
Appendix: Proofs of Theorems

p

Figure 3: 300-node lattice and 200-node RGG with 17-node anomalous cluster.

Figure 4: County map, graph representation and ground truth anomalous cluster for Table 1.

Proof of Theorem 3:

Proof. For the first part we show ∀a ∈ V, γ > 0, CLMI(a, γ) ⊆ C. Let H = (S, FS) ∈ CLMI(a, γ)
be a connected subgraph. Assume on the contrary that H is disconnected: S = C ∪ C̄, where
C̄ = S −C. Let |S| = k, |C| = k1, |C̄| = k2. W.l.o.g. assume a = 1, i.e. M11 = 1, and C consists
of nodes {1, 2, ..., k1}.
Let Q(M ; γ) = L(A ◦M)− γL(M). Consider the k × k sub-matrix QS of Q corresponding to S,
since the rest part are all 0. Now we use the vector g = [1k1

;−1k2
] to hit QS :

g′QSg = g′LS(AS ◦MS)g − γg′LS(MS)g ≥ 0. (13)

Note that AS has the form:

AS =

(
AC 0
0 AC̄

)
, (14)
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where the off-diagonal block is zero because by assumption C and C̄ is disconnected. Then:

LS(AS ◦MS) = Diag ((AS ◦MS)1n)− (AS ◦MS) =

(
L̃C 0

0 L̃C̄

)
, (15)

where L̃C is the Laplacian matrix of C weighted by MC . Notice it still holds that L̃C1k1
= 0. This

means g′LS(AS ◦MS)g = 0.

On the other hand, let LS(MS) be:

LS(MS) = Diag (MS1n)−MS =

(
L1 L3

L′3 L2

)
. (16)

Using g1 = [1k1
; 0] and g2 = [0; 1k2

] to hit QS will yield: 1′k1
L11k1

= 0 and 1′k2
L21k2

= 0.
Apparently g′LS(MS)g ≥ 0 due to positive semi-definiteness of Laplacian matrix. If it’s strictly
positive, proof is done. Otherwise this means 1′k1

L31k2
= 0. Note that all entries of L3 are either

0 or negative due to non-negativity of MS . This means L3 = 0, or equivalently Mij = 0 for any

i ∈ C, j ∈ C̄. But this can not happen, because M11 = 1 and M1j ≥ 1 +Mjj − 1 = Mjj > 0 for

any j ∈ C̄. Contradiction! So S is connected.

For the other direction we need to show that any connected subgraph H = (S, FS) ⊆ G = (V,E)
has a corresponding matrix H � M , such that M ∈ M∗

a and Q(M ; γ) � 0 for some a ∈ S and
γ > 0.

Let M be defined as:

Mij =

{
1 i ∈ S, j ∈ S
0 otherwise

This M can be viewed as the adjacency matrix corresponding to a complete graph on the node set
S. So it naturally involves a star graph centered at a, and satisfies the linear constraints ofM∗

a.

Furthermore, the sub-block corresponding to S, AS ◦MS , is exactly the adjacency matrix of H .
Since H = (S, FS) is connected, the second smallest eigenvalue of LS(AS ◦Ms) is strictly positive.
Notice that on the sub-block, MS = 1k1′k. Again by Finsler’s Lemma, this means that there exists a
γ > 0, such that the LMI holds on the sub-block:

LS(AS ◦MS)− γL(MS) � 0

Proof of Theorem 4:

Proof. For simplicity we provide a proof sketch for rectangle bands on a 2D lattice G. We need to
show that for a band H = (S, FS) belonging to Ca,Φ, there exists a binary matrix M � H such that
L(A ◦M)− γL(M) � 0, where γ depends only on Φ.

Construct the matrix M as follows:

Mii =

{
1 i ∈ S
0 otherwise

, Mij =

{
1 (i, j) ∈ ES or i = a orj = a
0 otherwise

Apparently H � M , and M ∈M∗
a. W.l.o.g. assume a = 1, and S = {1, 2, ..., k}. We only need to

consider the first k× k sub-block of Q(M ; γ), denoted by QS(MS ; γ) = L(AS ◦MS)− γL(MS).
Notice L(AS ◦MS) is exactly the unnormalized Laplacian matrix of H = (S, FS), and L(MS) is
the Laplacian of the union graph of H and Hstar, where Hstar denote the star graph centered at
node a.

