
Supplementary Material: Sketching Structured
Matrices For Faster Nonlinear Regression

Haim Avron
IBM T.J. Watson Research Center

Yorktown Heights, NY 10598
haimav@us.ibm.com

Vikas Sindhwani
IBM T.J. Watson Research Center

Yorktown Heights, NY 10598
vsindhw@us.ibm.com

David P. Woodruff
IBM Almaden Research Center

San Jose, CA 95120
dpwoodru@us.ibm.com

The supplementary material contains a complete version (including proofs) of Section 3 (Fast Struc-
tured Regression with Sketching).

1 Fast Structured Regression with Sketching

We now develop our randomized solvers for block-Vandermonde structured lp regression problems.
In the theoretical developments below, we consider unconstrained regression though our results
generalize straightforwardly to convex constraint sets C.

1.1 Background

We begin by giving some notation and then provide necessary technical background.

Given a matrix M ∈ Rn×d, let M1, . . . ,Md be the columns of M , and M1, . . . ,Mn be the rows
of M . Define ‖M‖1 to be the element-wise `1 norm of M . That is, ‖M‖1 =

∑
i∈[d] ‖Mi‖1. Let

‖M‖F =
(∑

i∈[n],j∈[d]M
2
i,j

)1/2

be the Frobenius norm of M . Let [n] = {1, . . . , n}.

1.1.1 Well-Conditioning and Sampling of A Matrix

Definition 1 ((α, β, 1)-well-conditioning [7]) Given a matrix M ∈ Rn×d, we say M is (α, β, 1)-
well-conditioned if (1) ‖x‖∞ ≤ β ‖Mx‖1 for any x ∈ Rd, and (2) ‖M‖1 ≤ α.

Lemma 2 (Implicit in [14]) Suppose S is an r × n matrix so that for all x ∈ Rd,

‖Mx‖1 ≤ ‖SMx‖1 ≤ κ‖Mx‖1.

Let Q · R be a QR-decomposition of SM , so that QR = SM and Q has orthonormal columns.
Then MR−1 is (d

√
r, κ, 1)-well-conditioned.

Proof: For any standard unit vector ei,

‖MR−1ei‖1 ≤ ‖SMR−1e1‖1 ≤
√
r‖SMR−1ei‖2 =

√
r,

and so ‖MR−1‖1 =
∑
i ‖MR−1ei‖1 ≤ d

√
r. Also, for any x,

κ‖MR−1x‖1 ≥ ‖SMR−1x‖1 ≥ ‖SMR−1x‖2 = ‖x‖2 ≥ ‖x‖∞.

1

Theorem 3 (Theorem 3.2 of [7]) Suppose U is an (α, β, 1)-well-conditioned basis of an n × d

matrix A. For each i ∈ [n], let pi ≥ min
(

1, ‖Ui‖1t‖U‖1

)
, where t ≥ 32αβ(d ln

(
12
ε

)
+ ln

(
2
δ

)
)/(ε2).

Suppose we independently sample each row with probability pi, and create a diagonal matrix S
where Si,i = 0 if i is not sampled, and Si,i = 1/pi if i is sampled. Then with probability at least
1− δ, simultaneously for all x ∈ Rd we have:

|‖SAx‖1 − ‖Ax‖1| ≤ ε‖Ax‖1.

We also need the following method of quickly obtaining approximations to the pi’s in Theorem 3,
which was originally given in Mahoney et al. [10].

Theorem 4 Let U ∈ Rn×d be an (α, β, 1)-well-conditioned basis of an n × d matrix A. Suppose

G is a d × O(log n) matrix of i.i.d. Gaussians. Let pi = min
(

1, ‖UiG‖1
t2
√
d‖UG‖1

)
for all i, where t is

as in Theorem 3. Then with probability 1 − 1/n, over the choice of G, the following occurs. If we
sample each row with probability pi, and create S as in Theorem 3, then with probability at least
1− δ, over our choice of sampled rows, simultaneously for all x ∈ Rd we have:

|‖SAx‖1 − ‖Ax‖1| ≤ ε‖Ax‖1.

Proof: Since G is a d×O(log n) matrix of i.i.d. Gaussians, we have that with probability at least
1− 1/n, over the choice of G, that

‖UiG‖1 ≥ ‖UiG‖2 ≥ 1/2‖Ui‖2 ≥ 1/(2
√
d)‖Ui‖1,

simultaneously for all i ∈ [n]. The theorem now follows by Theorem 3.

