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The supplement is organized as follows. In Section 1 we give an overview of the setting considered
in the main article, the notation used and cover some useful general facts. In Sections 2, 3 and 4 we
provide the proofs of Theorems 1 2 and 3 of the main article.

1 Preliminaries

Recall the setting in Problem (3) in the main article, we let X ∈ Rn×n be a symmetric matrix
and Cn ⊆ Rn be a closed cone (not necessarily convex). We consider the following optimization
problem:

maximize 〈v,Xv〉 , (1)
subject to v ∈ Cn , ‖v‖2 = 1 .

We denote by λmax(X; Cn) the value of this problem. For instance λmax(X;Rn) is the largest
eigenvalue of X. Note that this optimization problem is –in general– NP-hard. We denote by C∗n the
dual cone of Cn:

C∗n = {x : ∀z ∈ C , 〈x, z〉 ≥ 0} ,

and by C◦n its polar cone C◦n = −C∗n.

Further, we let Cn,x = cone{y − x : y ∈ Cn} be the tangent cone of Cn at x ∈ Cn (in particular
Cn,0 = Cn), and C∗n,x its dual (i.e. C∗n,x = (Cn,x)∗). Finally, we let Sn−1 = {x : ‖x‖2 = 1} be the
unit sphere in n dimensions.

Given a closed convex set K ⊆ Rn, we let PK : Rn → Rn denote the orthogonal projection onto
K. Given vectors v1,v2, . . . , span(v1,v2, . . . ) denotes their linear span. For a linear subspace V ,
V ⊥ denotes its orthogonal complement.

The following definitions will be useful in the sequel.
Definition 1.1. A local maximum of the problem (1) is a point v∗ ∈ Cn∩Sn−1, ‖v∗‖2 = 1 for which
there exists an ε > 0 such that 〈v,Xv〉 ≤ 〈v∗,Xv∗〉 for all v ∈ Cn ∩ Sn−1 within a neighborhood
of v∗: ‖v − v∗‖2 ≤ δ.
Definition 1.2. Let Cn be a closed convex cone. For any x ∈ Rn, the Moreau decomposition of x is
defined as x = PCn(x) + PC◦n(x). Further we have that 〈PCn(x),PC◦n(x)〉 = 0.

1.1 General facts

Let v∗ denote a local maximizer of (1). We begin with the following remark that characterizes the
tangent cone at a local maximizer.
Remark 1.3. We have that 〈v∗,v〉 = 0 for all v ∈ C∗n,v∗ .

Proof. If v∗ = 0, the result is trivial. If v∗ 6= 0, we have that v∗ − v∗ = 0 ∈ Cn and v∗ −
(−v∗)2v∗ ∈ Cn. Hence {v∗,−v∗} ⊆ Cn,v∗ and as a consequence for v ∈ C∗n,v∗ , 〈v∗,v〉 ≥ 0 and
〈−v∗,v〉 ≥ 0 imply 〈v∗,v〉 = 0.
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The following proposition characterizes the value at the local maxima of Problem (1).
Proposition 1.4. If the point v∗ ∈ Cn ∩ Sn−1 is a local maximum of the problem (1), then there
exists µ∗ ∈ C∗n,v∗ and λ∗ ∈ R such that

Xv∗ = λ∗ v∗ − µ∗ , (2)

λ∗ ≥ sup
{
〈v,Xv〉 : v ∈ Cn,v∗ ∩ span(µ∗)⊥, ‖v‖2 = 1

}
. (3)

Vice-versa, if the above conditions (2), (3) hold for some v∗ ∈ Cn∩Sn−1 with the last inequality be-
ing strict, then v∗ is a local maximum. Further, if Cn is convex Eq. (2) is the Moreau decomposition
of Xv∗ with respect to Cn. In particular

λ∗v∗ = PCn,v∗ (Xv∗) = PCn(Xv∗) , µ∗ = −PC◦
n,v∗

(Xv∗) = −PC◦n(Xv∗) . (4)

Proof. Note that, for any v ∈ relint(Cn,v∗) and ε ≥ 0 we know that εv ∈ Cn,v∗ . Therefore, by
definition of the tangent cone, v(ε) ≡ v∗+ εv ∈ Cn. Then by local optimality of v∗, for all ε small
enough we have

