Supplementary Materials for “Factorized Asymptotic
Bayesian Inference for Latent Feature Models”

A Lower Bound and Update Equations in M-step

The expectations in lower bound (IM) are explicitly written as:
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By taking gradients of lower bound () with respect to P, we obtain the following closed-form
solutions:
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B The Algorithm of merge

Algorithm [l summarizes the procedures of merge, which is used in line 10 of Algorithm [I.

Algorithm 1 merge
input {p,}, W
1. fork=1,..., K do
2:  Create distance matrix D from W
3 l < argming, Dy
4w 2wy, w0
S0 ply 4 (Mo +1)/2, 1y 0
6.
7

o LW {p}) > L(W, {p,}) then W «— W', {1, } + {p},}
: end for

C Shrinkage Acceleration and Exponentiated Gradient

The optimization procedure of shrinkage acceleration discussed in Section B has another interpre-
tation as the exponetiated gradient descent [1], which is a gradient-based optimization technique
on a simplex. The exponetiated gradient algorithm maximizes Eq. (I3) by iteratively solving the
following updates:
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where the second term is a proximal one of the KL-divergence from the previous solution. By taking
the derivative to zero, the solution is given as

¢'(Z) x (¢ 1) exp(aVL(g" ™). @1)
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Figure 1: Estimated K v.s. elapsed time over 10 trials (left) and learned W (right) in block data.

In contrast with the CCCP, the exponentiated gradient has a tunable step size o > 0. If we set a
small 0 < a < 1, the solution moves faster. We can easily confirm that solution () is equivalent to
that of the CCCP (I4) with o = 1. This property may reduce computational cost in our acceleration
scheme; currently accelerateShrinkage() requires hundred iterations to obtain a sparse solution
of {u,,}, but that procedure is potentially replaced by a few iteration with small «.

D Additional Block Data Experiments

Figure [ depicts the relationship between estimated K and elapsed time (left panel) and examples
of estimated W (right panel) in which TLL is the median over 10 trials. We observe that, the larger
the number of samples IV, the more accurate the model selection of FAB. This is reasonable because
of FIC’s asymptotic property. Indeed, for N = 5000, FAB correctly selected K at 8 trials out of 10.



E Proofs

First, let us summarize the assumptions we will use for the following proofs: A1) the prior of P
can be factorized as: p(P|M) = p(7|M) ], (64| M), A2) those priors are continuous, and A3)

the log-priors are constant with respect to N, i.e., limy_, W = 0. Further, when we
consider the asymptotic behaviour, let us assume z,, forn = 1,..., N to be independent random
variables such that: A4) for sufficiently large N, >z, /N converges in probability to p;, such that
0<pr<l1.

Before giving the proof of Lemma [, let us introduce the following definition and lemmas.
Definition 5. The exponential family representation of the Gaussian likelihood p(z,|2,, 0) has the

natural parameter &, = (N(wlz, + b),—)\/2) and the log-partition function (&) = f% —
% log 2&5. The negated Hessian matrix of the log-likelihood with respect to 0 is then given as
0 3 o, "
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where ®") is the Hessian matrix of 1(-) in which the elements are given by W\ = Tt o =

\I/g{) = %, and \I/ég) = 52;% (for the sake of clarity, we omitted n from &,5 because it does not
depend on n.)

Lemma 6. For a symmetric, block matrix M = (éAT g) is positive definite (PD) if and only if (i)
C and its Schur complement A — BC™'B" are both PD and (ii) A and its Schur complement
C — B A™'B are both PD.

Lemma 7. Underd3d, F'Y in Eq. (8) converges in probability to a PD matrix for N — oo.

Proof of Lemma [d. In this proof, we omit the index d for the sake of clarity. First, according to

Eq. @), F is rewritten as F = & ( % ") where
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W }/N. By introducing the diagonal matrix
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we are able to rescale F as F = D'/2FD'/2. Note that D is PD because of &4, and F is PD if and
only if F is PD because the product of PD matrices is PD. Thus now we only need to say F is PD.

Next, let us consider the asymptotic behavior of F. According to B4, S converges in probability as:
T .
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Since the Schur complement )\(ﬁﬁ—r +diag(1—p))— /\ﬁﬁ—r = Adiag(1—p) is PD by A4,

Lemma B results that S converges to a PD matrix. Similarly, it — )\\IIST){(WTP +0)y/P+ W x
(1 —p) * /p} where  denotes Hadamard product and v converges to a positive number, and using
Lemma B again yields the statement. O

Proof of Lemma . By using the diagonal matrix D defined in Eq. (£3), we have
log det [F@| = log det |D1/2f‘(d)D1/2\
=(d) Z Znk
= logdet |F log =2—.
og det | | + zk: og =

From the proof of Lemma [, since determinants of S and Schur complements converge to 0,(1)
~(d ~(d
and log det |F( )| is the product of them, log det |F( )| is Op(1). O



[Proof of Theorem 4. A1, B2, and Lemma [ enable us to apply Laplace’s method [] separately for
each data dimension:
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By substituting the result from Lemma [ and ignoring asymptotically constant terms, we obtain the
statement. O
Proof of Theorem B. Here we assume w) = W) From Eq. (), the relationship

W*S Eg[znz,] =, xn(p),) " holds. By substituting the equality into £ and taking a deriva-
tive with respect to i,,1, we obtain i, = g(Bnx + n(7}) — %), where B, = %XIA*wf‘k and
7 = >, Me/N. By taking a summation over n and dividing by 7, on both sides, we have
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(Note that the assumption w,, = w’, implies 8,5 = [(;.) By taking the difference between that of
i and gy, we have

where v, = (1 — 7}}) exp(
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From the conditions for the stationary points, the denominator takes a bounded positive value and
the equality holds if and only if the numerator takes zero, i.e.,

D

* * D * *
T+ (1 - Wk)exp(m) A+ (1 -m )exp(m)}
=1 = ) espl(gy) — 1) = (L= ) explgps — 1) = 0.
Since the function (1—)(exp(3%=)—1) increases strictly monotonically for € (0, 1], the equality
holds if and only if 7}, = 7} O
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