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The goal of this supplementary is to present the proofs of the main theorems of the paper along the
first three sections. Moreover, in Section 4 we provide additional experiments showing the interest
of using explicit virtual points and the need of a careful association between examples and virtual
points. We also provide some graphics showing 2D projections of the space learned by RVML-Lin-
Class and RVML-RBF-Class on the Isolet dataset illustrating the capability of these approaches to
learn discriminative attributes.

First of all, before presenting the proofs, we recall our setting for the sake of completeness. Given
a probability distribution D defined over X × Y where X ⊆ Rd and Y is a finite label set, let
S = {(xi, yi)}ni=1 be a set of examples drawn i.i.d. from D. Let fv : X × Y → V where V ⊆ Rd′

be the function which associates each example to a virtual point such that v = fv(x, y). We denote
by Dv the probability distribution defined on X ×V obtained from the distribution D after applying
fv, i.e. pDv(x,v) = pD(x, y|v = fv(x, y)). Thus it is equivalent to obtain the set of examples
Sv = {(xi,vi)}ni=1 from S after applying fv and to draw Sv i.i.d. from Dv. Let ‖ · ‖F be the
Frobenius norm and ‖ · ‖2 be the l2 vector norm. We consider the following optimisation problem
where we expanded the first Frobenius norm:

L = arg min
L∈Rd×d′

f (L) = arg min
L∈Rd×d′

1

n

∑
(x,v)∈Sv

‖xTL − vT ‖22 + λ‖L‖2F . (1)

Furthermore, we define the loss (2), the empirical risk (3) and the true risk of our algorithm (4):

l(L, (x,v)) = ‖xTL − vT ‖22 (2)

R̂(L) =
1

n

∑
(x,v)∈Sv

l(L, (x,v)) (3)

R(L) = E(x,v)∼Dv
l(L, (x,v)) (4)

1 Proof of Theorem 1

Theorem 1. The optimal solution of Problem 1 can be found in closed form. Furthermore, we can
derive two equivalent solutions:

L =
(
XTX + λnI

)−1
XTV (5)

L = XT
(
XXT + λnI

)−1
V. (6)

Proof. Problem 1 is a classical regularized regression problem admitting a closed form solution
[1]. We recall the derivation here for the sake of completeness. First we consider the derivative of
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f(L,X,V) with respect to L:

∂f(L,X,V)

∂L
= 2

(
1

n
XTX + λI

)
L − 2

n
XTV.

Then we set this derivative to zero to obtain:

L =
(
XTX + λnI

)−1
XTV.

Finally Eq. 6 comes from using Taylor expansions as proposed in [1].

2 Proof of Theorem 2

The interest of this theorem is to show that our algorithm is consistent, i.e. that with a sufficient
number of examples the empirical risk tends to be close to the true risk. To prove this theorem
we use the uniform stability framework presented in [2]. The idea is to show that changing one
example in the training set does not change much the output of the algorithm. Thus, we start by
upper bounding the Frobenius norm of L optimal solution of Problem 1 and the loss (2) considered.
Afterwards, we show the σ-admissibility of the loss which allows us to prove the uniform stability
of our algorithm which, in turns, allows us to apply Theorem 12 from [2].

In the following, we assume that ‖x‖2 ≤ Cx and ‖v‖2 ≤ Cv. The next lemma upper bounds the
Frobenius norm of L optimal solution of Problem 1:
Lemma 1. Let L be an optimal solution of Problem 1, we have:

‖L‖F ≤
Cv√
λ

.

Proof. Since L is an optimal solution of Problem 1, we have:
f(L) ≤ f(0)

⇔ 1

n

∑
(x,v)∈Sv

l(L, (x,v)) + λ‖L‖2F ≤
1

n

∑
(x,v)∈Sv

l(0, (x,v)) + λ‖0‖2F

⇒ λ‖L‖2F ≤
1

n

∑
(x,v)∈Sv

‖v‖22 (7)

⇒ λ‖L‖2F ≤ C2
v

⇒ ‖L‖F ≤
Cv√
λ

Inequality 7 is obtained by noting that our loss is always positive.

