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Skewed Laplace distribution

Defining un = 1− ynβ
⊤xn we can write

L(un|γ, γ0) =
∫ ∞

0

N (un| − λn, γ
−1λn)Exp(λn|γ0)dλn

=
γ0
c
e−γ(c|un|+un) =

γ0
c

{
e−γ(c+1)un , if un ≥ 0

e−γ(c−1)|un| , if un < 0
, (1)

where c =
√

1 + 2γ0γ−1 > 1.

We can rewrite the integral in (1) as

L(un|γ, γ0) =
∫ ∞

0

γ0
√
γ√

2πλn
e−

γ
2

(un+λn)2

λn e−γ0λndλn =

∫ ∞

0

γ0
√
γ√

2πλn
e−

γ
2 (u

2
nλ

−1
n +c2λn)e−γundλn . (2)

Using the identity [1]
∫ ∞

0

a√
2πλ

e−
1
2 (b

2λ−1+a2λ)dλ = e−|ab| ,

we can see that by making b2 = γu2n, a2 = γc2 and multiplying through by c−1, (2) reduces to

L(un|γ, γ0) =
γ0
c
e−γc|un|−γun .

Verifying that (1) integrates to one can be seen from
∫ ∞

−∞

e−γ(c|un|+un)dun =

∫ 0

−∞

e−γ(1−c)undun +

∫ ∞

0

e−γ(c+1)undun =
1

γ(c− 1)
+

1

γ(c+ 1)
=

c

γ0
.

Support vectors

We can write the posterior of parameters f and λ as

p(f ,λ|K, γ, γ0) ∝ p(f |K)

N∏

n=1

L(yn|fn, λn, γ)p(λn|γ0) .

The maximum a posteriori solution can be obtained as

argmax
f ,λ

log p(f |K) +
N∑

n=1

logL(yn|fn, λn, γ)p(λn|γ0)
︸ ︷︷ ︸

H(f ,λ)

.
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Solving for λn and f with prior λn ∼ Ga(3/2, γ0) we have

∂H(f , λn)

∂λn
= 0 , ⇒ λn =

|1− ynfn|
√

1 + 2γ0γ−1
(3)

∂H(f , λn)

∂f
= 0 , ⇒ f = Kα , (4)

where α = (K + γ−1Λ)−1Y(1 + λ). Note that (3) and (4) are means of the conditional posterior
of λn and f , respectively. We can rewrite α as

[
K\n,\n + γ−1Λ\n,\n k\n,n

kn,\n kn,n + γ−1λn

] [
α\n

αn

]

=

[
Y\n,\n(1 + λ\n)
yn(1 + λn)

]

,

where we have split α in two blocks, α\n and αn of size N − 1 and 1, respectively. For αn we have

αn = (kn,n + γ−1λn)
−1(yn(1 + λn)− kn,\nα\n) . (5)

From (4) we also have

fn = kn,nαn + kn,\nα\n . (6)

From (3) we can see that

fn =







yn(1 + cλn) if ynfn > 1

yn if ynfn = 1 (λn = 0)

yn(1− cλn) if ynfn < 1

. (7)

where c =
√

1 + 2γ0γ−1 > 1.

Replacing (7) and (6) in (5) we have

α =







ynγ(1 + c), if ynfn < 1

α0
n , if ynfn = 1 (λn = 0)

ynγ(1− c) , if ynfn > 1

, (8)

with

α0 = K−1
0,0(y0 − γ(1 + c)K0,aya − γ(1− c)K0,byb) ,

where α0
n is an element of α0, and 0, a and b are subsets of {1, . . . , N} for which λn = 0, ynfn < 1

and ynfn > 1, respectively.

Provided that the mode of the conditional posterior of λn for λn ∼ Ga(3/2, γ0) matches the mean
of the conditional posterior of λn for λn ∼ Exp(γ0), α as in (8) also holds for the latter scenario
because

E[λ−1
n |yn, fn, γ] =

√

1 + 2γ0γ−1

|1− ynfn|
,

as in (3).