Let MS = AS ◦MS+MΔ. MΔ is the adjacency matrix of a graph HΔ, where HΔ is obtained from
Hstar by removing those edges connected with the anchor. We rewrite the required inequality:

QS(MS ; γ) = L(AS ◦MS)− γL(MS) = (1− γ)L(AS ◦MS)− γL(MΔ) � 0

Since HΔ is obtained from Hstar by removing edges, we have L(Mstar) � L(MΔ). We will show
γ = O(1/k) < 1/2, which implies γ

1−γ < 2γ. Therefore it suffices to show:

L(AS ◦MS)− 2γL(Mstar) � 0.
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The rest part follows from Lemma 8, which characterizes the value of γ for the above LMI to hold.
Proof is done.

Lemma 8. Let G = (V,E) denote a k-node rectangle band with width a and length b on the 2D
lattice, i.e. ab = k. Let L be the graph Laplacian matrix corresponding to the rectangle lattice, and
Lstar be the graph Laplacian of the star graph with the same node set, centered at the bottom-left
node. Then the following inequality holds for γ = Φ2

4 log(kΦ) :

L− γLstar � 0

Proof. Assume the anchor node is node 1. It is equivalent to show that for any f ∈ R
k,

f ′Lstarf =
∑
i≥2

(f1 − fi)
2 ≤ 1

γ
f ′Lf =

1

γ

∑
(i,j)∈E

(fi − fj)
2

We first investigate a simple case where a = 1, i.e. G is a k-node line graph. In this scenario
φ(G) = 2/k. We use Cauchy-Schwartz inequality to bound each (f1 − fi)

2 using the edges on the
path from node 1 to i:

(f1 − fi)
2 =

⎛
⎝i−1∑

j=1

(fj − fj+1)

⎞
⎠

2

≤ (i− 1)

i−1∑
j=1

(fj − fj+1)
2

Summing over all (f1 − fi)
2, we have:

k∑
i=2

(f1 − fi)
2

≤
k∑

i=2

⎡
⎣(i− 1)

i−1∑
j=1

(fj − fj+1)
2

⎤
⎦

=

(
k−1∑
i=1

i

)
(f1 − f2)

2 +

(
k−1∑
i=2

i

)
(f2 − f3)

2 + ...+ (k − 1)(fk−1 − fk)
2

≤ k2

2

k−1∑
j=1

(fj − fj+1)
2

Therefore the inequality for line graph holds.

Now w.l.o.g. assume a ≤ b and a = 2p. We first show that to cover the a2/2 nodes in the lower
triangle, γ = O(p2p) = O(a2 log a) is enough. The strategy is similar: construct paths from anchor
to each node, and apply Cauchy-Schwartz inequality to make use of edges on these paths. Two tricks
need to be mentioned:
(1) Paths need to be constructed very carefully so that each edge of G is not used too often;
(2) It is inevitable that some edges will be used much more frequently than others, for example, the
edges coming out of anchor. A weighted Cauchy-Schwartz should therefore be applied to alleviate
this effect.

Let each node be indexed by its coordinates, (0, 0) is the anchor node. To help understand the
construction, we introduce several notations. A node v = (x, y) is “critical” if x + y = 2q − 1 for
some integer q, as marked by red solid circles in Fig.5. Let Cq = {v = (x, y)|x + y = 2q − 1}
denote the collection of nodes on the q-th “boundary”. Anchor node v0 = (0, 0) is the only node in
C0, and the outer most boundary is Cp. Apparently |Cq| = 2q .

We build a complete balanced binary tree based on all critical nodes with tree edges (vi, vi+1),
where vi ∈ Ci denotes a critical node in Ci. We note down several observations for paths from
anchor to each vp ∈ Cp:
(1) There is a unique path starting from anchor v0 ∈ C0 to each vp ∈ Cp, passing through critical
nodes vi ∈ Ci, for i = 0, 1, ..., p.
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Figure 5: Paths constructed to cover each node from anchor.

(2) Such a path, denoted by v0 → v1 → ... → vp where vi ∈ Ci, is composed of p tree edges,

(vi, vi+1) for i = 0, 1, ..., p− 1, with |(vi, vi+1)| = 2i.
(3) For any two such paths, after they split at some node, they will never share any graph edges.