1.1.2 Oblivious Subspace Embeddings

Let A ∈ Rn×d. We assume that n > d. Let nnz(A) denote the number of non-zero entries of A.
We can assume nnz(A) ≥ n and that there are no all-zero rows or columns in A.

`2 Norm The following family of matrices is due to Charikar et al. [5] (see also [8]): For a param-
eter t, define a random linear map ΦD : Rn → Rt as follows:

• h : [n] 7→ [t] is a random map so that for each i ∈ [n], h(i) = t′ for t′ ∈ [t] with probability 1/t.
• Φ ∈ {0, 1}t×n is a t× n binary matrix with Φh(i),i = 1, and all remaining entries 0.
• D is an n× n random diagonal matrix, with each diagonal entry independently chosen to be +1

or −1 with equal probability.

We will refer to Π = ΦD as a sparse embedding matrix.

For certain t, it was recently shown that with probability at least .99 over the choice of Φ and D, for
any fixed A ∈ Rn×d, we have simultaneously for all x ∈ Rd,

(1− ε) · ‖Ax‖2 ≤ ‖ΠAx‖2 ≤ (1 + ε) · ‖Ax‖2 ,

that is, the entire column space of A is preserved [6]. The best known value of t is t = O(d2/ε2)
[11, 12] .

We will also use an oblivious subspace embedding known as the subsampled randomized Hadamard
transform, or SRHT. See Boutsidis and Gittens’s recent article for a state-the-art analysis [3].

Theorem 5 (Lemma 6 in [3]) There is a distribution over linear maps Π′ such that with probability
.99 over the choice of Π′, for any fixed A ∈ Rn×d, we have simultaneously for all x ∈ Rd,

(1− ε) · ‖Ax‖2 ≤ ‖Π
′Ax‖2 ≤ (1 + ε) · ‖Ax‖2 ,

where the number of rows of Π′ is t′ = O(ε−2(log d)(
√
d +
√

log n)2), and the time to compute
Π′A is O(nd log t′).

We note that there are implicit connections between these embedding results and the compressed
sensing literature, and the well-known restricted isometry property (RIP); see, for example, [4, 1]

2

`1 Norm The results can be generalized to subspace embeddings with respect to the `1-norm
[6, 11, 16]. The best known bounds are due to Woodruff and Zhang [16], so we use their family of
embedding matrices in what follows. Here the goal is to design a distribution over matrices Ψ, so
that with probability at least .99, for any fixed A ∈ Rn×d, simultaneously for all x ∈ Rd,

‖Ax‖1 ≤ ‖ΨAx‖1 ≤ κ ‖Ax‖1 ,
where κ > 1 is a distortion parameter. The best known value of κ, independent of d, is κ =
O(d2 log2 d) [16]. Their family of matrices Ψ is chosen to be of the form Π · E, where Π is as
above with parameter t = d1+γ for arbitrarily small constant γ > 0, and E is a diagonal matrix
with Ei,i = 1/ui, where u1, . . . , un are independent standard exponentially distributed random
variables.

Recall that an exponential distribution has support x ∈ [0,∞), probability density function (PDF)
f(x) = e−x and cumulative distribution function (CDF) F (x) = 1−e−x. We say a random variable
X is exponential if X is chosen from the exponential distribution.

Again, we note the implicit connection to the notion of `1-RIP [2].

1.1.3 Fast Vandermonde Multipication

Lemma 6 Let x0, . . . , xn−1 ∈ R and V = Vq,n(x0, . . . , xn−1). For any y ∈ Rn and z ∈ Rq , the
matrix-vector products V y and V T z can be computed in O((n+ q) log2 q) time.

Proof: It is known that if n ≤ q, then V y and V T z can be computed in O(q log2 q) time [13, 15,
Theorem 2.11]. For n > q, write n = αq + β, where α is a non-negative integer and 0 ≤ β < q.
The lemma follows in general by writing[

V = Vq,q(x0, . . . , xq−1) Vq,q(xq, . . . , x2q−1) · · · Vq,j(xiq, . . . , xn)

]
,

and computing V y or V T z using block multiplication.

1.2 Main Lemmas

We handle p = 2 and p = 1 separately below. Our algorithms make use of the following subroutines
given by our next lemmas.

