
Appendix for “Sparse Polynomial Learning and
Graph Sketching”

Murat Kocaoglu1∗, Karthikeyan Shanmugam1†, Alexandros G.Dimakis1‡, Adam Klivans2?
1Department of Electrical and Computer Engineering, 2Department of Computer Science

The University of Texas at Austin, USA
∗mkocaoglu@utexas.edu, †karthiksh@utexas.edu

‡dimakis@austin.utexas.edu, ?klivans@cs.utexas.edu

1 Proof of Theorem 4

We prove Theorem 4 at the end of this section. Next, we provide the proof for Lemma 2 about
Algorithm 1 that will be used in the proof. Since the function f is s-sparse, it takes at most 2s
distinct real values.

Proof of Lemma 2

Let E1 be the event that the maximum value observed among m1 samples in the algorithm 1 is the
maximum value attained by f . Note that, the probability that the function attains the maximum value
is at least 1

2s . To see this, if the parity functions have rank r, then the set of r linearly independent
parity functions take values uniformly in the hypercube {−1, 1}r and other are determined by these
r signs. Hence, the probability of finding the maximum value is 1

2r ≥
1
2s . If the functions satisfies

the unique sign property for the maximum value and if E1 is true, it is easily seen that the actual
party functions pi are in the set P in the algorithm 1.

Consider the algorithm 1. Let E3 be the event that the matrix Ymax has at least rank n − s. E3

implies that |P | = |S| ≤ 2s+1, ∀1 ≤ i ≤ s. Let E2 be the event that nmax > 2n. Conditioned on
E2 and E1 being true, we first argue that the rank of Ymax is at least n − s with high probability.
Let the rank of the actual set of parity functions [p1,p2 . . .ps] be k ≤ s.
If E1 and E2 are true, then Ymax contains 2n random samples such that they all produce the same
sign pattern amax because the actual function f satisfies the unique sign pattern property for the
maximum value. Let zmax = q (amax). Observe that rows of Ymax are random samples uniformly
drawn from the hyperplane H = {x ∈ Fn×12 : xT [pi] = zmax(i), ∀1 ≤ i ≤ s}. Since the rank
of the parity functions is k, the dimension of H is n − k. Now, the rank of space spanned by 2n
samples drawn randomly uniformly from H is at least the rank of space spanned by 2n samples
drawn randomly uniformly from F1×n−k

2 . The probability that a random 2n× n− k binary matrix
is full rank is given by:

Pr (a random 2n× n− k binary matrix is full rank) =

n−k−1∏
i=0

(
1− 1

22n−i

)
≥
(
1− 1

2n

)n−k
≥
(
1− 1

2n

)n
≥ 1−O

(
1

n

)
(1)

Hence, Pr (E3|E2

⋂
E1) ≥ 1−O

(
1
n

)
. Pr (E1

⋂
E2) is the probability that there are at least nmax

samples corresponding to the maximum value of the actual function in the 2n2s samples drawn.
Therefore, Pr (E1

⋂
E2) ≥ 1 −

(
1− 1

2s

)2n2s−2n
because the maximum value of f is seen with

1

probability at least 1
2s . Using this in the following chain, we have:

Pr
(
|S| ≤ 2s+1, I ⊆ S

)
≥ Pr

(
E1

⋂
E2

⋂
E3

)
≥ Pr

(
E1

⋂
E2

)
Pr
(
E3|E2

⋂
E1

)
≥ Pr

(
E1

⋂
E2

)(
1−O

(
1

n

))
(by (1))

≥

(
1−

(
1− 1

2s

)2n2s−2n
)(

1−O
(
1

n

))
≥
(
1− exp

(
−2n

(
1− 1

2s

)))(
1−O

(
1

n

))
≥
(
1−O

(
1

n

))(
1−O

(
1

n

))
≥ 1−O

(
1

n

)
. (2)

Now, we relate the unique sign property to the conditions mentioned in Theorem 4 for its proof.

Proof of Theorem 4

Due to Lemmas 2 and 1, we just need to show that each of the conditions in the theorem implies the
unique sign property, i.e., the maximum value of the function f is attained when the set of parity
functions takes a unique sign pattern.