〈v(ε),Xv(ε)〉 ≤ 〈v∗,Xv∗〉 ‖v(ε)‖2 .
Expanding both sides and letting λ∗ = 〈v∗,Xv∗〉, we get

2ε〈v,Xv∗〉+ ε2〈v,Xv∗〉 ≤ 2λ∗ε〈v∗,v〉+ ε2λ∗‖v‖2

whence 〈v,X(v∗ − λ∗v∗〉 ≤ ε

2
(‖v‖2 − 〈v,Xv〉). (5)

With µ∗ ≡ −Xv∗ + λ∗v∗, and taking ε→ 0 we obtain:

〈v,µ∗〉 ≥ 0 for all v ∈ relint(Cn,v∗)
Since Cn is closed, so is Cn,v∗ and hence the above holds for every v ∈ Cn,v∗ . This implies that
µ∗ ∈ C∗n,v∗ . To prove Eq. (3) use v ∈ Cn,v∗ ∩ span(µ∗)⊥ in Eq. (5).

Before proving the converse, we consider first the case when Cn is convex. By convexity of Cn, we
have that Cn ⊆ Cn,v∗ . Further since v∗ ∈ Cn, we have that PCn,v∗ (Xv∗) = PCn(Xv∗). Also,
Remark 1.3 implies 〈µ∗,v∗〉 = 0. Together, these imply the Moreau decomposition claim.

In order to prove the converse, let v ∈ Cn ∩ Sn−1 and note that –as a consequence w ≡ v − v∗ ∈
Cn,v∗ with 2〈w,v∗〉 = −‖w‖22. We then have

〈v,Xv〉 − 〈v∗,Xv∗〉 = 2〈w,Xv∗〉+ 〈w,Xw〉
= 2〈w, λ∗v∗ − µ∗〉+ 〈w,Xw〉
= −2〈µ∗,w〉+ 〈w, (A− λ∗I)w〉 . (6)

Letting M = X−λ∗I, and V ≡ span(µ∗)⊥, we know by assumption that 〈w,Mw〉 ≤ −2∆ ‖w‖22
for all w ∈ D ≡ Cn,v∗ ∩ V , for some ∆ > 0. For a general w ∈ Cn,v∗ , let w0 ≡ PD(w) and
ṽ ≡ w −w0. We then have

〈w,Mw〉 = 〈w0,Mw0〉+ 2〈ṽ,Mw0〉+ 〈ṽ,Mṽ〉
≤ −2∆‖w0‖22 + 2‖M‖2‖ṽ‖2‖w0‖2 + ‖M‖2‖ṽ‖22
≤ −2∆‖w0‖2 + γ‖M‖2‖w0‖22 +

(
1 + γ−1

)
‖M‖2‖ṽ‖22 ,

where the last inequality follows for any γ > 0 by 2ab ≤ γ a2 + b2/γ. Setting γ = ∆/‖M‖2 and
c = ‖M‖2(1 + γ−1), we get

〈w,Mw〉 ≤ −∆‖w0‖2 + c‖ṽ‖22 . (7)

Now we claim that, for any δ > 0 there exists L = L(Cn,v∗ ,µ∗, δ) ≥ 0 such that, for all w ∈ Cn,v∗ ,

‖ṽ‖22 ≤ δ‖w0‖22 + L〈µ∗,w〉2 . (8)

Before proving this claim, let us show that it indeed implies the desired thesis. Setting δ = ∆/c,
and L̃ = cL(Cn,v∗ ,µ∗,∆/c), we conclude from Eq. (7) that

〈w,Mw〉 ≤ L̃〈µ∗,w〉2 .
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Substituting this estimate in Eq. (6), we get

〈v,Xv〉 − 〈v∗,Xv∗〉 ≤ −2〈µ∗,w〉+ L̃〈µ∗,w〉2 . (9)

Hence, for all v such that ‖v − v∗‖2 = ‖w‖2 ≤ 1/(‖µ∗‖2L̃) we have 0 ≤ 〈µ∗,w〉 ≤ 1/L̃ and
therefore

〈v,Xv〉 − 〈v∗,Xv∗〉 ≤ −〈µ∗,w〉 ≤ 0 ,

which completes our proof that v∗ is a local maximum.

