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A Arbitrary Order and Conservative Best Response Dynamics

Given the negative result of Section 3.2, the basic best-response dynamics would not be appropriate
to use if no assumptions can be made about the order in which sensors perform their updates. To
address this problem, we describe here a modified dynamics that we call conservative best-response.
The idea of this dynamics is that sensors only change their state when they are confident that they
are not on the wrong side of the target separator. This dynamics is not as practical as regular best-
response dynamics because it requires substantially more computation on the part of the sensors.
Nonetheless, it demonstrates that positive results for arbitrary update orders are indeed achievable.

Conservative best-response dynamics: In this dynamics, sensors behave as follows:

1. If, for all linear separators through the sensor’s location, a majority of neighbors on
both sides of the separator are positive, then flip to positive.

2. If, for all linear separators through the sensor’s location, a majority of neighbors on
both sides of the separator are negative, then flip to negative.

3. Else (for some linear separator through the sensor’s location, the majority on one side
is positive and the majority on the other side is negative) then don’t change.

4. To address sensors near the boundary of the unit sphere, in (1)-(3) we only consider
linear separators with at least 1/4 of the points in their neighborhood on each side.

Theorem 5 For absolute constants c3, c4, for r ≤ γ

c3
√
d

and N ≥ c4
(r/2)dγ2 ln( 1

rdγδ
), in arbitrary-

order conservative best-response dynamics, each sensor whose r-ball does not intersect the target
separator will flip state correctly and no sensor will ever flip state incorrectly.

Thus, Theorem 5 contrasts nicely with the negative result in Theorem 3 for standard best-response
dynamics and shows that the potential difficulties of arbitrary-order dynamics no longer apply.

Proof: We will show that for the given value of N , with high probability we have the following
initial conditions: for each of the N sensors, for all hemispheres of radius r centered at that sensor,
the empirical fraction of points in that hemisphere that are labeled positive is within a γ = 1/2− η
fraction of its expectation. This implies in particular that at the start of the dynamics, all such
hemispheres that are fully on the positive side of the target separator have more positive-labeled
sensors than negative-labeled sensors, and all such hemispheres that are fully on the negative side of
the target separator have more negative-labeled sensors than positive-labeled sensors. This in turn
implies, by induction, that in the course of the dynamics, no sensor ever switches to the incorrect
label. In particular, if we consider the hyperplane through a sensor that is parallel to the target and
consider the hemisphere of neighbors on the “good side” of this hyperplane, by induction none of
those neighbors will have ever switched to the incorrect label, and so their majority will remain the
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correct label, and so the current sensor will not switch incorrectly by definition of the dynamics. In
addition, it implies that all sensors whose r-balls do not intersect the target separator will flip to the
correct label when it is their turn to update.

To argue this, for any fixed sensor and its neighborhood r-ball, since the VC-dimension of linear
separators in Rd is d+ 1, so long as we see

m ≥ c

γ2
[d ln(1/γ) + ln(N/δ)]

points inside that r-ball (for sufficiently large constant c), with probability at least 1− δ/N , for any
hyperplane through the center of the ball, the number of positives in each halfspace will be within
γm/8 of the expectation, and the number of negatives in each halfspace will be within γm/8 of the
expectation. This means that if the halfspace is fully on the positive side of the target, then we see
more positives than negatives, and if it is fully on the negative side of the target then we see more
negatives than positives. (In the case of sensors near the boundary of the unit ball, this holds true for
all with sufficiently many points, which includes the halfspace defined by the hyperplane parallel to
the target separator if the sensor is within distance r of the target separator for r < γ

c3
√
d

.) We are
using δ/N as the failure probability so we can do a union bound over all the N balls. Finally, we
solve for N to ensure the above guarantee on m to get

N ≥ c4
(r/2)dγ2

ln

(
1

rdγδ

)
points suffice for some constant c4.

B Additional Proofs

Proof (Theorem 3): Suppose the labeling is given by sign(w · x). We show that if sensors are
updated in increasing order of w ·x (from most negative to most positive) then with high probability
all sensors will update to negative labels.

Consider what we see when we come to update the sensor at x. Assuming we have not yet failed
(given a positive label), all of the points x′ with w ·x′ < w ·x are labeled negative, while those with
w · x′ > w · x are unchanged from their original states, and so are still labeled with independent
uniform noise. As in the proof of Theorem 2, we apply Bernstein’s theorem to the difference ∆
between the number of negative and positive points in the neighborhood of x, which we write as a
sum of (N − 1) independent variables ∆i. The expected labels of the nearby points depend on the
location of x, so we consider three regions: w · x ≤ −r, w · x ≥ 0, and −r < w · x < 0.