Now consider a path from v0 to some vp ∈ Cp, v0 → v1 → ... → vp. We use weighted Cauchy-
Schwartz inequality to bound this path with graph edges:(

fv0 − fvp

)2
=

(
p−1∑
i=0

(fvi − fvi+1)

)2

=

⎛
⎝(fv0 − fv1) +

∑
(i,j)∈(v1,v2)

(fi − fj) + ...+
∑

(i,j)∈(vp−1,vp)

(fi − fj)

⎞
⎠

2

≤ (1× 2p−1 + 2× 2p−2 + ...+ 2p−1 × 1)

·
(
(fv0 − fv1)

2

2p−1
+

∑
(i,j)∈(v1,v2)(fi − fj)

2

2p−2
+ ...+

∑
(i,j)∈(vp−1,vp)

(fi − fj)
2

1

)

= p

⎛
⎝(fv0 − fv1)

2 + 2
∑

(i,j)∈(v1,v2)

(fi − fj)
2 + ...+ 2p−1

∑
(i,j)∈(vp−1,vp)

(fi − fj)
2

⎞
⎠

The intuitive idea is that the graph edges composing tree edges closer to the anchor, i.e. (i, j) ∈
(vl, vl+1) for small l where vl ∈ Cl, will be passed through many more times than those composing
tree edges far away from the anchor. So when applying weighted Cauchy-Schwartz inequality, a
larger denominator is imposed on (fi − fj)

2 for those (i, j) ∈ (vl, vl+1) for small l. For example,

for the most frequently used edge (v0, v1), a penalty of 2p−1 is imposed on these edges (2 such
edges, ((0,0),(0,1)) and ((0,0),(1,0))), while for those graph edges composing (vp−1, vp), only a
constant is put in the denominator.

Next we need to figure out the frequency that each graph edge is used for covering all the nodes.
By induction it is not hard to observe that the graph edges on the tree edge (i, j) ∈ (vl, vl+1) will
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be passed by at most 22p−1−l paths. Take the graph of Fig.5 as an example. Each path is of the
form v0 → ... → v4, vi ∈ Ci. The edges on (v3, v4) are used at most 8 times, eg. ((7, 0), (8, 0)).
We have 8 < 16 = 22p−1−3. The edges on (v2, v3) are used at most 8 × 2 + 4 = 20 times, eg.
((3, 0), (4, 0)). 20 < 32 = 22p−1−2. The edges on (v1, v2) are used at most 20× 2 + 2 = 42 times,
eg. ((1, 0), (2, 0)). 42 < 64 = 22p−1−1. The top-most edges, ((0, 0), (1, 0)) and ((0, 0), (0, 1)), are
used 42× 2 + 1 = 85 times. 85 < 128 = 22p−1−0.

So summing over all paths from anchor to all nodes within the lower triangle T :∑
v∈T

(fv0
− fv)

2

≤ p
∑

v0→...→vp∈Cp

⎛
⎝22p−1(fv0 − fv1

)2 + ...+ 22p−1)
∑

(i,j)∈(vp−1,vp)

(fi − fj)
2

⎞
⎠

≤ p22p−1
∑

(i,j)∈E
(fi − fj)

2

Note that p22p−1 = a2 log a/2. So:

γ =
2

a2 log a

is enough to cover all nodes in the lower triangle of an a× b rectangle lattice as in Fig.(5).

To cover the rest nodes, i.e. blue nodes in Fig.5, we build paths that horizontally extend from the
outer-most boundary nodes vp ∈ Cp. Let vp′ denote the rightmost node extending horizontally from
vp ∈ Cp. Similarly we use weighted Cauchy-Schwartz inequality to bound the path: v0 → ... →
vp → vp′ : (

fv0
− fvp′

)2

=

⎛
⎝(fv0 − fv1) + ...+

∑
(i,j)∈(vp−1,vp)

(fi − fj) +
∑

(i,j)∈(vp,vp′ )
(fi − fj)

⎞
⎠

2

≤ (
1× 2p−1 + 2× 2p−2 + ...+ 2p−1 × 1 + b× 1

)
·
(
(fv0

− fv1)
2

2p−1
+ ...+

∑
(i,j)∈(vp−1,vp)

(fi − fj)
2

1
+

∑
(i,j)∈(vp,vp′ )(fi − fj)

2

1

)

=
(
p2p−1 + b

)⎛⎝p−1∑
l=0

∑
(i,j)∈(vl,vl+1)

(fi − fj)
2

2p−1−l
+

∑
(i,j)∈(vp,vp′ )