We can now show that our loss is bounded.

Lemma 2. The loss l(L, (x,v)) is bounded by M = C2
v

(
1 + Cx√

λ

)2
.

Proof.

l(L, (x,v)) = ‖xTL − vT ‖22
≤
(
‖xT ‖2‖L‖F + ‖vT ‖2

)2
(8)

≤
(
Cx

Cv√
λ

+ Cv

)2

≤ C2
v

(
1 +

Cx√
λ

)2

.

Inequality 8 comes from the successive application of the triangle inequality and standard properties
on norms.
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We recall the definition of σ-admissibility from [2].

Definition 1. A loss function l is σ-admissible if it is convex with respect to its first argument and
the following condition holds:

∀L,L′ ∈ Rd×d
′
,∀(x,v) ∼ Dv, |l(L, (x,v))− l(L′, (x,v))| ≤ σ‖L − L′‖F

We show that our loss is σ-admissible in the following lemma.

Lemma 3. The loss l(L, (x,v)) is σ-admissible with σ = 2CvCx

(
1 + Cx√

λ

)
.

Proof. ∣∣‖xTL′ −vT ‖22 − ‖xTL′′ − vT ‖22
∣∣

=
∣∣‖xTL′ − vT ‖2 − ‖xTL′′ − vT ‖2

∣∣ ∣∣‖xTL′ − vT ‖2 + ‖xTL′′ − vT ‖2
∣∣

≤ ‖xTL′ − vT − xTL′′ + vT ‖2
∣∣‖xTL′ − vT ‖2 + ‖xTL′′ − vT ‖2

∣∣ (9)

≤ ‖L′ − L′′‖F2CvCx

(
1 +

Cx√
λ

)
. (10)

Inequality 9 is due to the reverse triangle inequality and inequality 10 follows from Lemma 2.

We will now prove that our algorithm is uniformly stable but before we need the following lemma.
In the following R̂(L) is the empirical risk over a set Sv of examples while we design by R̂i(L)
the empirical risk over a set Siv obtained from Sv by replacing its ith element. Similarly f and f i
denote the functions to optimize in Problem 1 using the sets of examples Sv and Siv respectively.

Lemma 4. Let f and f i be the functions to optimize, L and Li their respective minimizers and
λ the regularization parameter used in our algorithm. Let ∆L = L − Li, then, we have, for any
t ∈ [0, 1]:

‖L‖2F − ‖L − t∆L‖2F + ‖Li‖2F − ‖Li + t∆L‖2F ≤
4tCvCx

λn

(
1 +

Cx√
λ

)
‖∆L‖F (11)

Proof. This proof is similar to the proof in Lemma 20 in [2] which we recall here for the sake of
completeness. First, note that R̂ is a convex function, thus, for any t ∈ [0, 1], we have:

R̂i(L − t∆L)− R̂i(L) ≤ t(R̂i(Li)− R̂i(L)) (12)

R̂i(Li + t∆L)− R̂i(Li) ≤ t(R̂i(L)− R̂i(Li)) (13)

Summing inequalities (12) and (13) gives:

R̂i(L − t∆L)− R̂i(L) + R̂i(Li + t∆L)− R̂i(Li) ≤ 0 (14)

L and Li respectively minimize f and f i, we have:

f (L)− f (L − t∆L) ≤ 0 (15)

f i(Li)− f i(Li + t∆L) ≤ 0 (16)

Summing inequalities (14), (15) and (16) gives:

R̂i(L − t∆L)− R̂i(L) + R̂(L)− R̂(L − t∆L)

+ λ‖L‖2F − λ‖L − t∆L‖2F + λ‖Li‖2F − λ‖Li + t∆L‖2F ≤ 0. (17)

From (17), we can write:

λ‖L‖2F − λ‖L − t∆L‖2F + λ‖Li‖2F − λ‖Li + t∆L‖2F ≤ B (18)

with

B = R̂i(L)− R̂i(L − t∆L) + R̂(L − t∆L)− R̂(L).
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Using Lemma 3 we can bound B:

B ≤
∣∣∣R̂i(L)− R̂i(L − t∆L) + R̂(L − t∆L)− R̂(L)

