A Kernel Algorithm

In practice, we are only provided with a finite number of samples {(mll, R d)} draw i.i.d. from

p(X1,...,X4), and we want to obtain an empirical low rank decomposmon of the kernel embed-
ding. In this case, we will perform a low rank decomposition of the empirical kernel embedding

Cx,y = 1570 (®9_,6(x")). Although the empirical kernel embedding still has infinite dimen-
sions, we will show that we can carry out the decomposition using just the kernel matrices.

Let us denote the kernel matrix for each dimension of the data by K; where j € {1,...,d}. The
(¢,4")-thentry in K; can be computed as K J“ = k(z* T . Alternatively, one can think of implicitly
forming the feature matrix ®; = (¢(x}),...,¢(z})), and the corresponding kernel matrix is K; =
<I>J-T ®;. Furthermore, we denote the tensor feature matrix formed from dimension j + 1 to d of the
dataas ¥; = (®d,_7+1¢( ,. ®d,_j+1¢(x",)) The corresponding kernel matrix L; = \IJT\IW
with the (,4")-th entry in L; defined as L” = H =g b k(xl, 2%, 2%,). The overall kernel algorithm

for low rank decomposition of empirical embeddings for C. X1.q i terms of kernels is summarized in
algorithm [3]

For step 1-3 in Algorithm [I; Using the implicitly defined feature matrix, .A; can be expressed

as A; = 7@1 U . For the low rank approxrmatlon A1 = U,.S, V], using singular value decom-
position, the leadlng r singular vector U, = (uq,...,u,) will lie in the span of ®1, i.e., U,
®1(B4,...,0,) where 3 € R™. Then we can transform the singular value decomposition problem

for an infinite dimensional matrix to a generalized eigenvalue problem involving kernel matrices,
AlA U= u < #@1\111\1/1(1)?(1)16 =28 & #KlLlKlﬁ = A K1 3. Let the Cholesky
decomposition of K7 be K1 = RT R, then the generalized eigenvalue decomposition problem can
be solved by redefining 5 = R(3, and solving an ordinary eigenvalue problem

iRLlRTB =A@, and obtain 3 = RT3. (17)

This procedure (Algorithm 2) satisfies v/ wy = B ®{®18y = B/ KBy = B/ R'RBy =

,81 ﬂl/ = &y Then we can obtain S,.V,” by projecting the column of A; using the singular vectors
Uy,

1 1 1
SV =UlA = ~(Br, .. Br) @] 010 = ~(Br, .. Br) K U = ~(r"- "]
(18)
where v € R” can be treated as the reduced r-dimensional feature representation for each fea-

ture mapped data point ¢(z%). Then we have the first intermediate operator G; = U, =
®1(B1,...,B:) = ®1(0%,...,0™)T, where 8 € R™. Furthermore we have

Gr o1 p(z1) @221 = p(a1) ' @1(0,...,0™) 21 =D (2 0")k(a],21).
i=1
which is a weighted combination of kernel functions, and the weighting is determined by the kernel
singular value decomposition and the value of the latent variable 2.
For the first iteration in step 4-9: After we obtain G;, we reshape STVTT to obtain the updated
By = 10,07, where @3 = (v! ® ¢(23),...,7" @ ¢(2%)). Then we can carry out similar singular
value decomposition as before, and obtain U, = ®o(By,...,H3,) =: 2(0*,...,6™)T. Reshaping

this operator, we have the second operator Go = reshape(U,,{Z1},{X2},{Z2}), and furthermore,
when we have

Go @1 21 @ H(2) @3 20 = 2] (L, ..., ") diag(®g p(z2))(6",...,0™) " 2 (19)

Z 20 ') k(xh, 22) (23 0°). (20)
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And we can re-define the following as By and move on to the next iteration

-~ 1
(/81) .. 7/67')T(p;(b2lp; = (Bla s 7ﬁ7‘)T(F o KQ)\I/; = 5(717 .. ”Yn)\I/2T7
2D

1 1
SV =UBy = - -
n n

B Bounding Model Error

Theorem 1 Suppose each reshaping C.y,..s, of Cx,., according to an edge in the latent tree struc-
ture a rank r approximation U,S,V,I with error ||C{¢1;:,¢2 - Z/{TSTVTTH. < €. Then the low rank

decomposition C. x,., from Algorithm|l|satisfies

-

<vd-—1le (22)

Proof In the decomposition, A; = Cx,.x,., is approximated by U,.S,.V," where B; = S,V,| are
reshaped and further approximated as 7. Suppose that 71 = reshape(T,{Z1},{X2.4}). Then the
model error is bounded as