(fi − fj)
2

⎞
⎠

It is easy to observe that to cover these extended nodes, the graph edges (i, j) ∈ (vl, vl+1) are passed
through b2p−1−l times for l = 0, 1, ..., p− 1, and b times for those extended edges (i, j) ∈ (vp, vp′).
Now totally we have:∑

v

(fv0 − fv)
2 ≤ (p22p−1 + b(p2p−1 + b)

) ∑
(i,j)∈E

(fi − fj)
2

Plugging in 2p = a, a ≤ b and ab = k, we have:∑
v

(fv0 − fv)
2 ≤ (

ab log a+ b2
) ∑
(i,j)∈E

(fi − fj)
2

≤ max

(
2k log

k

b
, 2b2

) ∑
(i,j)∈E

(fi − fj)
2

Note that Φ = a
k/2 = 2

b . Replace b with Φ, the proof is done.
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We list two extreme examples for demonstration. For the thinnest line graph where a = 1, b = k
and Φ = 2/k, γ = 1

2k2 = Φ2/8 is sufficient to have: L − γLstar � 0. For the other extreme case

where the graph is a square lattice with a = b =
√
k, Φ = 2/

√
k, γ = 1

k log kΦ = Φ2/4 log(kΦ) is

required for the LMI to hold. Note that Φ is between O(1/
√
k) and Ω(k). So at least the smaller

γ = Θ(Φ2/ log k) can make the LMI hold. Proof is done.

For future use we present the explicit form of the dual problem to a primal problem that has con-
straints M ∈ CLMI(a, γ). Interestingly, the dual problem corresponds to finding an embedding of
all nodes in a 1D Euclidean space, such that certain constraints at each node and edge of the graph
hold.

Lemma 9. Given G = (V,E) with adjacency matrix A, let yi denote the variable associated with
node i ∈ V . Assume w.l.o.g. the anchor is node 1. Consider the following SDP problem, where the
constraints are exactly those of M ∈ CLMI(1, γ):

max :
∑
i

yiMii (17)

s.t. Q(M ; γ) = L(A ◦M)− γL(M) � 0

Mij ≥ 0, ∀2 ≤ i < j

1−Mii ≥ 0, ∀2 ≤ i

Mii −Mij ≥ 0, ∀2 ≤ i < j

Mjj −Mij ≥ 0, ∀2 ≤ i < j

Then the corresponding dual problem has the following form:

min : y1 +
∑
i≥2

ρi (18)

s.t. yi + (1− γ) z2i +
∑

2≤j �=i,(i,j)∈E
αij + αi = ρi, ∀i ≥ 2, (1, i) ∈ E

yi − γz2i +
∑

2≤j �=i,(i,j)∈E
αij + αi = ρi, ∀i ≥ 2, (1, i) /∈ E

(1− γ) (zi − zj)
2 ≤ αij + αji, ∀2 ≤ i < j, (i, j) ∈ E

ρi ≥ 0, αij ≥ 0, αi ≥ 0, zi ≥ 0

where zi, a scalar dual variable, is the embedding coordinate of node i ≥ 2; the rest dual variables
include αi, ρi, ∀i ≥ 2 and αij , ∀(i, j) ∈ E.

Proof. The explicit Lagrangian of Eq.(17) is:

L = y1 +
∑
i≥2

Miiyi + 〈Q,G〉+
∑ ∑

2≤i<j

μijMij +
∑
i≥2

ρi (1−Mii) (19)

+
∑ ∑

2≤i<j

αij (Mii −Mij) +
∑ ∑

2≤j<i

αij (Mii −Mji)

where G � 0, μij ≥ 0, ρi ≥ 0, αij ≥ 0 are lagrange multipliers. Notice the symmetric matrix Q
can be decomposed into the following form:

Q(M ; γ) = L(A ◦M)− γL(M) =
∑∑

i<j

(
1(i,j) − γ

)
Mij (eii + ejj − eij − eji)

where 1(i,j) is the indicator of (i, j) ∈ E, eij denotes the matrix with value 1 at (i, j) and 0 else-
where. Plugging in M1i = Mii, we have:

〈Q,G〉 =
∑
i≥2

(
1(1,i) − γ

)
Mii (G11 +Gii − 2G1i)

+
∑ ∑

2≤i<j

(
1(i,j) − γ

)
Mij (Gii +Gjj − 2Gij)
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Taking derivatives w.r.t. Mii and Mij respectively, the dual problem is:

min : y1 +
∑
i≥2

ρi (20)

s.t. yi +
(
1(1,i) − γ

)
G(1i) +

∑
2≤j �=i

αij = ρi, ∀i ≥ 2

(
1(i,j) − γ

)
G(ij) + μij − αij − αji = 0, ∀2 ≤ i < j

G � 0, μij ≥ 0, ρi ≥ 0, αij ≥ 0

where G(ij) = Gii +Gii − 2Gij .