∣∣∣
≤

∣∣∣∣∣∣ 1n
∑

(x,v)∈Sv

l(L − t∆L, (x,v))− 1

n

∑
(x,v)i∈Si

v

l(L − t∆L, (x,v)i)

+
1

n

∑
(x,v)i∈Si

v

l(L, (x,v)i)− 1

n

∑
(x,v)∈Sv

l(L, (x,v))

∣∣∣∣∣∣ (19)

≤ 1

n

∣∣l(L − t∆L, (xi,vi))− l(L − t∆L, (xi,vi)
i) + l(L, (xi,vi)

i)− l(L, (xi,vi))
∣∣ (20)

≤ 1

n
|l(L − t∆L, (xi,vi))− l(L, (xi,vi))|+

1

n

∣∣l(L, (xi,vi)i)− l(L − t∆L, (xi,vi)
i)
∣∣

≤ 4tCvCx

n

(
1 +

Cx√
λ

)
‖∆L‖F . (21)

Inequality 19 comes from the definition of the empirical risk and Inequality 20 is deduced by noting
that the sums only differ by their ith element. Finally, we apply Lemma 3 twice to obtain Inequal-
ity 21.

We recall the definition of uniform stability [2] in the next definition.

Definition 2. An algorithm A has uniform stability β with respect to the loss function l if the follow-
ing holds

∀Sv ∼ Dnv ,∀i ∈ {1, . . . , n}, sup
(x,v)∼Dv

∣∣l(ASv , (x,v))− l(ASi
v
, (x,v))

∣∣ ≤ β
where Siv is a training set obtained from Sv when replacing its ith example with a new independent
example and ASv and ASi

v
stand for the optimal solution of algorithm A with respect to a given

training set.

Lemma 5. Our algorithm has a uniform stability in β =
8C2

vC
2
x

λn

(
1 + Cx√

λ

)2
.

Proof. By setting t = 1
2 in Lemma 4, one can obtain for the left hand side:

‖L‖2F − ‖L −
1

2
∆L‖2F + ‖Li‖2F − ‖Li +

1

2
∆L‖2F =

1

2
‖∆L‖2F

and thus:

1

2
‖∆L‖2F ≤

2CvCx

λn

(
1 +

Cx√
λ

)
‖∆L‖F

⇒ ‖∆L‖F ≤
4CvCx

λn

(
1 +

Cx√
λ

)
From Lemma 3 we have:∣∣l(L, (x,v))− l(Li, (x,v))

∣∣ ≤ 2CvCx

(
1 +

Cx√
λ

)
‖∆L‖F

≤ 8C2
vC

2
x

λn

(
1 +

Cx√
λ

)2

We recall Theorem 12 from [2] for the sake of completeness:
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Theorem 12 ([2]). Let A be an algorithm with uniform stability β w.r.t. a loss function l such that
0 ≤ l(ASv , (x,v)) ≤ M for all (x,v) ∼ Dv and all sets Sv. Then for any n ≥ 1 the following
bound holds with probability at least 1− δ over the random draw of the sample Sv,

R(ASv) ≤ R̂(ASv) + β + (2nβ +M)

√
ln 1

δ

2n
.

We have shown that our algorithm is uniformly stable and that our loss is bounded, hence we can
apply this theorem to get Theorem 2.
Theorem 2. Let ‖v‖2 ≤ Cv for any v ∈ V and ‖x‖2 ≤ Cx for any x ∈ X . With probability 1− δ,
for any matrix L optimal solution of Problem 1, we have:

R(L) ≤ R̂(L) +
8C2

vC
2
x

λn

(
1 +

Cx√
λ

)2

+

((
16C2

x

λ
+ 1

)
C2

v

(
1 +

Cx√
λ

)2
)√

ln 1
δ

2n
.

Proof. This theorem is a direct application of Theorem 12 from [2] using the bound on the loss
presented in Lemma 2 and the uniform stability of our algorithm proven in Lemma 5.