Case 1: If the coefficients are in general position (Definition 2), all values taken by the function
correspond to distinct sign patterns. This implies the unique sign property for the maximum value.

Case 2: If all the parity functions are linearly independent, any sign pattern can be realized. Then,
the sign pattern [sign (c1) , sign (c2) . . . sign (cs)] can be realized by the set of parity functions and

this produces the value
s∑
i=1

|ci|. And any other sign pattern will produce a strictly lesser value as all

ci are nonzero. Hence, the maximum value is unique in this case.

Case 3: Let us consider the case when all the coefficients are positive. Even if the parity functions
are linearly dependent, the sign pattern with all +1’s can be produced and this attains the unique

maximum value
s∑
i=1

|ci|. This implies the unique sign property.

2 Algorithms and Guarantees: Noisy Case

In this section, we provide our algorithm for learning an approximately (s, ν)-sparse function with
noisy samples, and prove guarantees regarding the error between the function learnt and the actual
function. When m random samples are observed, the noisy output model for an approximately
(s, ν)-sparse function f is given by:

y = Ac+ ε (3)
where A is the m by 2n matrix where each row corresponds to a sample x and each column
corresponds to a parity function and c is the set of Fourier coefficients for f and the noise
|εi| ≤ ε, 1 ≤ i ≤ m. We recall that

∑
S⊆Ic

|cS | < ν for an approximately sparse f . We assume

that ε+ ν is known.

Input: The sequence of labeled samples 〈f(xi) + εi,xi〉mi=1
Initialise Xmax = ∅.
Let η be the maximum value observed.
Stack all the inputs xi, such that f (xi) + εi is in the neighborhood of radius 2 (ε+ ν) around η,
into Xmax.
Output: Xmax.

Algorithm 2: MaxCluster

2

Input: Sparsity parameter s, ε+ ν, m1 = 2n2s random labeled samples {〈f (xi) ,xi〉}m1
i=1.

Run MaxCluster algorithm to obtain Xmax.
Initialise P = ∅.
Find all feasible solutions p such that: 1 = q(Xmax)p or 0 = q(Xmax)p.
Collect all feasible p in the set P ⊆ Fn2 .
S = {{j ∈ [n] : pi(j) = 1}|pi ∈ P}.
Using m = 4096ns2 more samples (number of rows of A is m corresponding to these new
samples), solve:

βopt
S = min‖βS‖1 such that

√
1

m
‖AβS − y‖2 ≤ ε+ ν, (4)

where y is the vector of m noisy observed values (as in (5))
Set vopt = βoptS .
Output: vopt.

Algorithm 3: LearnBoolNoisy

Now we state our main thoerem for learning a sparse function from noisy observations.

Theorem 6. Assume f is an approximately (s, ν)-sparse function as given in Definition 6 and
observed samples satisfy the noise model in (3). Then, Algorithm 3 outputs vopt in time poly(n, 2s)
with probability 1 − O

(
1
n

)
satisfying ‖c − vopt‖2 ≤ α1ε + α2ν, if f satisfies at least one of the

following properties:

(a) The coefficients {cS}S∈I are 4(ν + ε)-separated.
(b) The set of parity functions χi(·) are linearly independent, and min

S∈I
cS > 4(ε+ ν).

(c) All the coefficients are positive, and min
S∈I

cS > 4(ε+ ν).

Here, α1 and α2 are some constants.

3 Proof of Theorem 6

Although the observations are noisy as in the noise model given by (3), the set of inputs for which
the sparse representation of the function f , i.e., fI (this depends on only Fourier coefficients in I
) attains its maximum, can still be perfectly identified under certain conditions given in the Lemma
below. Algorithm 2 identifies those inputs.

Lemma 3. If the function f is approximately (s, ν)-sparse, observations follow the noise model
in (3), and if the values of fI are separated by at least 4(ε + ν), then the output matrix Xmax in
Algorithm 2 will contain exactly those inputs for which fI attains the maximum value among the
drawn samples.

Proof. Consider a sample x. Clearly, from the noise model and the definition of approximate spar-
sity, |f (xi + εi)− fI (xi)| ≤ ν + ε. Hence, when using a radius of 2(ν + ε) for clustering, clearly
no two samples with different fI will be included in Xmax and definitely one sample belonging to
the maximum fI among the observed samples will be included.

