few labeled samples.

One interpretation of this formulation is that we are modeling the distribution of z

(l) as a mixture of
Gaussians with diagonal covariance matrices, where the value of the above layer z

(l+1) modulates
the form of the Gaussian that z

(l) is distributed as. In this parametrization all correlations, non-
linearities and non-Gaussianities in the latent variables z

(l) have to be represented by modulations
from above layers for optimal denoising. The parametrizaiton therefore encourages the decoder to
find representations z

(l) that have high mutual information with z

(l+1). This is crucial as it allows
supervised learning to have an indirect influence on the representations learned by the unsupervised
decoder: any abstractions selected by supervised learning will bias the lower levels to find more
representations which carry information about the same abstractions.

Rasmus et al. [7] showed that modulated connections in g are crucial for allowing the decoder
to recover discarded details from the encoder and thus for allowing invariant representations to
develop. The proposed parametrization can represent such modulation but also traditional top-down
decoder connections that are normally used in dAEs. We also tested alternative formulations for the
denoising function, the results of which can be found in Appendix C.
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The cost function for the unsupervised path is the mean squared reconstruction error per neuron, but
there is a slight twist which we found to be important. Batch normalization has useful properties,
but it also introduces noise which affects both the clean and corrupted encoder pass. This noise is
highly correlated between z

(l) and ˜

z

(l) because the noise derives from the statistics of the samples
that happen to be in the same minibatch. This highly correlated noise in z

(l) and ˜

z

(l) biases the
denoising functions to be simple copies4
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The solution we found was to implicitly use the projections z

(l)
pre as the target for denoising and scale

the cost function in such a way that the term appearing in the error term is the batch normalized z

(l)

instead. For the moment, let us see how that works for a scalar case:
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where µ and � are the batch mean and batch std of zpre, respectively, that were used in batch
normalizing zpre into z. The unsupervised denoising cost function Cd is thus
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where ml is the layer’s width, N the number of training samples, and the hyperparameter �l a layer-
wise multiplier determining the importance of the denoising cost.

The model parameters W

(l),�(l),�(l),V(l),a(l)
i can be trained simply by using the backpropaga-

tion algorithm to optimize the total cost C = Cc + Cd. The feedforward pass of the full Ladder
network is listed in Algorithm 1. Classification results are read from the y in the clean feedforward
path.

A.2 Variations

Section A.1 detailed how to build a decoder for the Ladder network to match a fully connected
encoder. It is easy to extend the same approach to other encoders, for instance, convolutional
neural networks (CNN). For the decoder of fully connected networks we used vertical mappings
whose shape is a transpose of the encoder mapping. The same treatment works for the convolu-
tion operations: in the networks we have tested in this paper, the decoder has convolutions whose
parametrization mirrors the encoder and effectively just reverses the flow of information. As the
idea of convolution is to reduce the number of parameters by weight sharing, we applied this to the
parameters of the denoising function g, too.

Many convolutional networks use pooling operations with stride, that is, they downsample the spa-
tial feature maps. The decoder needs to compensate this with a corresponding upsampling. There
are several alternative ways to implement this and in this paper we chose the following options: 1)
on the encoder side, pooling operations are treated as separate layers with their own batch normal-
ization and linear activations function and 2) the downsampling of the pooling on the encoder side
is compensated by upsampling with copying on the decoder side. This provides multiple targets for
the decoder to match, helping the decoder to recover the information lost on the encoder side.

It is worth noting that a simple special case of the decoder is a model where �l = 0 when l < L.
This corresponds to a denoising cost only on the top layer and means that most of the decoder can
be omitted. This model, which we call the �-model due to the shape of the graph, is useful as it can
easily be plugged into any feedforward network without decoder implementation. In addition, the
�-model is the same for MLPs and convolutional neural networks. The encoder in the �-model still
includes both the clean and the corrupted paths as in the full ladder.