Kernelized case Recall that in the linear case we assumed that ‖x‖2 ≤ Cx. In the kernelized case,
we only have to bound ‖φ(x)‖2 where φ is the projection function associated to the used kernel. A
common assumption [3] when studying kernels is that ∃κ such that 0 < κ <∞ and K(x,x) ≤ κ2.
Hence, we have ‖φ(x)‖22 ≤ κ2. Thus setting Cx = κ allows us to use the same proof than in the
linear case leading us to the same generalization bound (the only difference being the value of Cx).

3 Proof of Theorem 3

For the sake of readability we recall the loss for the classical metric learning approach [4] considered
here:

l(L, (xi, yi), (xj , yj)) =
[
yij(d

2(LTxi,L
Txj)− γyij )

]
+

(22)

and the theorem:
Theorem 3. Let D be a distribution over X × Y . Let V ⊂ Rd′ be a finite set of virtual points and
fv is defined as fv(xi, yi) = vi, vi ∈ V . Let ‖v‖2 ≤ Cv for any v ∈ V and ‖x‖2 ≤ Cx for any
x ∈ X . Let γ1 = 2 maxxk,xl,ykl=1 d

2(vk,vl) and γ−1 = 1
2 minxk,xl,ykl=−1 d

2(vk,vl), we have:

E(xi,yi)∼D,(xj ,yj)∼D
[
yij(d

2(LTxi,L
Txj)− γyij )

]
+

≤ 8

R̂(L) +
8C2

vC
2
x

λn

(
1 +

Cx√
λ

)2

+

((
16C2

x

λ
+ 1

)
C2

v

(
1 +

Cx√
λ

)2
)√

ln 1
δ

2n
)

 .

Proof. First of all, let us consider two examples xi and xj and their associated virtual points vi and
vj .

Using the fact that distances respect the triangle inequality, one can obtain:

d(LTxi,L
Txj) ≤ d(LTxi,vi) + d(vi,vj) + d(vj ,L

Txj).

Then squaring both sides of the inequality gives:

d2(LTxi,L
Txj) ≤ d2(LTxi,vi) + d2(vi,vj) + d2(vj ,L

Txj)

+ 2(d(LTxi,vi) + d(vj ,L
Txj))d(vi,vj) + 2d(LTxi,vi)d(vj ,L

Txj).

Finally, using Legendre identity1 twice, we obtain:

d2(LTxi,L
Txj) ≤ 4d2(LTxi,vi) + 2d2(vi,vj) + 4d2(vj ,L

Txj).

1Legendre identity is (a+ b)2 − (a− b)2 = 4ab from which we deduce a2 + b2 ≥ 2ab.
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Similarly, switching the role of d(LTxi,L
Txj) and d(vi,vj) we have:

d2(vi,vj) ≤ 4d2(LTxi,vi) + 2d2(LTxi,L
Txj) + 4d2(vj ,L

Txj)

⇔ −d2(LTxi,L
Txj) ≤ 2d2(LTxi,vi) + 2d2(vj ,L

Txj)−
1

2
d2(vi,vj)

⇔ −d2(LTxi,L
Txj) ≤ 4d2(LTxi,vi) + 4d2(vj ,L

Txj)−
1

2
d2(vi,vj)

Now, let us consider two examples of the same class, i.e. yij = 1, we have:[
yij(d

2(LTxi,L
Txj)− γyij )

]
+

=
[
d2(LTxi,L

Txj)− γ1
]
+

≤
[
4d2(LTxi,vi) + 4d2(vj ,L

Txj) + 2d2(vi,vj)− γ1
]
+

≤ 4d2(LTxi,vi) + 4d2(vj ,L
Txj). (23)

Inequality 23 comes from the fact that γ1 ≥ 2d2(vi,vj) and by noting that a distance is always
positive.

Similarly, we consider two examples of different classes, i.e. yij = −1, and we obtain:[
yij(d

2(LTxi,L
Txj)− γyij )

]
+

=
[
−d2(LTxi,L

Txj) + γ−1
]
+

≤
[
4d2(LTxi,vi) + 4d2(vj ,L

Txj)−
1

2
d2(vi,vj) + γ−1

]
+

≤ 4d2(LTxi,vi) + 4d2(vj ,L
Txj). (24)

Inequality 24 comes from the fact that γ−1 ≤ 1
2d

2(vi,vj) and by noting that a distance is always
positive.