Proof of Theorem 6:

The three properties in the statement of Theorem 6 imply that fI has the unique sign property for
the maximum value due to the same arguments in the proof of Theorem 4. Further, they also imply
that the values of fI are separated by 4 (ε+ ν) in each of the cases. By Lemma 3, rows of Xmax

contain only the inputs at which fI attains its maximum among the observed values.

Using Lemma 2 on fI , which is exactly s-sparse, it can be seen that |S| ≤ 2s+1 and contains all the
parity functions in fI with probability 1 − O

(
1
n

)
as in Algorithm 1. This is because P is formed

using inputs in Xmax that give the maximum fI among the observed samples in an identical fashion

3

as in Algorithm 1. Now, we have the following chain of inequalities:

‖c− vopt‖2 ≤ ‖cS − βopt
S ‖2 + ‖cSc‖2 (triangle inequality)

≤ ‖cS − βopt
S ‖2 + ‖cSc‖1 (‖·‖2 ≤ ‖·‖1)

a
≤ c1(ν + ε) + c2

(n
m

)1/4
‖cIc⋂S‖1 + ‖cSc‖1

≤ c1(ν + ε) + c2(ν) + ν (n < m) (5)

For inequality (a), it is easy to see that cS is a feasible solution to program 4 and therefore Theorem
3 can be applied with βS = cS with noise threshold ν + ε. Further, ‖cIc‖1 < ν.

Since |S| ≤ 2s+1, the optimization program 4 runs in time poly (n, 2s).

4 Algorithm LearnGraph

We provide the algorithm LearnGraph below. Let k be the number of relevant variables, i.e. vari-
ables that are part of at least one hyperedge. Note that k ≤ sd.

Input: Number of edges s, m1 = max c2kd log n, c22d+1s2(log n+ k) random labeled samples
{〈fc−cut (xi) ,xi〉}m1

i=1.
Pick samples {xij}

nmax
j=1 corresponding to the maximum value of fc−cut observed in all the m

samples. Stack all xij row wise into a matrix Xmax of dimensions nmax × n.
R⇐ XT

maxXmax.
Estimate d by d = maxi |{j : R(i, j) = max(R(i, :))}|

c0 =

m1∑
i=1

fc−cut(xi)

m1

Identify the constant Fourier coefficient by rounding c0 to the nearest integer multiple of 1
2d

,

c0 ⇐ round(c02
d)

2d
.

fc−cut ⇐ fc−cut − c0.
Initialize Si = ∅ ∀i ∈ {1, 2, ..., n}
Stack xj for all (i, j) s.t. R(i, j) = nmax, into Si.

For all Mki ⊆ Si s.t. |Mki | ≤ d, |Mki | is even, calculate cχMki =

m1∑
i=1

fc−cut(xi)χMki
(xi)

m1
.

Find Fourier coefficients of parities by rounding χM to the nearest integer multiple of 1
2d

,

cχM ⇐
round(cχM2d)

2d

Stack all non-zero parity coefficients and parity variables into c andM, respectively.
Output: c,M.

Algorithm 4: LearnGraph

Note: In the above algorithm, round(.) function rounds a real number to the nearest integer.
Lemma 4. (Chernoff’s bound) [1] Let Xi, 1 ≤ i ≤ n be i.i.d random variables taking values

in [b, c]. Let X =
n∑
i=1

Xi. Let E[X] = µ. Then, Pr
(∑

i

Xi ≥ µ+ a

)
≤ exp

(
− a2

2(b−c)2n

)
and

Pr

(∑
i

Xi ≤ µ− a
)
≤ exp

(
− a2

2(b−c)2n

)
.