Lemma 7 (Efficient Multiplication of a Sparse Sketch and Tq(A)) Let A ∈ Rn×d. Let Π = ΦD
be a sparse embedding matrix for the `2 norm with associated hash function h : [n] → [t] for an
arbitrary value of t, and letE be any diagonal matrix. There is a deterministic algorithm to compute
the product Φ ·D · E · Tq(A) in O((nnz(A) + dtq) log2 q) time.

Proof: By definition of Tq(A), it suffices to prove this when d = 1. Indeed, if we can prove for a
column vector a that the product Φ ·D ·E ·Tq(a) can be computed in O((nnz(a) + tq) log2 q) time,
then by linearity if will follow that the product Φ ·D · E · Tq(A) can be computed in O((nnz(A+

dtq) log2 q) time for general d. Hence, in what follows, we assume that d = 1 and our matrix A is a
column vector a. Notice that if a is just a column vector, then Tq(A) is equal to Vq,n(a1, . . . , an)T .

For each k ∈ [t], define the ordered list Lk = (i such that ai 6= 0 and h(i) = k). Let `k = |Lk|. We
define an `k-dimensional vector σk as follows. If pk(i) is the i-th element of Lk, we set

σki = Dpk(i),pk(i) · Epk(i),pk(i).

Let V k be the submatrix of Vq,n(a1, . . . , an)T whose rows are in the set Lk. Notice that V k is itself
the transpose of a Vandermonde matrix, where the number of rows of V k is `k. By Theorem 6, the
product σkV k can be computed in O((`k + q) log2 q) time. Notice that σkV k is equal to the k-th
row of the product ΦDETq(a). Therefore, the entire product ΦDETq(a) can be computed in

O

(∑
k

`k log2 q

)
= O((nnz(a) + tq) log2 q)

time.

3

Algorithm 1 StructRegression-2
1: Input: An n× d matrixA with nnz(A) non-zero entries, an n× 1 vector b, an integer degree q, and an accuracy parameter ε > 0.
2: Output: With probability at least .98, a vector x′ ∈ Rd for which ‖Tq(A)x′ − b‖2 ≤ (1 + ε) minx ‖Tq(A)x− b‖2.

3: Let Π = ΦD be a sparse embedding matrix for the `2 norm with t = O((dq)2/ε2).
4: Compute ΠTq(A) using the efficient algorithm of Lemma 7 withE set to the identity matrix.
5: Compute Πb.
6: Compute Π′(ΠTq(A)) and Π′Πb, where Π′ is a subsampled randomized Hadamard transform of Theorem 5 with t′ =

O(ε−2(log(dq))(
√
dq +

√
log t)2) rows.

7: Output the minimizer x′ of ‖Π′ΠTq(A)x′ − Π′Πb‖2.

Lemma 8 (Efficient Multiplication of Tq(A) on the Right) Let A ∈ Rn×d. For any vector z,
there is a deterministic algorithm to compute the matrix vector product Tq(A) · z in O((nnz(A) +

dq) log2 q) time.

Proof: We will prove that for a column vector a, that Tq(a) · zi, where zi denotes the i-th block
of q coordinates of z, can be computed in O((nnz(a) + q) log2 q) time. Moreover, Tq(a) · zi
will be an n-dimensional vector with nnz(a) non-zero entries. This will be sufficient to estab-
lish the lemma since we have Tq(A) · z =

∑d
i=1 Tq(Ai) · zi. Then if Tq(Ai)zi can be com-

puted in O((nnz(Ai) + dq) log2 q) time, it follows that in O((nnz(A) + dq) log2 q) time, we can
compute Tq(Ai)zi simultaneously for all i. Moreover, as each Tq(Ai)zi is n-dimensional and has
O(nnz(Ai)) non-zero entries, the resulting vectors can be added together in O(nnz(A)) time.

It remains to prove the claimed result for a column vector a = (a1, . . . , an). Notice that Tq(a) is
equal to Vq,n(a1, . . . , an)T . Let L = (i such that ai 6= 0 and), and ` = |L| = nnz(a). Let V be
the submatrix of Vq,n(a1, . . . , an)T containing the rows in L. Note that V is itself the transpose of
a Vandermonde matrix, where the number of rows of V is `. Let ziL be the `-dimensional vector
whose j-th entry equals the j-th non-zero coordinate in zi. By Theorem 6, the product V ziL can be
computed in O((` + q) log2 q) time. Notice that the non-zero entries of Tq(a) · zi are exactly the
entries of V ziL, where the j-th entry of Tq(a) · z equals the entry of V zL corresponding to the j-th
entry in L. It follows that we have computed Tq(a) · zi in O((nnz(a) + q) log2 q) time and is an
n-dimensional vector with nnz(a) non-zero entries.