Let V denote the probability mass of the ball of radius r around x. In all cases the variance is
bounded by Var[∆i] ≤ E[∆2

i ] = V ≤ rd.

In the first region (w · x ≤ −r) we can use the same analysis from Theorem 2 to find that E[∆i] ≤
−V (1−2η) ≤ −(r/2)d(1−2η), since the ball around x never crosses the separator and any sensors
previously updated to negative labels cannot hurt.

In the second region (w · x ≤ 0) we can use a similar analysis, bounding

E[∆i] ≤ −V/2 + (1− η)V/2 = −ηV/2 ≤ − 1
2 (r/2)d,

since the measure of the (positive biased) half of the ball further from the separator than x is never
larger than the measure of the remaining (all negative) half of the ball.

In the final region (0 < w ·x < r), we must take a little more care, as the measure of the all-negative
half of the ball may be less than the measure of the unexamined side, which may be positive-biased
due to crossing the separator. To analyze this case, we project onto the 2-dimensional space spanned
by x and w. The worst case is clearly when x is on the surface of the ball, as shown in Figure 4.

Any point in the red region is known to have a negative label, while points in the dark blue region
are biased towards positive labels. We first show that the red region is bigger by showing that the
angle α subtended by the dark blue region is smaller than the angle β of the red region. Construct
the segment xA by reflecting the segment xB about the line xO and extending it to the separator.
Note that the angle ∠OxA is the same as the angle θ between x and the separator. We find that
α ≤ β precisely when xA ≥ xC = r. Indeed, by considering the isosceles triangle4AxO we see
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Figure 4: A ball around x intersecting the decision boundary and the boundary of the unit ball.

that xA = 1/(2 cos θ) ≥ 1/2. So as long as r ≤ 1/2 we have β ≥ α. Thus, since the projection of
the uniform distribution over the unit ball onto this plane is radially symmetric, the red region has
more probability mass than the blue region.

We can now calculate for this case

E[∆i] ≤ (−1)[measure of red] + (1− 2η)[measure of blue] + (2η − 1)[measure of white]

≤ −2η[measure of red].

Note that although the projection does not make sense for d = 1 the result obviously still holds (as
there are no points near both the separator and the boundary of the unit ball). We can lower bound
the measure of the red region by the measure of the sphere inscribed in the sector, which has radius
at least cr for some 0 < c < 1/2 as long as r ≤ 1/2 (since β is bounded away from 0 in this range
of r).

Now we see that for any x the expected label satisfies

E[∆i] ≤ − 1
2 (cr)d min(η, 12 − η).

Letting φ = min(η, 12−η), we find that the probability of giving a positive label on any given update
is

P[∆ ≥ 0] ≤ exp

(
− 1

4 (N − 1)2(cr)2dφ2/2

(N − 1)rd + (N − 1)(cr)dφ/3

)

= exp

(
− 1

4 (N − 1)(cr)dφ2

1 + φ/3

)
= exp

(
−(N − 1)(cr)dφ2/8

)
By the union bound, we find that

N ≥ 16

(cr)dφ2

(
ln

8

(cr)dφ2
+ ln

1

δ

)
suffices to ensure that with probability at least 1− δ all sensors are updated to negative labels.

Note 1 If r = O(1/
√
d) then we can lower bound all of the relevant measures in the preceding

proof by Θ(rd) rather than (Θ(r))d, to see that

N ≥ Ω

(
1

rdφ2

(
ln

1

rφ
+ ln

1

δ

))
suffices.
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Figure 5: Generalization error with 1000 sensors in different noise scenarios. Generalization error
in y-axis and Labels used in x-axis. From Left to Right - Random Noise, and Pockets of Noise.
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Figure 6: Generalization error with 5000 sensors in different noise scenarios. Generalization error
in y-axis and Labels used in x-axis. From Left to Right - Random Noise, and Pockets of Noise.

C Additional Experimental Results

All of the following experiments were run with initial noise rate η = 0.35 for random noise and
η = 0.15 for pockets of noise, and the results have been averaged over 20 trials of 50 iterations
each.

Effect of number of sensors on denoising and learning.
We analyze the performance of learning post-denoising as a function of the number of sensors for
a fixed radius. Given the results of Theorem 2 in Section 3.1 for synchronous updates, we expect
the denoising to improve as sensors are added, which in turn should improve the generalization
error post-denoising. Figures 5, 6, and 7 show the generalization error pre- and post-denoising for
N ∈ {1000, 5000, 25000}. For a budget of 30 labels on random noise, the noise rate after denoising
drops from 12.0% with 1000 sensors to 1.7% with 25000 sensors, and with this improvement we
see a corresponding drop in generalization error from 7.4% to 1.6%. Notice that denoising helps for
both active and passive learning in all scenarios except for the case of pockets of noise with 1000
sensors, where the sensor density is insufficient for the denoising process to have significant effect.