Taking the expectation on both sides of Inequality 24 gives:

E(xi,yi)∼D,(xj ,yj)∼D
[
yij(d

2(LTxi,L
Txj)− γyij )

]
+

(25)

≤ E(xi,yi)∼D,(xj ,yj)∼D4d2(LTxi,vi) + 4d2(vj ,L
Txj)

≤ E(xi,yi)∼D,(xj ,yj)∼D4d2(LTxi,vi) + E(xi,yi)∼D,(xj ,yj)∼D4d2(vj ,L
Txj)

≤ 8E(x,y)∼Dd
2(LTx,v)

≤ 8R(L).

Applying Theorem 2 to the last inequality gives the theorem.

4 Extended Experiments

In this section, we propose several experiments showing the interest of using explicit virtual points
and the need of a careful association between examples and virtual points. We also provide some
graphics showing 2D projections of the space learned by RVML-Lin-Class and RVML-RBF-Class
on the isolet dataset illustrating the capability of these approaches to learn discriminative attributes.

4.1 Interest of Explicit Virtual Points

In [5] the authors propose to collapse similar examples on a single point, an implicit virtual point,
while pushing far away dissimilar examples. This behavior can, in fact, be achieved by any margin
based metric learning approach by setting the margin between similar examples to 0 and the margin
between dissimilar examples to a high value. Thus to illustrate the interest of using explicit virtual
points, we propose to compare our approach to ITML when considering the aforementioned margins
(ITML-Collapse). For the sake of completeness we also consider ITML with tuned margins (ITML).
The results are presented in Table 1 and show that, on average, ITML-Collapse is less accurate than
RVML-Lin-Class hinting that considering explicit virtual points is better than considering implicit
ones.
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Table 1: Comparison between a method with explicit virtual points (RVML-Lin-Class) and a method
with implicit virtual points (ITML-Collapse).

Base RVML-Lin-Class ITML-Collapse ITML
Amazon 73.09 ± 2.49 57.97 ± 3.36 65.91 ± 2.64
Breast 95.34 ± 0.95 94.56 ± 1.41 95.49 ± 1.15
Caltech 55.41 ± 2.55 37.34 ± 2.01 47.31 ± 2.75
DSLR 75.29 ± 5.08 77.25 ± 4.15 77.25 ± 4.91

Ionosphere 82.74 ± 2.81 85.75 ± 6.23 88.11 ± 1.68
Isolet 94.61 74.53 92.88

Letters 95.51 ± 0.26 95.67 ± 0.30 95.00 ± 0.64
Pima 69.57 ± 2.85 71.08 ± 2.13 70.26 ± 1.38
Scale 87.94 ± 1.99 87.51 ± 4.39 87.67 ± 2.71
Splice 78.44 66.80 71.49

Svmguide1 85.25 94.62 95.00
Wine 98.18 ± 1.48 85.91 ± 3.74 96.91 ± 1.93

Webcam 88.60 ± 2.69 97.64 ± 2.43 86.56 ± 2.88
mean 83.07 78.97 82.30

Table 2: Comparison of our OT based formulation to a random selection approach when learning a
linear metric.

OT based approach Random
Base RVML-Lin-OT 1 VP per class 2 VP per class 5 VP per class

Amazon 71.62 ± 1.34 74.23 ± 2.15 72.92 ± 2.31 70.31 ± 2.82
Breast 95.24 ± 1.21 95.34 ± 0.95 95.29 ± 1.32 94.90 ± 1.92
Caltech 52.51 ± 2.41 55.09 ± 2.38 53.63 ± 2.12 49.59 ± 1.69
DSLR 74.71 ± 5.27 70.59 ± 6.06 63.53 ± 5.08 52.16 ± 8.68

Ionosphere 87.36 ± 3.12 82.74 ± 2.81 88.40 ± 4.05 90.28 ± 3.33
Isolet 91.40 92.75 94.16 92.43