Since G is symmetric and PSD, we have G = V V ′ such that Gij = v′ivj . vi ∈ R
n can be viewed

as the embedding of node i in the n-dimensional Euclidean space. G(ij) = ||vi− vj ||2 is simply the
squared distance between the embeddings of node i and j. We write constraints separately based on
indicators:

min : y1 +
∑
i≥2

ρi (21)

s.t. yi + (1− γ) ||vi − v1||2 +
∑

2≤j �=i

αij = ρi, ∀i ≥ 2, (1, i) ∈ E

yi − γ||vi − v1||2 +
∑

2≤j �=i

αij = ρi, ∀i ≥ 2, (1, i) /∈ E

(1− γ) ||vi − vj ||2 + μij − αij − αji = 0, ∀2 ≤ i < j, (i, j) ∈ E

−γ||vi − vj ||2 + μij − αij − αji = 0, ∀2 ≤ i < j, (i, j) /∈ E

μij ≥ 0, ρi ≥ 0, αij ≥ 0

We further simplify this dual formulation. Notice that for constraints of (i, j) /∈ E, μij ≥ 0 is
an independent and completely free variable that can always make such a constraint hold. So we
can drop these redundant constraints. For edge constraints of (i, j) ∈ E, we replace μij with
inequalities. For node constraints of node i, we split out those αij with (i, j) /∈ E which are
independent and combine them into a new variable αi ≥ 0. Also note that the embedding of anchor,
v1, is completely free variable, which we can fix w.l.o.g. at 0. The dual problem is simplified as
follows:

min : y1 +
∑
i≥2

ρi (22)

s.t. yi + (1− γ) ||vi||2 +
∑

2≤j �=i,(i,j)∈E
αij + αi = ρi, ∀i ≥ 2, (1, i) ∈ E

yi − γ||vi||2 +
∑

2≤j �=i,(i,j)∈E
αij + αi = ρi, ∀i ≥ 2, (1, i) /∈ E

(1− γ) ||vi − vj ||2 ≤ αij + αji, ∀2 ≤ i < j, (i, j) ∈ E

ρi ≥ 0, αij ≥ 0, αi ≥ 0

Note the constraints have been divided into 3 categories: node constraints of those nodes directly
linking to the anchor node, node constraints of the rest nodes, and edge constraints of edges among
all nodes except the anchor.

The key observation is that each embedding vector vi only appears in node constraints with its length
||vi||, while only distances between embeddings exist in edge constraints, which are all inequalities.
We perform several operations on vi while maintaining dual feasibility. The first step is to fold all
vi into a fixed quadrant so that ||vi|| remains unchanged while ||vi − vj || either remains unchanged
or is decreased. This can be done by first fixing a Euclidean coordinate system, with n hyperplanes
intersecting at 0 and pairwise perpendicular. Then for each such hyperplane that partitions the
whole space into two half-spaces, we fold all vi in the “left” half-space to the “right” half-space
axis-symmetrically. It is obvious that this folding operation maintains ||vi|| for all i and ||vi − vj ||
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for those i, j in the same half-space. The rest i, j, ||vi − vj || are only decreased due to Pythagoras
theorem. After folding for all these hyperplanes, all vi now locate in the same quadrant such that
v′ivj ≥ 0, ∀i, j, i.e. angles between vi and vj are smaller than π/2. Yet all node and edge constraints
are still satisfied.

The second step is mapping all vi onto one single direction:

vi ∈ R
n �→ zi ∈ R

+ : zi = ||vi||
By definition all node constraints are satisfied. Again by Pythagoras and the π/2 condition, ||vi−vj ||
is decreased so that edge constraints are satisfied. Therefore the dual problem Eq.(22) can be reduced
to the equivalent Eq.(18). Proof is done.

To prove the main theorem, we need the following lemma.