Convexity of −H(λ, f)

The Hessian matrix of −H(λ, f) can be written as

H =

[
A B
B C

]

,

where A = K−1 + γΛ−1, and B and C are diagonal matrices with elements bn = γyn(1 −
ynfn)λ

−2
n and cn = γ(1 − ynfn)

2λ−3
n , respectively. From the Schur complement condition, we

have that H is positive semidefinite (PSD) if both A and

U = C−BA−1B ,
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are PSD. Since K and Λ are PSD, A is as well. We need to show that U is PSD. We can rewrite U
as

U = γD
(
Λ− γ(K−1 + γΛ−1)−1

)
D ,

where D = Λ−1(I − YF)Λ−1, Y = diag(y) and F = diag(f). Because DD is diagonal with
elements d2i ≥ 0, we only have to show that

G = Λ− γ(K−1 + γΛ−1)−1 = (Λ−1 + γΛ−1KΛ−1)−1 , (9)

where we have applied the matrix inversion lemma, is PSD.

Since K in (9) is PSD, G, U and H are too, thus the negative log-posterior −H(f ,λ) is convex.

Fast inference for discriminative factor model

We use variational Bayes EM (VB-EM) approach. In the E-step, we approximate the posterior of
A, {Φk}, ψ, f , λ and γ by a factorized distribution q(A)

∏

k q(Φk)q(ψ)q(f)q(λ)q(γ) and in the
M-step we optimize W and θ, using L-BFGS [2].

The goal is to minimize the Kullback-Leibler divergence between our factorized approximation and
the exact posterior, to do so, we use coordinate ascent, i.e. we update one group of parameters at
the time while keeping the remaining ones fixed. The inference algorithm iteratively cycles through
updates for all parameters of the model. Updates for A, Φk, ψ, λ and γ we can write

q(aik|−) = N
(

cik〈ψ〉
N∑

n=1

g\inwkn, cik

)

,

q(φ−1
ik |−) = IG

(√
ν

〈a2ik〉
, ν

)

,

q(ψ|−) = Ga

(

aψ +
1

2
dN, bψ +

1

2
tr(XX⊤)− tr(X⊤〈A〉W) +

1

2
tr(〈A⊤A〉WW⊤)

)

,

q(f |−) = N (〈γ〉SY(1 + 〈λ−1〉),S) ,

q(λ−1
n |−) = IG

(√

〈γ〉+ 2γ0
〈γ〉(1− 2yn〈fn〉+ 〈f2n〉)

, 〈γ〉+ 2γ0

)

,

q(γ|−) = Ga

(

a0 +
1

2
N, b0 +

N∑

n=1

1

2
〈λ−1
n 〉(1− 2yn〈fn〉+ 〈f2n〉) + 1− yn〈fn〉+

1

2
〈λn〉

)

,

where

G\in = X− 〈A〉W + aiwn , cik = 〈φ−1
ik 〉+ 〈ψ〉

N∑

n=1

w2
kn , S = (K−1 + 〈γ〉〈Λ−1〉)−1 ,

and aik, φik, g\in and fn are elements of A, Φk, G\in and f , respectively.

We cannot obtain a closed form conditional distribution for the factor scores, W, thus we optimize
it by maximizing the following variational lower bound:

L(W) = 〈ψ〉tr(X⊤〈A〉W)− 1

2
〈ψ〉tr(〈A⊤A〉WW⊤)

− 1

2
logU− 1

2
tr
(
U−1(I+ 2〈Λ〉+ 〈λλ⊤〉)

)

− 1

2
tr(WW⊤) + const. ,

where U = K+ 〈γ−1〉〈Λ〉, 〈·〉 denotes expectation and “const.” encapsulates the terms not depend-
ing of W. The gradient of W w.r.t. to L(W) can be written as

∂L
∂W

= 〈ψ〉〈A〉⊤X− 〈ψ〉〈A⊤A〉W − 1

2

{
U−1 −U−1(I+ 2〈Λ〉+ 〈λλ⊤〉)U−1

} ∂U

∂W
−W ,

where ∂U
∂W

contains the derivatives of W w.r.t. K and it depends of k(wi,wj ,θ).
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