Effect of communication radius on denoising and learning.
We analyze here the performance of learning post-denoising as a function of the communication
radius for a fixed number of sensors. In light of Theorem 2 we expect a larger communication radius
to improve the effectiveness of denoising. Figures 8, 9, and 10 show the generalization error pre-
and post-denoising for r ∈ {0.2, 0.05, 0.025} with 10000 sensors. Here denoising helps for both
active and passive learning in all scenarios.
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Figure 7: Generalization error with 25000 sensors in different noise scenarios. Generalization error
in y-axis and Labels used in x-axis. From Left to Right - Random Noise, and Pockets of Noise.
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Figure 8: Generalization error with connectivity radius of 0.2 and 10,000 sensors in different noise
scenarios. Generalization error in y-axis and Labels used in x-axis. From Left to Right - Random
Noise, and Pockets of Noise.
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Figure 9: Generalization error with connectivity radius of 0.05 and 10,000 sensors in different noise
scenarios. Generalization error in y-axis and Labels used in x-axis. From Left to Right - Random
Noise, and Pockets of Noise.
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Figure 10: Generalization error with connectivity radius of 0.025 and 10,000 sensors in different
noise scenarios. Generalization error in y-axis and Labels used in x-axis. From Left to Right -
Random Noise, and Pockets of Noise.

C.1 Kernelized Algorithm Derivation and Results

Derivation of dual with a linear ball constraint
In order to be able to replace inner products with kernel evaluations in the dual program of the
hinge loss minimization step, we replace the ball constraint given by ‖wk − wk+1‖2 ≤ rk with an
equivalent linear constraint wkwk−1 ≥ 1− r2k/2.

L =

n∑
i=1

ξi −
n∑
i=1

αi(yi(wkxi)/τk − 1 + ξi)

+β(1− r2k/2− wkwk−1)

+γ(‖wk‖2 − 1)−
n∑
i=1

δiξi

To obtain the dual formulation, we take derivation of the above equation w.r.t to wk and ξ and
substitute these values in the original formulation we obtain

max
α,β,γ

n∑
i=1

αi − 1/4γτ2k ∗
n∑
i=1

n∑
j=1

αiαjyiyjxixj

−βwk−1/2τkγ ∗
n∑
i=1

αiyixi

−β2w2
k−1/4γ + β(1− r2k/2)− γ

s.t
0 ≤ α ≤ 1
β, γ ≥ 0

(1)

In (1) the lagrangian variable γ is present as a denominator in three terms which are negative and as
a quantity being subtracted in the objective function. Thus the edge values 0, inf of γ would lead to
decrease in the objective value and cannot lead to maximum. Thus the maximum value of objective
function will be found at γ evaluated at ∂L/∂γ = 0. Taking the derivative of 1 w.r.t γ we get

γ =

√√√√1/τ2k

n∑
i=1

n∑
j=1

αiαjyiyjxixj + βwk−1/2τk + β2w2
k−1/4 (2)
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Figure 11: Accuracy with Gaussian kernels in different noise scenarios. Accuracy in y-axis and
Labels used in x-axis. From Left to Right - Random Noise, and Pockets of Noise.

Substituting this value in the (1) and simplifying gives us -

min
α,β

√√√√ n∑
i=1

n∑
j=1

αiαjyiyjxixj + 2τkβwk−1(

n∑
i=1

αiyixi) + (βτkwk−1)2

−τk
n∑
i=1

αi − τkβ(1− r2k/2)

s.t
0 ≤ α ≤ 1

β ≥ 0

(3)

The term under the square root in (3) can be simplified as (
∑n
i=1 αiyixi+βτkwk−1)2, which further

simplifies equation (3) to

max
α,β

τk

n∑
i=1

αi + τkβ(1− r2k/2)

−

∥∥∥∥∥
n∑
i=1

αiyixi + βτkwk−1

∥∥∥∥∥
s.t

0 ≤ α ≤ 1
β ≥ 0

(4)

The resulting optimization objective function can be implemented by expanding out the two norm
and value of previous weight vector as

∑p
l=1 αlylxl.

Results for kernelized algorithm
We also test the improvement of the active learning method for non-linear decision boundaries. The
target decision boundary is a sine curve on the horizontal axis in R2 space, with points above the
curve labeled as positive, else negative. Noise was introduced in the true labels through methods
described in Section 5.1. For comparison with passive methods we calculate the classification error
over 20 trials, where in each trial we average results over 20 iterations. Both the active and passive
algorithms use a Gaussian kernel with bandwidth of 0.1 for a smooth estimate of the the boundary.
All other parameters remain the same. Results are shown in Figures 6. Notice that the results are
similar to experiments with linear decision boundaries.
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