A Appendix

Here we derive analytical solutions to the optimal feedhaadicy. The form of the optimal feedback
policy depends on how many optimal actions a human intendsrtomunicate per state. There are
up to 2™ different models of the optimal feedback policy if any numbéthe n actions can be
optimal. Assuming a human will communicate fewer thaoptimal actions per state reduces the
number of models we have to consider and thus allows us taaximore information from each
instance of feedback. Here we consider the general caséharwhse with one optimal action per
state.

A.1 General Case

The probability an actiory, in states is optimal can be computed independently of the feedback
to the other actions when no assumptions are made about thieenwf optimal actions a human
intends to communicate. For brevity, tet be a model of the optimal policy;*, in which7* (s, a) =

1. Letw? be a model of the optimal policy in which* (s, a) = 0. The binomial distribution for the
data givenr! is: p(ds q|7!) = (“S’;j:s’a)CUSva(l — C)vs«, whereu, , andvs , refer to the number

of “right” and “wrong” labels respeétively antl , = us q,vs o IS the feedback received fera. The
binomial distribution for the data given the alternativéipis: p(ds ,|m?) = (s +"2)Cvse (1 —

C)t==. From Bayes’ rule, the probability; « is optimal is: v
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The priors can be eliminated if we assume the priors havetumiprobability:
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The binomial coefficients cancel (due the symmetry rule fooiial coefficients). Also, for brevity
let A g = Us,q — Vs,q
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A similar derivation for the alternative policy gives:
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A.2 One Optimal Action Case

Deriving an analytical solution for the case with one oplimetion per state first requires us to
consider how to compute the probability of a model that defadabeling for all the actions in a
state, rather than just one. Withactions in a state there a2& different models to consider. For



brevity let7F = =¥, ... =¥ be one of these models, wherf specifies whethet*(s,i) = 1 or

? n

7*(s,i) = 0. Let Dy = ds1,...,ds  be the accumulated human feedback corresponding te the
actions in state. From Bayes rule we have:

ki _ PDs|T)p(r")
P(r|Ds) = p(Ds)
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A uniform prior over all policies allows us to eliminate theqgs:
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Repeated applications of the chain rule, followed by vdei@timination using conditional indepen-
dence (see AppendixA.3), gives:

p(wk|DS) X p(ds,1|7rlf) X X p(ds,nlﬂ'f]ﬁ)

X Hp(ds,ilﬂ'f)- ®3)

Thus, the posterior can be computed as the prodyetdf;|7F). Letp(ds ;|7F) = C¥si(1 — C)vsi
or p(ds,;|hF) = CV+i(1—C)" as needed. Also, lef; = (“si tV:¢) = (“=i*v=i) We nextisolate
the binomial coefficients from our computatiomfr*| D), which, in the following step, allows us
to cancel them out of the equation:
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We factor out the binomial coefficients because they appeevéry term of the numerator and the
denominator:
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Assuming policyr* is the case for which all actions are optima(z*|D,) expands as:
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The denominator above is a summatior2éfdifferent sets of products. This is equivalent to the
multiplication of then different sets of the two models case (see Appehdix A.1)haws:
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Equation [#) represents the likelihood of modadél, which is useful if we restrict the number of
possible optimal actions per state. We could use EQn. 4 withestricting the number of optimal
actions per state, but finding the model with maximum liketid would involve comparing the
likelihoods of2™ different models, which is intractable. For our purposes,lwit the number of
possible optimal actions per state to one. This decreaseuiinber of models we need to consider
ton. Let7* correspond to the model that actiéris optimal and all others are suboptimal. We
have:
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Equation[(b) is what we use withdvise.

A.3 Simplification of the probability p(Ds|7*)
We can make the computation pfD,|7*) tractable through repeated application of the chain rule
and conditional independence relations. First we expamdd#ita variables using the chain rule:
p(DS|7Tk) = p(ds,la e 7ds,n|7rk)

= p(ds,1|ﬂ-k) X p(ds,Qa e ads,n|ds,17 Wk)

= p(ds,1|7rk) X p(ds,2|ds,17 ﬂ'k) X P(ds,37 e ads,n|ds,17 ds,2a ﬂ-k)

= p(ds1|7*) X pdso|dsn, m) X - X p(dsnldsr, -+ s do 1, 7).
We next use conditional independence to eliminate the digrere among the data variables. Be-
cause we take the policy to be true, and because actioniselécthe same for all the models, the

data received for one action does not help to explain the r@atived for the other actions. This
allows us to eliminate the dependence among the data:

P(Dy|*) = p(dsa|7*) x p(dy2|7*) % pldyalm*) x - x p(dy,nl®).
We can use similar reasoning to eliminate the dependenceutiipla model variables:
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p(dsglmy).
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