Lemma 10. On a graph with maximum degree D, consider the following max-trace problem:

max : tr(M) (23)

s.t. L(A ◦M)− γL(M) � 0

Mij = Mji, M11 = 1, M1i = Mii

0 ≤Mij ≤Mii,Mjj ≤ 1

Let M∗ = M∗(γ) be the optimal solution to this problem. Then M∗ has the following properties:

1. tr(M∗) ≤ D/γ, where D is the max degree of the graph.

2. The node set V0 = {i : M∗
ii = 1}, including the anchor, form a connected sub-graph.

3. The 1-hop outer layer, V1 = {i : (i, j) ∈ E, j ∈ V0, i /∈ V0}, satisfy: 0 ≤M∗
ii < 1.

4. The rest nodes are: M∗
ii = 0.

Remark:
This lemma is just saying that the solution M∗ to the max-trace problem has a nested structure
centered at the anchor. The interior of the support of diag(M∗) have value M∗

ii = 1, the boundary
0 ≤ M∗

ii < 1, and the rest nodes have M∗
ii = 0. We conjecture that M∗ always has a “fattest”

shape. At least by Theorem 4 M∗ contains a square of size Θ(k) if γ = Θ( 1
k log k ). Fig.6 shows

two solutions of the max-trace problem with different values of γ. Intuitively, smaller γ allows the
search to extend farther away than larger γ.

(a) γ = 0.3 (b) γ = 0.08

Figure 6: Optimal solution M∗ of max-trace problem, with large / small values of γ. Values of M∗
ii

are illustrated through grey-scale. Rped node is the anchor.
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Proof. This is the problem of Eq.(17) with all yi = 1. According to Eq.(18), the corresponding dual
problem is:

min : 1 +
∑
i≥2

ρi

s.t. 1 + (1− γ) z2i +
∑

2≤j �=i,(i,j)∈E
αij + αi = ρi, ∀i ≥ 2, (1, i) ∈ E

1− γz2i +
∑

2≤j �=i,(i,j)∈E
αij + αi = ρi, ∀i ≥ 2, (1, i) /∈ E

(1− γ) (zi − zj)
2 ≤ αij + αji, ∀2 ≤ i < j, (i, j) ∈ E

ρi ≥ 0, αij ≥ 0, αi ≥ 0, zi ≥ 0

We show (1) by constructing a simple dual solution to yield an upper bound on the max-trace
problem. Let zi = z, ∀i ≥ 2, so that all edge constraints automatically hold. Let z2 = 1/γ,
αij = αi = 0, so that ρi = 0, ∀i ≥ 2, (1, i) /∈ E. The cost of this dual feasible solution, thus an
upper bound on tr(M∗), is:

tr(M∗) ≤
∑

i:(1,i)∈E

(
1 + (1− γ)z2

) ≤ D/γ

The intuition is that zi increases as i goes farther away from the anchor, until γz2i ≥ yi = 1 for
all nodes i outside some closed layer B which contains the anchor. This layer corresponding to the
above trivial solution is simply the set of 1-hop neighbors of anchor: B = {i : (1, i) ∈ E}. But
this dual feasible solution increases zi too fast (in one step), thus pays too much price at ρi for these
direct neighbors.

Let V0 be the set of nodes with M∗
ii = 1 and connected to the anchor node 1. Let V1 be the 1-hop

outer layer of V0, and V2 the 1-hop outer layer of V1. Since strong duality holds, by complementary
slackness, the optimal dual variables have: ρi = 0, ∀i ∈ V1. We create slackness for all edges
between V1 and V2, which correspond to the original dual variables μij back in Eq.(21). Again by
complementary slackness, if μij > 0, then the primal Mij = 0. We have disconnected nodes in V0

from outside V1. By Theorem 3 the support of diag(M) is connected. So Mii = 0 for those nodes
outside V1.

To create this slackness for edges between V1 and V2, consider a modified primal objective:

max :
∑

i∈V0∪V1

Mii + (1− ε)
∑

i/∈V0∪V1

Mii (24)

s.t. M ∈ CLMI(1, γ)

The optimal dual solution to the max-trace problem is also feasible for this modified problem, which
gives the same dual cost. Now outside V1:

(1− γ) (zi − zj)
2 ≤ αji + αij , ∀j ∈ V1, i ∈ V2 (j, i) ∈ E

1− ε− γz2i +
∑

2≤j �=i,(i,j)∈E
αij + αi = ρi, ∀i ∈ V2

Leaving other dual variables unchanged, we can distribute ε uniformly on those αij , i ∈ V2, j ∈ V1

to create the slackness we want on edges (j, i). Proof is done.