We are left with the task of proving the claim (8). Notice that, by scaling both sides, it is sufficient
to prove it under the additional assumption ‖w‖2 = 1. Fix δ > 0 and assume by contradiction that
the claim is false. Then, for each k ∈ N there exists w(k) ∈ Cn,v∗ , ‖w(k)‖2 = 1 such that, letting
w0

(k) ≡ PD(w(k)) and ṽ(k) ≡ w(k) −w0
(k) we get

‖ṽ(k)‖22 > δ‖w0
(k)‖22 + k〈µ∗,w(k)〉2 . (10)

Since {w(k)} is a subset of the compact set Cn,v∗∩Sn−1, we can assume (by passing to a convergent
subsequence), that w(k) → w(∞). Since Cn,v∗ ∩ Sn−1 is closed, w(∞) ∈ Cn,v∗ ∩ Sn−1. Further
〈µ∗,w(∞)〉2 ≤ limk→∞ ‖ṽ(k)‖22/k ≤ limk→∞ 4/k = 0. Hence w(∞) ∈ D i.e. w0

(∞) = w(∞),
ṽ(∞) = 0. Further taking the limit k →∞ in (10) we get

‖ṽ(∞)‖22 ≥ δ‖w0
(∞)‖22

i.e. 0 ≥ δ. Since we chose δ > 0 this gives the desired contradiction.

The above proof implies a quantitative bound on the radius of the neighborhood within which v∗ is
an optimum.

Corollary 1.5. Assume the conditions

Xv∗ = λ∗ v∗ − µ∗ ,

λ∗ − 2∆ ≥ sup
{
〈v,Xv〉 : v ∈ Cn,v∗ ∩ span(µ∗)⊥, ‖v‖2 = 1

}
,

hold, and further assume that L(Cn,v∗ ,µ∗, δ) ≥ 0 is such that, for all w ∈ Cn,v∗ ,

‖ṽ‖22 ≤ δ‖w0‖22 + L〈µ∗,w〉2 .

Let M = X − λ∗I, c = ∆‖M‖2(∆ + ‖M‖2), and L̃ = cL(Cn,v∗ ,µ∗,∆/c). Then v∗ is a global
maximum of the optimization problem (1) within a neighborhood Ball(v∗, 1/(L̃‖µ∗‖2)).

2 Proof of Theorem 1

Recall the model assumptions for the data X:

X = βv0v0
T + Z.

Here we assume that v0 ∈ Cn ∩ Sn−1 and Zij ∼ N(0, 1/n) are independent, up to symmetry. We
first define the following useful quantities:

Definition 2.1. For a cone Cn ⊆ Rn we define its normalized Gaussian width as:

ω(Cn) ≡ 1√
n
E{ sup

v∈Cn∩Sn−1

〈g,v〉},

where g ∼ N(0, In).

Definition 2.2. For a cone Cn ⊆ Rn, we define its packing number N(Cn, ε) as the size of the
maximal subset X of Cn ∩ Sn−1 such that for every v1,v2 ∈ Cn ∩ Sn−1, ‖v1 − v2‖ > ε.

We have the following useful facts:
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Lemma 2.3. There exist universal constants c1, c2 such that:
c1 sup

ε
ε
√

logN(Cn, ε) ≤
√
nω(Cn) ≤ c2 inf

ε≤1
{2
√
nε(1 +

√
log(2/ε)) + (2− ε)

√
logN(Cn, ε)}.

Proof. The left hand inequality is the Sudakov minoration inequality. For the latter, we first employ
Dudley inequality:

√
nω(Cn) ≤ c3

∫ ∞
0

√
logN(Cn, ε)dε,

for a universal constant c3. We know that the diameter of Sn−1 is 2. Further as Cn ∩ Sn−1 ⊆ Sn−1
using a standard volume packing argument for Sn−1 [] we have that:

N(Cn, ε) ≤
(

1 +
2

ε

)n
.

Thus for any 0 ≤ ε ≤ 1:

√
nω(Cn) ≤ c3

[∫ ε

0

√
n log

(
1 +

2

u

)
du+

∫ 2

ε

√
N(Cn, ε)du

]
.