4The whole point of using denoising autoencoders rather than regular autoencoders is to prevent skip con-
nections from short-circuiting the decoder and force the decoder to learn meaningful abstractions which help
in denoising.
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B Specification of the convolutional models

Table 4: Description ConvPool-CNN-C by Springenberg et al. [23] and our networks based on it.
Model

ConvPool-CNN-C Conv-Large (for CIFAR-10) Conv-Small (for MNIST)
Input 32⇥ 32 or 28⇥ 28 RGB or monochrome image

3⇥ 3 conv. 96 ReLU 3⇥ 3 conv. 96 BN LeakyReLU 5⇥ 5 conv. 32 ReLU
3⇥ 3 conv. 96 ReLU 3⇥ 3 conv. 96 BN LeakyReLU
3⇥ 3 conv. 96 ReLU 3⇥ 3 conv. 96 BN LeakyReLU
3⇥ 3 max-pooling stride 2 2⇥ 2 max-pooling stride 2 BN 2⇥ 2 max-pooling stride 2 BN
3⇥ 3 conv. 192 ReLU 3⇥ 3 conv. 192 BN LeakyReLU 3⇥ 3 conv. 64 BN ReLU
3⇥ 3 conv. 192 ReLU 3⇥ 3 conv. 192 BN LeakyReLU 3⇥ 3 conv. 64 BN ReLU
3⇥ 3 conv. 192 ReLU 3⇥ 3 conv. 192 BN LeakyReLU
3⇥ 3 max-pooling stride 2 2⇥ 2 max-pooling stride 2 BN 2⇥ 2 max-pooling stride 2 BN
3⇥ 3 conv. 192 ReLU 3⇥ 3 conv. 192 BN LeakyReLU 3⇥ 3 conv. 128 BN ReLU
1⇥ 1 conv. 192 ReLU 1⇥ 1 conv. 192 BN LeakyReLU
1⇥ 1 conv. 10 ReLU 1⇥ 1 conv. 10 BN LeakyReLU 1⇥ 1 conv. 10 BN ReLU
global meanpool global meanpool BN global meanpool BN

fully connected 10 BN
10-way softmax

Here we describe two model structures, Conv-Small and Conv-Large, that were used for MNIST and
CIFAR-10 datasets, respectively. They were both inspired by ConvPool-CNN-C by Springenberg
et al. [23]. Table 4 details the model architectures and differences between the models in this work
and ConvPool-CNN-C. It is noteworthy that this architecture does not use any fully connected layers,
but replaces them with a global mean pooling layer just before the softmax function. The main
differences between our models and ConvPool-CNN-C are the use of Gaussian noise instead of
dropout and the convolutional per-channel batch normalization following Ioffe and Szegedy [13].
We also used 2x2 stride 2 max-pooling instead of 3x3 stride 2 max-pooling. LeakyReLU was used
to speed up training, as mentioned by Springenberg et al. [23]. We utilized batch normalization in
all layers, including pooling layers. Gaussian noise was also added to all layers, instead of applying
dropout in only some of the layers as with ConvPool-CNN-C.

C Formulation of the Denoising Function

The denoising function g tries to map the clean z

(l) to the reconstructed ˆ

z

(l), where ˆ

z

(l)
=

g(

˜

z

(l), ˆz(l+1)
). The reconstruction is therefore based on the corrupted value, and the reconstruc-

tion of the layer above.

An optimal functional form of g depends on the conditional distribution p(z

(l) | z

(l+1)
) that we

want the model to be able to denoise. For example, if the distribution p(z

(l) | z

(l+1)
) is Gaussian,

the optimal function g, that is the function that achieves the lowest reconstruction error, is going to
be linear with respect to ˜

z

(l) [1, Section 4.1]. This is the parametrization that we chose based on
preliminary comparisons of different denoising function parametrizations.

The proposed parametrization of the denoising function was therefore:

g(z̃, u) = (z̃ � µ(u)) �(u) + µ(u) . (3)

We modeled both µ(u) and �(u) with an expressive nonlinearity 5: µ(u) = a1sigmoid(a2u+a3)+

a4u + a5 and �(u) = a6sigmoid(a7u + a8) + a9u + a10. We have left out the superscript (l) and
subscript i in order not to clutter the equations. Given u, this parametrization is linear with respect
to z̃, and both the slope and the bias depended nonlinearly on u.

In order to test whether the elements of the proposed function g were necessary, we systematically
removed components from g or changed g altogether and compared to the results obtained with
the original parametrization. We tuned the hyperparameters of each comparison model separately

5The parametrization can also be interpreted as a miniature MLP network
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using a grid search over some of the relevant hyperparameters. However, the standard deviation of
additive Gaussian corruption noise was set to 0.3. This means that the comparison do not include
the best-performing models reported in Table 1 that achieved the best validation errors after more
careful hyperparameter tuning.