Letters 90.25 ± 0.60 89.90 ± 1.02 90.54 ± 1.24 91.13 ± 0.74
Pima 70.48 ± 3.19 69.57 ± 2.85 69.35 ± 2.44 69.26 ± 2.60
Scale 90.05 ± 2.13 88.10 ± 2.57 89.47 ± 2.99 89.21 ± 2.68
Splice 84.64 78.44 78.94 80.87

Svmguide1 94.83 85.25 86.90 94.70
Wine 98.55 ± 1.67 98.55 ± 1.43 97.64 ± 2.43 98.00 ± 1.34

Webcam 88.60 ± 3.63 88.92 ± 3.21 86.24 ± 2.95 81.18 ± 3.56
mean 83.86 82.27 82.08 81.08

4.2 Association of Examples and Virtual Points

To further assess the interest of using our OT based formulation to select virtual points and associate
them to examples, we propose to compare it with a random based approach (Random). In this
latter setting, we randomly select a subset of examples for each class to act as virtual points and we
randomly associate each example of this class to these virtual points. The results in the linear case
are presented in Table 2 while the results in the non-linear case are presented in Table 3. Overall,
randomly selecting the virtual points is less accurate than using the OT based formulation. This
is especially true in the linear case where the metric is less expressive than in the kernelized case
and thus requires more meaningful virtual points. Hence, selecting virtual points and correctly
associating them to the examples is key to obtain a good performance.
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Table 3: Comparison of our OT based formulation to a random selection approach when learning a
non linear metric.

OT based approach Random
Base RVML-RBF-OT 1 VP per class 2 VP per class 5 VP per class

Amazon 73.51 ± 0.83 75.74 ± 2.35 72.68 ± 2.02 70.07 ± 2.86
Breast 95.73 ± 0.97 95.73 ± 1.07 95.83 ± 0.80 95.58 ± 1.38
Caltech 54.39 ± 1.89 58.33 ± 2.05 53.98 ± 3.18 50.35 ± 1.89
DSLR 70.39 ± 4.48 65.29 ± 7.51 58.24 ± 7.79 48.82 ± 8.03

Ionosphere 90.66 ± 3.10 90.57 ± 3.05 89.25 ± 3.73 90.38 ± 3.26
Isolet 95.96 96.99 96.54 95.25

Letters 91.26 ± 0.50 91.77 ± 0.43 91.87 ± 0.52 92.04 ± 0.62
Pima 69.35 ± 2.95 70.82 ± 4.60 71.26 ± 2.84 70.00 ± 2.56
Scale 95.19 ± 1.46 93.39 ± 2.19 91.96 ± 1.69 91.32 ± 1.95
Splice 88.51 88.37 88.46 87.22

Svmguide1 95.67 95.03 95.55 95.88
Wine 98.91 ± 1.53 97.82 ± 1.88 97.27 ± 1.96 97.82 ± 1.67

Webcam 88.71 ± 4.28 87.31 ± 2.99 83.01 ± 3.28 76.67 ± 4.78
mean 85.25 85.17 83.53 81.65

4.3 Illustration of the Behavior of Our Approach on One Dataset

To illustrate the capability of RVML-Lin-Class and RVML-RBF-Class to learn discriminative at-
tributes we propose to select two dimensions out of the 26 of the space learned by these approaches
on the isolet dataset. We selected 3 pairs of axis and the images obtained are presented in Fig. 1.
On the same line, we plot two images corresponding to the same axis pair: on the left column for
RVML-Lin-Class and on the right column for RVML-RBF-Class. Note that for each axis, there is
only one class for which the value of the attribute tends to be 1, for all the other classes this feature
tends to be 0. Furthermore, we can note that the kernelized version of our metric outputs a more
discriminative space: the examples are brought closer to their corresponding virtual point than in the
linear version.
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Figure 1: In the learned space from the isolet dataset, we randomly select 2 attributes three times and
plot the 2D projection on each pair. The first line corresponds to features 1 and 20, the second line
to features 7 and 14 and the third line to features 2 and 23. The left column corresponds to the space
learned by RVML-Lin-Class (linear) and the right column to the one learned by RVML-RBF-Class
(non linear). (Best viewed in color)
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