[Cxiixe ~ U T, *)
— A — U By = B+ T (24)
A= UB |+ 2 (A — U B U By — T + U By — To)| 25)
<e+0 4By — T2 (A, — U} By is perpendicular to U;.) (26)
=2 + H.Ag — Z/{ng Hf (reshaped tensors have the same generalized Frobenius norm) (27)
= + || Az — L{EBQHf + 1By =T33 (Ay — U?B, is perpendicular to 14?) (28)

=+ ||U}T @ T)Cx, x50 — U Ba|
<E4E+ By — T (projection by U! " ® Z can only decrease singular value) (30)
Q2+ (2T WU OT) @ T)Cxyyixan —UBs|. +1Bs — ol (rewrite A3) (31
<3e? + I1Bs — T3 ||f (projection can only decrease singular value) (32)
<(d —1)é? (by induction on 7) (33)

LB~ T2 (rewrite As) (29)

Since Cx,.x,., = U} T, we have that

<Vd-—T1e (34)

<Vd—1e¢ or HCXM*CNXM

‘CXUXZ:d - CXli,Xz:d
[ ]

C Bounding Estimation Error

Theorem 2 Suppose the r-th singular value of each reshaping C . #, of Cx,., according to an edge
in the latent tree structure is lower bounded by )\, then with probability at least 1 — 6,

_ a4 A)d=2 (14 N)42¢

< iz € = Cxaall, < BN

HC}M ~Cx,, (35)

with some constant ¢ associated with the kernel and the probability §.
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Proof C. X,., 18 the empirical low rank embedding, a finite sample estimate for C. X,..- There differ-
ence can be bounded as

év.Xl;d - é\Xl;d . (36)
— et r —ﬁﬁﬁ] (37)
< || —uhHT H + ’LAIT}(Tl - 7A‘1)H (triangular inequality) (38)
< Z/IT1 — LAlrl + (|77 — 7A'1 H (both the spectral norm of 77 and ﬁ} are bounded by 1) (39)
= |t} — LAlrl + | UTs — Z:l\f,?\—Q H (reshaping does not change the norm) (40)
< Z ‘ u, —uy|l + HAdfl —Ag_1 (by induction on 7) 41)

1

1=

Next, we derive perturbation bound for /:. Assume that all singular values of .4; have multiplicity

1, and then the perturbed version Z:{\}, due to sampling error can be parameterized as Z:l\f, = U+
UL D) +D"D)~Y/2 where U U = 0. Then
i - || = |t - @+ uipy@+ DTD) 42)
=|Z-@Z+D" D)V U -U DT +D D)/ (43)
—lz-@+pTD) V2| - HuiD(I + D D)2 (44)
<higher order errors (will be dropped) + ||D||, (45)
Ai— A
< 3 . (Wedin’s theorem) (46)
Pi—ch1;i;Xi+1:d - ﬁi—lé\Xl:i;XiJrl;d
= . @7)
A
Piy = (U UPTUTRT)®T)...91T)) (48)
— i—1 . A~ .
||CX1:i§X1‘,+1:d - CXlzi§X11+1:d H. + Zj:l ‘ Z/[ﬂ - Z/{ﬂ
< * (49)
A
(50)
which is bounded in a recursive fashion. We now will derive a closed form bound for ‘ Ui — ﬁf .
For simplicity of notation, Let a; := ‘ Ui — LA{,’ and A := ||CXM —Cx,., .» We have that
Aa; <A (51)
Aag < A+ay (52)
Aas < A+ag+as (53)
A (54)
i—1
Ao <A+ g (55)
j=1
Rearranging terms, we have that
A0 O 0 ai A
-1 X 0 0 as A
1 -1 -1 M \a A
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Solving the above equation, we have that
1 i—1
A\t
Therefore, equation (T) is bounded by

1+ ) -
<P ek -l oD

N

70
-Uu:

d—2
LIS 5 7 P |
i=1
=3 1+)\ 2 (14 A)i- .
|CX1d CdeH + HCde Cde ’ +27 HCde CXl:dH.
1= =1
1 (59)
14+ A _
\%chld CXl:d . (60)

Furthermore, based on the concentration inequality for kernel embeddings [13]], we have that with
high probability at least 1 — 9

~ N (14N . (1+ )4 2¢
HCX1;d - CX]:d . < \d—2 HCX1 d CXl:dH. < )\d,g\/ﬁ (61)
with some constant ¢ associated with the kernel and the probability &. |
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