The proofs of main theorems for Poisson and Gaussian models follow similar lines. Here we only
elaborate on the Gaussian case.

Proof for Gaussian model:

Proof. The proof consists of 2 parts:
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• Inseparability: This part generalizes the results of [12] in terms of the internal conductance
parameter Φ rather than the length and width used in [12]. This is shown in Lemma 11.

• Separability: This part itself can be divided into two steps.

1. We first show under H0 the optimal value of the test is upper bounded by using a
modified version of M∗, the optimal solution to the max-trace problem. This is shown
in Lemma 12.

2. We then show that under H1, the feasible solution M∗ to the max-trace problem covers
a large portion of the ground-truth cluster for our problem.

By Lemma 12 we have:

c∗|H0 ≤ N(0, tr(M∗)) +O

(√
log k

γ

)

For the H1 case, for simplicity we consider a band B of size k, with width a and length b, ab = k.
The corresponding conductance is Φ = Θ(1/b). Such a band must be contained in a square of
size b × b, i.e. Θ(1/Φ2). On the other hand, for this band we choose γ = Θ(Φ2/ log k). The
M∗ of the max-trace problem with this γ at least contains a square of size Θ(1/Φ2). Therefore
by appropriately positioning the anchor, M∗ overlaps B at least on Θ(k) nodes. This means if we
simply adopt M∗ as a primal feasible solution, we have:

c∗|H1
≥ N(0, tr(M∗)) + Θ(k)μ

Note that tr(M∗) = O(1/γ). To asymptotically separate H0 and H1, it suffices that:

tr(M∗) +O(
√
1/γ) +O(

√
log k/γ) ≤ tr(M∗)−O(

√
1/γ) + Θ(k)μ,

where the terms O(
√
1/γ) on both sides correspond to the standard deviation term. Plugging in

γ = Φ2/log(k), we have:

μ = Ω

(
log k

kΦ

)
When the anchor is unknown, applying the test for different anchors induces an additional

√
log n

term due to union bound. When the shape is unknown, the test sets γ according to the smallest
conductance, i.e. γ = Θ(1/k2), to search for the thinnest shape with size k. In this case, the
requirement on μ, when agnostic to anchor and shape, is:

μ = Ω
(
log k

√
log n

)
Proof is done.

Lemma 11. The two hypothesis H0 and H1 are asymptotically inseparable if:

μnKnΦn log(Kn)→ 0

Proof. The collection of anomalous subgraphs with size Kn and internal conductance Φn contains
the bands of width hn and length ln defined in Theorem 3 of [12]. So the inseparability result there
also holds for our case. Roughly we have:

lnhn = Kn,
hn

Kn
= Φn

By Theorem 3 in [12], H0 and H1 are asymptotically inseparable if: (ignoring the log log() term)

μn

√
Kn

(
ln
hn

)−1/2

log(ln)→ 0

Substitute ln and hn using Kn and Φn, and note that 1/Φ ≥ √Kn. We get:

μnKnΦn log(Kn)→ 0.
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Lemma 12. Assume xi follows standard normal distribution for all nodes i. The optimal cost of
problem Eq.(17) with signal xi for node i is upper bounded by:

c∗|H0
≤
∑
i

xiM
∗
ii +Θ

(√
log

(
1

γ

)
/γ

)

where M∗ is the optimal solution to the max-trace problem with parameter γ.

Proof. Let yi = 1 + xi/N , where N is a normalization constant to be decided. We show that
for appropriately chosen N , the modified problem Eq.(17) with signal yi has the optimal cost with
some upper bound. We then recover the original problem by first subtracting tr(M∗), following by
multiplying N .

Write yi = (1 + xmax/N) − (xmax − xi)/N = (1 + xmax/N) − ηi, where xmax =

maxi∈H∗(M∗) |xi|, ηi = (xmax − xi)/N . Note that xmax scales as Θ(
√|H∗|) for i.i.d. standard

normal random variables, where H∗(M∗) is the resulting fat shape corresponding to the max-trace
problem. Note that 0 ≤ ηi ≤ 2xmax/N for i ∈ H∗. Consider the dual solution of the max-trace
problem. We know that for nodes i ∈ V0 the dual variables ρi > 0. Let δ = mini∈V0