We simplify the first integral:∫ ε

0

√
log

(
1 +

2

u

)
du ≤ 2

∫ ε

0

√
log

(
2

u

)
du

= 2

∫ ∞
√

log(2/ε)

(4y2) exp(−y2)dy

≤ 2ε

(
1 +

√
log

(
2

ε

))
,

using standard integration by parts. Since N(C, ε) is monotone nonincreasing in ε, we have that
the second integral is bound above by (2 − ε)N(Cn, ε). These estimates imply the thesis using the
observation that ε is arbitrarily chosen.

The following lemma is proved in [ALMT13].
Lemma 2.4. For any closed convex cone:

ω(Cn)2 ≤ δ(Cn) ≤ ω(Cn)2 +
1

n
.

We can now prove Theorem 1

Proof of Theorem 1. Let X denote a maximal ε-net of Cn ∩ Sn−1 as in Lemma 2.3, for ε to be fixed
later in the proof. Hence, for any vi,vj ∈ X distinct, we have ‖vi − vj‖ > ε or, equivalently,
〈vi,vj〉 < 1− ε2/2. Note that the maximality of X implies also that it is an ε-cover of Cn ∩ Sn−1,
i.e. for any v ∈ Cn ∩ Sn−1 minv′∈X‖v − v′‖ ≤ ε.
Let v0 be uniformly distributed in the set X . For an estimator v̂(X) ∈ V , we define G(v̂(Y )) =
arg minv∈X‖v̂(X)− v‖2. We now bound the probability of the error event {G(v̂(X)) 6= v0}. By
definition ofG(v̂(X)), the eventG(v̂(Y )) 6= v0 implies that there exists vi ∈ X,vi 6= v0 such that
‖v̂(X)− vi‖2 ≤ ‖v̂(X)− v0‖2. This along with triangle inequality implies that ε < ‖vi − v0‖ ≤
2‖v̂(X)− v0‖, i.e. ‖v̂(X)− v0‖2 > ε/2. By Markov inequality we have:

P{G(v̂(X)) 6= v0} ≤ P{‖v̂(X)− v0‖2 > ε/2}

≤ 4
E{‖v̂(X)− v0‖22}

ε2

=
8(1− E{〈v̂(X),v0〉})

ε2

≤ 8R(v̂(X);v0)

ε2
, (11)
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By Fano’s inequality we have that:

P{G(v̂(X) 6= v0} ≥ 1− γ + log 2

log |X|
,

where γ = maxx6=x′ D(Pv‖Pv′) where D(·‖·) is the Kullback-Liebler divergence and Pv denotes
the law of X conditional on v0 = v. Conditional on v0 = v, X has mean vvT and has Gaussian
entries with variance 1/n. A standard calculation implies that:

D(Pv‖Pv′) ≤ nβ2‖vvT − v′v′T‖2F
= 2nβ2(1− 〈v,v′〉2)

≤ 2nβ2.

We have using Lemma 2.3 that log |X| ≥ cn(ω(Cn)− 2ε(1 +
√

log(2/ε)))2. Combining this with
Fano’s inequality above and Eq.(11):

R(v̂(X);v0) ≥ ε2

8

(
1− 2β2

c(ω(Cn)− 2ε(1 +
√

log(2/ε)))2

)
.

Further, the minimax risk satisfies R(Cn) ≥ R(v̂(X);v0)) for some estimator v̂(X) and the above
bound is uniformly true for all estimators. Using ε∗ = 1/4ω(Cn)/

√
log(1/ω(Cn)) implies that

2ε(1 +
√

log(2/ε)) ≤ ω(Cn)/2. Hence:

R(Cn) ≥ c′ ω(Cn)2

log(1/ω(Cn))
,

when β ≤ c′′ω(Cn) for some universal constants c′, c′′. Applying Lemma 2.4 and the constraint
ω(Cn) ≥

√
2/n implies the result for appropriately adjusted c′, c′′.