Lemma 9 (Efficient Multiplication of Tq(A) on the Left) Let A ∈ Rn×d. For any vector z, there
is a deterministic algorithm to compute the matrix vector product z · Tq(A) in O((nnz(A) +

dq) log2 q) time.

Proof: We will prove that for a column vector a, that zTq(a) can be computed in O((nnz(a) +

q) log2 q) time. This will be sufficient to establish the lemma since then the overall time complexity
is
∑d
i=1O((nnz(Ai) + q) log2 q) = O((nnz(A) + dq) log2 q).

It remains to prove the claimed result for a column vector a = (a1, . . . , an). Notice that Tq(a) is
equal to Vq,n(a1, . . . , an)T . Let L = (i such that ai 6= 0 and), and ` = |L| = nnz(a). Let V be
the submatrix of Vq,n(a1, . . . , an)T containing the rows in L. Note that V is itself the transpose of
a Vandermonde matrix, where the number of rows of V is `. Let zL be the `-dimensional vector
whose j-th entry equals the j-th non-zero coordinate in z. By Theorem 6, the product zL · V can be
computed in O((`+ q) log2 q) = O((nnz(a) + q) log2 q) time.

1.3 Fast `2-regression

We start by considering the structured regression problem in the case p = 2. We give an algorithm
for this problem in Figure ??.

Theorem 10 Algorithm STRUCTREGRESSION-2 solves w.h.p the structured regression with p = 2
in time

O(nnz(A) log2 q) + poly(dq/ε).

4

Proof: By the properties of a sparse embedding matrix (see Section 1.1.2), with probability at least
.99, for t = O((dq)2/ε2), we have simultaneously for all y in the span of the columns of Tq(A)
adjoined with b,

(1− ε)‖y‖2 ≤ ‖Πy‖2 ≤ (1 + ε)‖y‖2,
since the span of this space has dimension at most dq + 1. By Theorem 5, we further have that with
probability .99, for all vectors z in the span of the columns of Π(Tq(A) ◦ b),

(1− ε)‖z‖2 ≤ ‖Π′z‖2 ≤ (1 + ε)‖z‖2.
It follows that for all vectors x ∈ Rd,

(1−O(ε))‖Tq(A)x− b‖2 ≤ ‖Π′Π(Tq(A)x−B)‖2 ≤ (1 +O(ε))‖Tq(A)x− b‖2.
It follows by a union bound that with probability at least .98, the output of STRUCTREGRESSION-2
is a (1 + ε)-approximation.

For the time complexity, ΠTq(A) can be computed inO((nnz(A)+dtq) log2 q) by Lemma 7, while
Πb can be computed in O(n) time. The remaining steps can be performed in poly(dq/ε) time, and
therefore the overall time is O(nnz(A) log2 q) + poly(dq/ε).

1.3.1 Logarithmic Dependence on 1/ε

The STRUCTREGRESSION-2 algorithm can be modified to obtain a running time with a logarithmic
dependence on ε by combining sketching-based methods with iterative ones.

The analysis follows that of Section 7.7 of [6], but here we additionally use the fast right matrix-
vector multiplication algorithm associated with Vandermonde matrices in the iterative algorithm.

Define the condition number κ(B>B) =
supx,‖x‖=1‖Bx‖

2

infx,‖x‖=1‖Bx‖2
, and let x0, x1, . . . be the estimates gen-

erated by CG on B>B with righthand side equal to B>b. It is well-known that∥∥B(x(m) − x?)
∥∥2∥∥B(x(0) − x?)
∥∥2 ≤ 2

(√
κ(B>B)− 1√
κ(B>B) + 1

)m
. (1)

where B>Bx? = B>b [9, Theorem 10.2.6]. Thus the running time depends on the condition
number. The running time per iteration is the time needed to compute matrix-vector products Bx
and B>x, plus O(n + d) for vector arithmetic. Here we set B = Tq(A) for an input matrix A. By
Lemma 8, for a vector x, given A and x the matrix-vector product Tq(A) · z can be computed in
O((nnz(A) + dq) log2 q) time.

