
A Proofs

Lemma 11 (Stick Tracing). Fix straight lines L = {〈r0, r1〉 | ar0 + br1 + c = 0} and Λ =
{〈r0, r1〉 | αr0 + βr1 + γ = 0}. The points 〈r0, r1〉 such that there is a p for which the point
〈r0, r1〉 + 〈p, p − 1〉 lies on the line L and the point 〈r0, r1〉 − 〈p, p − 1〉 lies on the line Λ form a
straight line.

Proof. The points 〈r0, r1〉 in question satisfy for some p

a(r0 + p) + b(r1 + p− 1) + c = 0,

α(r0 − p) + β(r1 − p+ 1) + γ = 0.

Eliminating p, we find that the solution set equals(
a(α+ β) + α(a+ b)

)
r0 +

(
b(α+ β) + β(a+ b)

)
r1 + (a+ b)(β + γ) + (α+ β)(c− b) = 0,

which is a straight line as required.

Lemma 12. We use the notation of Theorem 6. The system of linear equations

〈r0, r1〉 − 〈p, p− 1〉 = 〈fT−1(i− 1), fT−1(T − i)〉
〈r0, r1〉+ 〈p, p− 1〉 = 〈fT−1(i), fT−1(T − 1− i)〉

has unique solution

r0 = fT (i), r1 = fT (T − i) and p = pT (i).

Proof. The solution set of the system can be rewritten to

〈r0, r1〉 =

〈
fT−1(i), fT−1(T − 1− i)

〉
+
〈
fT−1(i− 1), fT−1(T − i)

〉
2

〈p, 1− p〉 =

〈
fT−1(i)− fT−1(i− 1), fT−1(T − i)− fT−1(T − 1− i)

〉
2

Notice that the system is over-constrained, so we are essentially checking that it involves a redundant
constraint. It remains to verify that the proposed solution fits. We do this for r0 and p, the cases for
r1 and 1− p follow by symmetry when exchanging i and T − i.
To see that r0 = fT (i), we rewrite

fT−1(i− 1) + fT−1(i) =

i−1∑
j=0

j2j−T+1

(
T − j − 2

T − i− 1

)
+

i∑
j=0

j2j−T+1

(
T − j − 2

T − i− 2

)
=

2

i∑
j=0

j2j−T

((
T − j − 2

T − i− 1

)
+

(
T − j − 2

T − i− 2

))
= 2

i∑
j=0

j2j−T

((
T − j − 1

T − i− 1

))
= 2fT (i)

The case for p = pT (i) holds by definition.

A.1 More than 2 experts

We now show how to achieve the boundRk
T ≤

√
−cT ln q(k) for an arbitrary prior q. Our construc-

tion is a recursive combination of asymmetric binary strategies. The crux is to combine the experts
one-vs-all, with the expert with lowest prior vs the rest. Note that we may always assume that the
number of experts K is finite (in fact K ≤

√
T ), as the bound trivially holds for each expert k with

−c ln q(k) ≥
√
T .

Fix a prior q(k) on k = 1, . . . ,K ordered by increasing probability. In this section we for simplicity
work from the 〈

√
− ln p,

√
− ln(1− p)〉 trade-off (this is achievable, see Section 4.1). We combine

the expert with smallest prior with the recursive combination of the others. We employ the combi-
nation parametrised by p = q(1)−c for some fixed universal constant c determined below. We claim
that this combination guarantees Rk

T ≤
√
−cT ln q(k) for each k. The proof is by induction. The
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recursive combination that combines expert 1 vs the rest, guarantees regret w.r.t. expert 1 bounded
by √

−cT log q(1)

and that w.r.t. each expert k > 1 by

√
−T log(1− q(1)c) +

√
−cT log

q(k)

1− q(1)

It remains to show that we can choose c such that√
−T log(1− q(1)c) +

√
−cT log

q(k)

1− q(1)
≤
√
−cT log q(k)

that is √
− log(1− q(1)c) ≤

√
−c log q(k)−

√
−c log

q(k)

1− q(1)
.

As the square root is concave the right-hand side increases with q(k) ≥ q(1), so we need to show

√
− log(1− q(1)c) ≤

√
−c log q(1)−

√
−c log

q(1)

1− q(1)
.

It is rather complicated to determine analytically the least c that achieves this for all q ≤ 1/3, or get
a good bound. However, a straightforward numerical plot shows that c = 2.51202 is sufficient.
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