3 Proof of Theorem 2

We first prove the following useful lemma based on standard Gaussian comparisons.
Lemma 3.1. Assume that the noise Z has i.i.d. N(0, 1/n) entries up to symmetry. Then, with
probability at least 1− n−5

λ1(Z; Cn) ≤ 2
√
δ(Cn) +

√
10 log n

n
. (12)

Proof. We will apply the Sudakov-Fernique inequality (see e.g. [Vit00, Theorem 1] ) to the two
processes {M(v)}, {V(v)} indexed by x ∈ Cn ∩ Sn−1 defined as follows:

M(v) ≡ 〈v,Zv〉 and V(v) ≡ 2〈v,g〉,
for a random vector g ∼ N(0, In/n) and Z being a standard normal matrix. Basic algebra gives for
all v, EM(v) = EV(v) = 0 and

E
{[

M(v1)−M(v2)
]2}

=
4

n

(
1− 〈v1,v2〉2

)
, E

{[
V(v1)−V(v2)

]2}
=

8

n

(
1− 〈v1,v2〉

)
.

Hence, by using the fact that for a ∈ [−1, 1], the inequality 1 − a2 ≤ 2(1 − a) holds, we get
E
{[
M(v1) −M(v2)

]2} ≤ E
{[
V(v1) −V(v2)

]2}
. We conclude using Sudakov-Fernique com-

parison lemma that:

Emax
{
〈v,Zv〉 : v ∈ Cn ∩ Sn−1

}
≤ 2 Emax

{
〈v,g〉 : v ∈ Cn ∩ Sn−1

}
By using Proposition 10.1 from [ALMT13], Emax

{
〈v,g〉 : v ∈ Cn ∩ Sn−1

}
≤
√
δ(Cn), we get

that

Eλ1(Z; Cn) ≤ 2
√
δ(Cn). (13)
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By using the fact that Z 7→ max
{
〈v,Zv〉 : v ∈ Cn ∩ Sn−1

}
is 1-Lipschitz and concentration

inequality on max
{
〈v,Zv〉 : v ∈ Cn ∩ Sn−1

}
, with probability at least 1 − exp{−t2n/2}, we

have

λ1(Z; Cn) ≤ 2
√
δ(Cn) + t .

Take t =
√

(10 log n)/n and the claim follows.

We can now prove Theorem 2

Proof. By optimality of v̂ML, we have

〈v̂ML,Xv̂ML〉 ≥ 〈v0,Xv0〉 = β + 〈v0,Zv0〉
≥ β − λ1(Z, Cn).

On the other hand

〈v̂ML,Xv̂ML〉 = β〈v0, v̂
ML〉2 + 〈v̂ML,Zv̂ML〉 ≤ β〈v0, v̂

ML〉2 + λmax(Z; Cn) .

The claim that RCn(v̂ML; Cn) ≤ 4(
√
δ(Cn) + εn)/β follows simply by putting together the above

inequalities along with the previous lemma for λmax(Z; Cn).

For the other claim we have as above:

〈v̂ML,Xv̂ML〉 ≥ β + 〈v0,Zv0〉,
〈v̂ML,Xv̂ML〉 = β〈v0, v̂

ML〉2 + 〈v̂ML,Zv̂ML〉.
Together, this implies:

β(1− 〈v0, v̂
ML〉2) ≤ 〈Z,−v0v0

T + v̂ML(v̂ML)T〉
≤ ‖Z‖2‖v0v0

T − v̂ML(v̂ML)T‖∗,
where the last line follows from Holder’s inequality and ‖·‖∗ denotes the nuclear norm (or sum of
singular values). Since v0v0

T − v̂ML(v̂ML)T is has rank at most two:

‖v0v0
T − v̂ML(v̂ML)T‖∗ ≤

√
2‖v0v0

T − v̂ML(v̂ML)T‖F
= 2
√

1− 〈v0, v̂ML〉2.
Thus we have:

1− 〈v0, v̂
ML〉2 ≤ 2‖Z‖2

β2
.

Using the fact that 1 − a2 ≥ 1 − |a| when a ∈ [−1, 1], we obtain the desired result for the risk
R(v̂ML; Cn).