Suppose we run STRUCTREGRESSION-2 with constant ε = ε0. Let Q · R be a QR-decomposition
of Π′ΠTq(A). Then since ‖Π′ΠTq(A)x‖2 = (1 ± ε0)‖Tq(A)x‖2 for all x ∈ Rd, that is Π′Π is a
subspace embedding for `2, we have for any unit x ∈ Rd,

‖Tq(A) ·R−1x‖2 ≤
1

1− ε0
‖Π′ΠTq(A)R−1x‖2 =

1

1− ε0
,

where the equality uses that Π′ΠTq(A) = Q ·R where Q has orthonormal columns. Similarly,

‖Tq(A) ·R−1x‖2 ≥
1

1 + ε0
‖Π′ΠTq(A)R−1x‖2 =

1

1 + ε0
.

It follows that the condition number

κ(Tq(A)R−1) ≤ (1 + ε0)2

(1− ε0)2
.

That is, Tq(A)R−1 is well-conditioned. Plugging this into (1), after m iterations∥∥AR(x(m) − x∗)
∥∥2

is at most 2εm0 times its starting value. Starting with a solution x(0) with relative
error at most 1, and applying 1 + log(1/ε) iterations of a conjugate-gradient like method with ε0 =
1/e, the relative error is reduced to ε and the total work is O((nnz(A) + dq) log(1/ε)) + poly(dq).
We summarize this derivation in the following theorem.

Theorem 11 There is an algorithm which solves the structured regression problem with p = 2 in
time O((nnz(A) + dq) log(1/ε)) + poly(dq) w.h.p.

5

Algorithm 2 StructRegression-1
1: Input: An n× d matrixA with nnz(A) non-zero entries, an n× 1 vector b, an integer degree q, and an accuracy parameter ε > 0.
2: Output: With probability at least .98, a vector x′ ∈ Rd for which ‖Tq(A)x′ − b‖1 ≤ (1 + ε) minx ‖Tq(A)x− b‖1.

3: Let Ψ = ΠE = ΦDE be a subspace embedding matrix for the `1 norm with t = (dq + 1)1+γ for an arbitrarily small constant
γ > 0.

4: Compute ΨTq(A) = ΠETq(A) using the efficient algorithm of Lemma 7.
5: Compute Ψb = ΠEb.
6: Compute a QR-decomposition of Ψ(Tq(A) ◦ b), where ◦ denotes the adjoining of column vector b to Tq(A).
7: LetG be a (dq + 1)×O(logn) matrix of i.i.d. Gaussians.
8: ComputeR−1 ·G.
9: Compute (Tq(A) ◦ b) · (R−1G) using the efficient algorithm of Lemma 8 applied to each of the columns ofR−1G.

10: Let S be the diagonal matrix of Theorem 4 formed by sampling Õ(q1+γ/2d4+γ/2ε−2) rows of Tq(A) and corresponding entries of
b using the scheme of Theorem 4.

11: Output the minimizer x′ of ‖STq(A)x′ − Sb‖1.

1.4 Fast `1-regression

We now consider the structured regression in the case p = 1. The algorithm in this case is more
complicated than that for p = 2, and is given in Figure (??).

Theorem 12 Algorithm STRUCTREGRESSION-1 solves w.h.p the structured regression in problem
with p = 1 in time

O(nnz(A) log n log2 q) + poly(dqε−1 log n).

Proof: By the properties of a subspace embedding matrix for `1 (see Section 1.1.2), with probabil-
ity at least .99, for t = (dq + 1)1+γ , we have simultaneously for all y in the span of the columns of
Tq(A) adjoined with b,

‖y‖1 ≤ ‖Ψy‖1 ≤ κ‖y‖1,

where κ = O(d2 log2 d). By Theorem 4, we further have that with probability .99, for all vectors in
the span of the columns of Tq(A) adjoined with b,

(1− ε)‖y‖1 ≤ ‖Sy‖1 ≤ (1 + ε)‖y‖1.

It follows by a union bound that with probability at least .98, the output of GENADDITIVE-1 is a
(1 + ε)-approximation.

For the time complexity, ΨTq(A) can be computed in O((nnz(A) + tdq) log2 q) time by Lemma 7,
while Ψb can be computed in O(n) time. Steps 4-6 can be performed in poly(dq log n) time. By
Lemma 8, Step 7 can be performed in O((nnz(A) + dq) log2 q log n) time. Step 8 can be computed
in O(n log n) time, and Step 9 can be done in poly(dqε−1) time.