ρi > 0, which
is a constant depending only on γ. Consider the following problem:

max : (1 + xmax/N)tr(M) (25)

s.t. M ∈ CLMI(1, γ)

Since xmax is just a constant, the optimal dual solution to this problem is just the (1 + xmax/N)-
stretched version of that of the max-trace problem. So mini∈V0

ρ′i = (1 + xmax/N)δ > δ. Now
choose N sufficiently large such that

ηi ≤ 2xmax/N ≤ δ < min
i∈V0

ρ′i

We modify this dual solution of Eq.(25) to build a dual feasible solution for:

max :
∑
i

yiMii (26)

s.t. M ∈ CLMI(1, γ)

Let c̃ denote the optimal cost. By Lemma 9 the corresponding dual problem is:

min : y1 +
∑
i≥2

ρi (27)

s.t. 1 +
xmax

N
− ηi + (1− γ) z2i +

∑
2≤j �=i,(i,j)∈E

αij + αi = ρi, ∀i ≥ 2, (1, i) ∈ E

1 +
xmax

N
− ηi − γz2i +

∑
2≤j �=i,(i,j)∈E

αij + αi = ρi, ∀i ≥ 2, (1, i) /∈ E

(1− γ) (zi − zj)
2 ≤ αij + αji, ∀2 ≤ i < j, (i, j) ∈ E

ρi ≥ 0, αij ≥ 0, αi ≥ 0, zi ≥ 0

The only differences between Eq.(27) and the dual problem of Eq.(25) are those −ηi at node con-
straints. Based on the dual optimal solution of Eq.(25), we modify dual variables to build a dual
feasible solution for Eq.(27). Two cases need to be considered.

• For nodes i ∈ V0, simply let ρ′i = ρi − ηi. Note that we still have dual feasibility: ρ′i ≥ 0
by construction of N .

• For nodes i ∈ H∗ − V0 where ρ′i = ρi = 0, we increase the free variables, α′i = αi + ηi,
to absorb the difference, while keeping ρ′i = 0 unchanged.

• For nodes outside H∗, since we know the size k, for ease of proof we simply zero out all
yi.

20



In this way we have built a dual feasible solution of Eq.(27). The corresponding dual cost, thus an
upper bound on the primal optimum of Eq.(26) by weak duality, is:

c̃ ≤ (1 +
xmax

N
)tr(M∗)−

∑
i∈V0

ηi

= tr(M∗) +
xmax

N
tr(M∗)− xmax

N
|V0|+

∑
i∈V0

xi

N

= tr(M∗) +
xmax

N
β|V1|+

∑
i∈V0

xi

N

≤ tr(M∗) +
∑
i

xiM
∗
ii

N
+

xmax

N
β|V1|

where β|V1| = tr(M∗) − |V0| is the fractional boundary part of M∗. This part can be 0 for some
values of γ, or can be maximally |V1|. Note that H∗ is a fat shape in lattice, so the boundary is:

|V1| = Θ
(√

tr(M∗)
)
= O(1/

√
γ).

Since yi = 1+xi/N , we restore the solution by subtracting tr(M∗) and then multiplying N , which
gives:

c∗|H0
≤
∑
i

xiM
∗
ii + xmaxO(

√
1/γ)

Lemma 13. G = (V,E) is a connected subgraph on an infinitely large 2D lattice. G also satisfies:

1. |V | = Ω(k);

2. the conductance of G is Θ(1/
√
k):

Then G must contain a triangle of size Θ(k).

Proof. We provide an intuitive sketch. Consider all horizontal cuts on G. The most “balanced”

horizontal cut Ch, where both parts are of size Θ(k), must have length Ω(
√
k), otherwise (2) will

be violated. Consider all vertical cuts within the range of the balanced horizontal cut range. Similar

arguments follow that the most balanced vertical cut Cv has size Ω(
√
k).

Consider vertical cuts that start from Cv and move aside stepwise along Ch. Assume at some step
the vertical cut passes through a edges, the smaller part has b nodes, and the conductance here is

tight: a
b = Φ = Ω(1/

√
k). For the next vertical cut, assume the cut decreases by δ edges. The

conductance at the new vertical cut is: a−δ
b−a ≥ Φ. Then we have δ

a ≤ Φ, or δ = O(aΦ) = O(1).
This means that the shape can only contract by a constant number of nodes at each step, thus at least

Θ(
√
k) steps to shrink to 1 node. This triangle shape has size Θ(k).
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