4 Proof of Theorem 3

Note that the problem (1) is unchanged (except for an additive constant in the objective function) if
we replace X with Xρ = X+ρ I. We will take advantage of this freedom and consider the modified
iteration

v̂t+1 =
PC(u

t)

‖PC(ut)‖2
, (14)

ut = Xρv̂
t . (15)

It is convenient to define

µt+1 ≡ −PC◦n(Xρv̂
t) , (16)

λt+1 ≡
∥∥PCn(Xρv̂

t)
∥∥
2
. (17)
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Then we have the identity

Xρv̂
t−1 = λtv̂

t − µt , (18)

which is the Moreau’s decomposition of Xρv̂
t−1. In particular

〈v̂t,µt〉 = 0 . (19)

Lemma 4.1. With the above definitions we have

λt = λt+1〈v̂t+1, v̂t−1〉 − 〈µt+1, v̂t−1〉 (20)

≤ λt+1〈v̂t+1, v̂t−1〉 . (21)

Proof. Taking the scalar product of both sides of Eq. (18) by v̂t and using Eq. (19), together with
the fact that ‖v̂t‖2 = 1 by construction, we get

λt = 〈v̂t,Xv̂t−1〉 = 〈v̂t−1,Xv̂t〉 (22)

= 〈v̂t−1, λt+1v̂
t+1 − µt+1〉 . (23)

This proves Eq. (20). Equation (21) follows from v̂t−1 ∈ Cn, µt+1 ∈ C∗n, which imply
〈v̂t−1, µt+1〉 ≥ 0.

Lemma 4.2. For any t ≥ 1, we have

ρ+ λmin(X) ≤ λt ≤ ρ+ λmax(X) .

Proof. For y ∈ C◦n, max
{
〈y, z〉 : z ∈ Cn ∩ Sn−1

}
= 0 and PCn(y) = 0. For any y /∈ C◦n,

PCn(y) 6= 0, so by using Cauchy-Schwarz inequality, and the fact that PCn(y)/‖PCn(y)‖2 ∈ Cn ∩
Sn−1,

‖PCn(y)‖2 = max
{
〈y, z〉 : z ∈ Cn ∩ Sn−1

}
.

Then, since v̂t−1 ∈ Cn ∩ Sn−1, we have

λt =
∥∥PCn(Xρv̂

t−1)
∥∥
2
≥ 〈v̂t−1,Xρv̂

t−1〉 ,
which yields the desired lower bound by definition. The upper bound follows since λt ≤∥∥Xρv̂

t−1
∥∥
2
.

Proposition 4.3. Assume ρ + λmin(X) > 0. Then the sequence {λt}t≥0 is bounded an non-
decreasing and therefore it has a limit

λ∗ = lim
t→∞

λt = lim
t→∞
〈v̂t,Xρv̂

t〉 . (24)

Further, if v̂∗ is any sub-sequential limit of {v̂t}t≥0 (i.e. limk→∞ v̂t(k) = v̂∗ for some sequence
{t(k)}) then it satisfies the stationarity condition

Xv̂∗ = (λ∗ − ρ)v̂∗ − µ∗ . (25)

Proof. The existence of the limit λ∗ follows immediately from Lemma 4.1 and 4.2. Next multiply-
ing the identity (18) by v̂t, we get, using Cauchy-Schwartz,

λt = 〈v̂t,Xρv̂
t−1〉 ≤

√
〈v̂t,Xρv̂t〉〈v̂t−1,Xρv̂t−1〉 .

Multiplying Eq. (18) by v̂t−1, we get 〈v̂t−1,Xv̂t−1〉 ≤ λt〈v̂t, v̂t−1〉 and, changing the iteration
number, 〈v̂t,Xv̂t〉 ≤ λt+1〈v̂t, v̂t+1〉. Substituting in the above, we obtain

λt ≤ λt+1〈v̂t, v̂t−1〉 〈v̂t, v̂t+1〉 .
Since λt → λ∗, we conclude that 〈v̂t, v̂t−1〉 → 1 or

lim
t→∞

‖v̂t − v̂t+1‖2 = 0 .

Using this in the identity λt = 〈v̂t,Xρv̂
t−1〉 derived above, we deduce that 〈v̂t,Xρv̂

t〉 → λ∗.
Using it in Eq. (18) (with t = t(k) as per the statement) we get the stationarity condition (25).

Remark 4.4. Corollary 4.1 follows directly from the proof of Theorem 3 and the Gaussian compar-
ison lemma 3.1.

7



References

[ALMT13] D. Amelunxen, M. Lotz, M. Mccoy, and J. Tropp, Living on the edge: a geometric
theory of phase transition in convex optimization, submitted (2013).

[Vit00] Richard A Vitale, Some comparisons for gaussian processes, Proceedings of the Amer-
ican Mathematical Society (2000), 3043–3046.

8