Proof of Theorem 5:

Without loss of generality, let us consider the case when a hyperedge involves more than two ver-
tices. Let us consider a variable to be relevant only if it is involved in at least one hyperedge with
more than one vertex. Note that the number of relevant variables is k ≤ sd. The c−cut function
counts a hyperedge if either all its nodes are assigned +1 or when all its nodes are assigned −1.
When the c−cut function attains its maximum values, every hyperedge is counted. Clearly, when
all the relevant variables are assigned the same value from {+1,−1}, then c−cut attains its maxi-
mum value. This happens with probability 1/2k−1. Let n1 denote the number of samples where all

4

relevant variables are assigned the same sign. Therefore, out of m1 samples taken,

Pr (n1 ≥ cd log n) ≥ 1−
(
1− 1

2k−1

)m1−cd logn

≥ 1− exp

(
−2
(
1− 1

2k

)
cd log n

)
≥ 1−O

(
1

ncd

)
(6)

Therefore, nmax ≥ cd log n with very high probability. Let E1 denote the event nmax ≥ cd log n.
Suppose E1 is true, then any two variables that belong to the same hyperedge will have identical
columns in Xmax. Therefore, if i and j are in the same hyperedge , then R(i, j) = nmax. Let
x̂i be the i-th column consisting of signs of the i-th variable. Let xik be the k-th entry of the ith

column. Then, R(i, j) = x̂Ti x̂j =
nmax∑
k=1

xikxjk. Yk , xikxjk ∈ {−1, 1} are identically distributed

independent random variables for i 6= j. Let E2 denote the event that Ri,j ≤ cd logn
1+ε , ∀j 6=

i, ∀i which is irrelevant. Observe that for an irrelevant variable i, E[R(i, j)] = 0 for any j 6= i.
Thus, applying Lemma 4 with a = nmax

(1+ε) for some constant ε > 0 and b = −1 and c = 1, we have:

Pr (E2|E1) = 1− Pr (∃ irrelevant variable i, j 6= i : R(i, j) > a|E1)

≥ 1− n2 exp
(
− nmax

8(1 + ε)2

)
(union bound)

≥ 1−O
(
1

n

)
(for a large enough constant c) (7)

Therefore, when both E1 and E2 are true, then for all irrelevant variable i, Si = i. If i is relevant,
then Si also contains variable(s) other than i. Now, for every i, Si represents variables which partic-
ipate in some hyperedge along with i if i is relevant, since for all such variable j, R(i, j) = nmax.
Then, if d is known, we take all possible d subsets Mki of Si and correlate the corresponding par-
ity function Mki with the function values to find the coefficient. Since m1 = c2kd log n samples
are available, error can be made less than 1/2d, and this gives an exact estimate with high prob-
ability when the result is rounded off to the nearest multiple of 1/2d. Let E3 be the event that
∀Mki ⊂ Si, ∀ relevant i : |

∑
i

f (xi)χMki
(xi)−m1E[f (x)χMki

(x)]| ≤ m1
1
2d

. Since, the func-

tion takes values between 0 and s (the number of hyperedges), taking a = m1
1
2d

, b = −s and c = s,
and applying Lemma 4, we have:

Pr (E3|E1, E2) ≥ 1− 2k exp
(
− m1

22d+1s2

)
≥ 1−O

(
1

n

)
.

Therefore, Pr (E1

⋂
E2

⋂
E3) ≥ 1−O

(
1
n

)
concluding the proof of correctness for the algorithm.

There are at most 2k parity functions to correlate. Thus the sample complexity of the algorithm is
m1 = O(2kd log n + 22d+1s2(log n + k)). The running time is O(n2d log n) + O(22kd log n +
2k22d+1s2(log n+ k)). The first term in the running time is for forming the matrix R. The second
term in the running time is for correlation with m1 samples for each of the 2k parity functions.

Remark: Here, we have analyzed the algorithm in such a way that the first stage of forming R and
thresholding using nmax only seems to tell us the relevant variables involved. In reality, running
the algorithm yields R which after thresholding at nmax can identify distinct connected components
and only the sub-structure of connected components has to be identified in the correlation step. Two
variables are in the same connected component if they are in the same hyperedge. But our analysis
is for the worst case when there is only one connected component. But it is possible to give a
better bound in terms of the size of the largest component instead of k (the total number of relevant
variables). We do not pursue that in this proof.

References
[1] S. Jukna, Extremal Combinatorics. Springer, 2011.

5

	Proof of Theorem 4
	Algorithms and Guarantees: Noisy Case
	Proof of Theorem 6
	Algorithm LearnGraph