Remark (Constrained Regression): Here we note the simple, though useful, observation that our
algorithms also solve the constrained version of regression in which there is a constraint set C and
we require x ∈ C. Indeed, the only change is in Step 5 of STRUCTREGRESSION-2 and Step 9 of
STRUCTREGRESSION-1 to instead compute the minimizer x′ over x′ ∈ C. Since |Π′ΠTq(A)x′ −
Π′Πb|2 = (1 ± ε)‖Tq(A)x′ − b‖2 for all x in STRUCTREGRESSION-2, and since ‖STq(A)x′ −
Sb‖1 = (1± ε)‖Tq(A)x′ − b‖1 for all x in STRUCTREGRESSION-1, this is valid.

References

[1] R. Baraniuk, M. Davenport, R. DeVore, and M. Wakin. A simple proof of the restricted isom-
etry property for random matrices. Constructive Approximation, 28(3):253–263, 2008.

[2] R. Berinde, A. Gilbert, P. Indyk, H. Karloff, and M. Strauss. Combining geometry and com-
binatorics: A unified approach to sparse signal recovery. In Communication, Control, and
Computing, 2008 46th Annual Allerton Conference on, pages 798–805, 2008.

[3] C. Boutsidis and A. Gittens. Improved matrix algorithms via the Subsampled Randomized
Hadamard Transform. ArXiv e-prints, Mar. 2012. To appear in the SIAM Journal on Matrix
Analysis and Applications.

6

[4] E. J. Cands. The restricted isometry property and its implications for compressed sensing.
Comptes Rendus Mathematique, 346(910):589 – 592, 2008.

[5] M. Charikar, K. Chen, and M. Farach-Colton. Finding frequent items in data streams. Theo-
retical Computer Science, 312(1):3 – 15, 2004. ¡ce:title¿Automata, Languages and Program-
ming¡/ce:title¿.

[6] K. L. Clarkson and D. P. Woodruff. Low rank approximation and regression in input sparsity
time. In Proceedings of the 45th annual ACM Symposium on Theory of Computing, STOC ’13,
pages 81–90, New York, NY, USA, 2013. ACM.

[7] A. Dasgupta, P. Drineas, B. Harb, R. Kumar, and M. Mahoney. Sampling algorithms and
coresets for `p regression. SIAM Journal on Computing, 38(5):2060–2078, 2009.

[8] A. Gilbert and P. Indyk. Sparse recovery using sparse matrices. Proceedings of the IEEE,
98(6):937–947, 2010.

[9] G. H. Golub and C. F. van Loan. Matrix computations (3. ed.). Johns Hopkins University
Press, 1996.

[10] M. W. Mahoney, P. Drineas, M. Magdon-Ismail, and D. P. Woodruff. Fast approximation of
matrix coherence and statistical leverage. In Proceedings of the 29th International Conference
on Machine Learning, ICML ’12, 2012.

[11] X. Meng and M. W. Mahoney. Low-distortion subspace embeddings in input-sparsity time and
applications to robust linear regression. In Proceedings of the 45th annual ACM Symposium
on Theory of Computing, STOC ’13, pages 91–100, New York, NY, USA, 2013. ACM.

[12] J. Nelson and H. L. Nguyen. OSNAP: Faster numerical linear algebra algorithms via sparser
subspace embeddings. CoRR, abs/1211.1002, 2012.

[13] V. Pan. Structured Matrices and Polynomials: Unified Superfast Algorithms.
Birkhauser/Springer, 2001.

[14] C. Sohler and D. P. Woodruff. Subspace embeddings for the l1-norm with applications. In
Proceedings of the 43rd annual ACM Symposium on Theory of Computing, STOC ’11, pages
755–764, 2011.

[15] Z. Tang. Fast Transforms Based on Structured Matrices With Applications to The Fast Multi-
pole Method. PhD thesis, PhD Thesis, University of Maryland College Park, 2004.

[16] D. P. Woodruff and Q. Zhang. Subspace embeddings and lp regression using exponential
random variables. In COLT, 2013.

7

	Fast Structured Regression with Sketching
	Background
	Well-Conditioning and Sampling of A Matrix
	Oblivious Subspace Embeddings
	Fast Vandermonde Multipication

	Main Lemmas
	Fast 2-regression
	Logarithmic Dependence on 1/

	Fast 1-regression