As in the proposed function g, all comparison denoising functions mapped neuron-wise the cor-
rupted hidden layer pre-activation ˜

z

(l) to the reconstructed hidden layer activation given one projec-
tion from the reconstruction of the layer above: ẑ(l)

i = g(z̃(l)
i , u(l)

i ).

Test error % with # of used labels 100 1000
Proposed g: Gaussian z 1.06 (± 0.07) 1.03 (± 0.06)
Comparison g1: miniature MLP with z̃u 1.11 (± 0.07) 1.11 (± 0.06)
Comparison g2: No augmented term z̃u 2.03 (± 0.09) 1.70 (± 0.08)
Comparison g3: Linear g but with z̃u 1.49 (± 0.10) 1.30 (± 0.08)
Comparison g4: Only the mean depends on u 2.90 (± 1.19) 2.11 (± 0.45)

Table 5: Semi-supervised results from the MNIST dataset. The proposed function g is compared
to alternative parametrizations. Note that the hyperparameter search was not as exhaustive as in
the final results, which means that the results of the proposed model deviate slightly from the final
results presented in Table 1

The comparison functions g1...4 are parametrized as follows:

Comparison g1: Miniature MLP with z̃u

ẑ = g(z̃, u) = a⇠ + bsigmoid(c⇠) (4)

where ⇠ = [1, z̃, u, z̃u]

T is an augmented input, a and c are trainable weight vectors, b is a trainable
scalar weight. This parametrization is capable of learning denoising of several different distributions
including sub- and super-Gaussian and bimodal distributions.

Comparison g2: No augmented term

g2(z̃, u) = a⇠0 + bsigmoid(c⇠0) (5)

where ⇠0 = [1, z̃, u]

T . g2 therefore differs from g1 in that the input lacks the augmented term z̃u.

Comparison g3: Linear g
g3(z̃, u) = a⇠. (6)

g3 differs from g in that it is linear and does not have a sigmoid term. As this formulation is linear,
it only supports Gaussian distributions. Although the parametrization has the augmented term that
lets u modulate the slope and shift of the distribution, the scope of possible denoising functions is
still fairly limited.

Comparison g4: u affects only the mean of p(z | u)

g4(z̃, u) = a1u + a2sigmoid(a3u + a4) + a5z̃ + a6sigmoid(a7z̃ + a8) + a9 (7)

g4 differs from g1 in that the inputs from u are not allowed to modulate the terms that depend on z̃,
but that the effect is additive. This means that the parametrization only supports optimal denoising
functions for a conditional distribution p(z | u) where u only shifts the mean of the distribution of z
but otherwise leaves the shape of the distribution intact.

Results All models were tested in a similar setting as the semi-supervised fully connected MNIST
task using N = 1000 labeled samples. We also reran the best comparison model on N = 100 labels.
The results of the analyses are presented in Table 5.

As can be seen from the table, the alternative parametrizations of g are inferior to the proposed
parametrization at least in the model structure we use.

These results support the finding by Rasmus et al. [7] that modulation of the lateral connection from
z̃ to ẑ by u is critical for encouraging the development of invariant representation in the higher layers
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of the model. Comparison function g4 lacked this modulation and it performed clearly worse than
any other denoising function listed in Table 5. Even the linear g3 performed very well as long it had
the term z̃u. Leaving the nonlinearity but removing z̃u in g2 hurt the performance much more.

In addition to the alternative parametrizations for the g-function, we ran experiments using a more
standard autoencoder structure. In that structure, we attached an additional decoder to the standard
MLP by using one hidden layer as the input to the decoder, and the reconstruction of the clean input
as the target. The structure of the decoder was set to be the same as the encoder, that is the number
and size of the layers from the input to the hidden layer where the decoder was attached was the
same as the number and size of the layers in the decoder. The final activation function in the decoder
was set to be the sigmoid nonlinearity. During training, the target was the weighted sum of the
reconstruction cost and the classification cost.

We tested the autoencoder structure with 100 and 1000 labeled samples. We ran experiments for all
possible decoder lengths, that is we tried attaching the decoder to all hidden layers. However, we
did not manage to get significantly better performance than the standard supervised model without
any decoder in any of the experiments.
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