Appendix

A Discussion

Our work for the first time has provided a graphical model distribution for high-dimensional count-
valued data that permits general dependencies between variables. We have shown that the PGM
of [17] can only capture negative conditional dependencies and the Winsorization of [20] can never
lead to a proper joint graphical model distribution. Our novel TPGM uses an alternative approach
to truncation permits a proper joint density, but with several drawbacks. To address these, we have
investigated alterations to the base measure and sufficient statistics of the univariate Poisson dis-
tribution, leading to our novel QPGM and SPGM approaches. The latter uses sub-linear sufficient
statistics to mitigate the effect of large counts, thus permitting both positive and negative conditional
dependencies. This paper presents a thorough investigation of Poisson Graphical Model specifica-
tion, from which we can conclude that it is indeed possible to specify a widely applicable graphical
model for high-dimensional count data.

There are many future items for further research related to our work. We have briefly described a
possible approach to sparse graph estimation according to our model by penalized neighborhood se-
lection. Specific algorithms for fitting our models, including possible variational approaches will be
investigated in future work. In particular, it may be of interest to consider the Local PGM proposed
in [24] as a special case of the TPGM, QPGM, and SPGM, specifically providing an upper bound
for the log-partition function of the latter. Such approaches and the statistical recovery properties of
these methods, including consistent graph recovery, are avenues for future research.

B Proofs

B.1 Proof of Proposition 1

Suppose 85, > 0 for any (s,t) € E. Then, recalling Stirling’s formula: In(n!) = nln(n) —n +
O(Inn), it can be seen that

Gstxsmt + 951‘3 + Gtxt - hlﬂ}s! — hl])t!
= Ogxsxy + O0sxs + 0pxy —xsInzg —xylna, + x5 +ys + O(lnzg + Inay)
— 00, as Ty, Ty — OO,

which would result in the distribution in (1) not being normalizable; so that it follows that 85 < 0.
The statement of the proposition follows.

B.2 Proof of Theorem 1

We will prove by contradiction.

Following the notations in [17, 18, 19], we denote Q(X) as

Q(X) = log(P(X)/P(0)),
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Figure 3: Sublinear sufficient statistics, B(X; Ry, R)
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forany X = (X1,...,X;,) € {0,1,..., R}?. In this proof, we are going to focus only on the pairwise
MREF, however note that even with the higher order dependencies, the statement holds since the
pairwise terms satisfying the condition of the theorem do not exist:

Q(X) = Z XSGS(XS) + Z XthGst(XsaXt)~ (8)

seV (s,t)eE

In order to specify the joint distribution, we need to compute the function G, and G in (??).

It is useful to consider the relationship between the function Q(X), and the conditional distribution
P(X|Xn(s)):

exp(Q(X) — Q(Xy)) = P(X)/P(X,) 9)
= P(Xs|Xn(s))/ P01 Xn(s)),

where X := (X1,...,Xs-1,0, X541, .., X,). We then obtain

XGo(X) + Xo Y XiGu(Xo, Xp) = —log(X,))+

teEN(s)
E(Xy\o)Xs + (X, = R)V(E(Xy\,)) (10)

We can obtain the first order function X G (X) by setting X; = 0 for all t # s in (??):
X.G4(X,) = E(0)X, + (X, = R)¥(E(0)) — log(X,!). (a1

Suppose nodes s and ¢ are neighbors, i.e. 04 # 0. Setting X, = 0 for all » & {s, ¢}, we obtain
X,Ga(Xs) + Xo XiGar(Xs, X0) (12)
=E(0,...,X;,...,00 X, + (X, = R)U(E(0,...,X;,...,0)) — log(X,!).

Combining (??) and (??) yields

X XiGst(Xs, Xy) =

{E(o, o Xpy ., 0) — E(O)}XS FI(X, = R){\IJ(E(Q o Xp L, 0)) = \I/(E(O))}. (13)
Similarly, considering the difference of @) values of X and X, in (??), we obtain

Xs XiGsr(Xs, Xt) =

{E(O, o Xy, 0) = E(O)}Xt FI(X, = R){\I/(E(O, o Xeyo,0)) = \I/(E(O))}. (14)

Note that (??) and (??) should be the same for all possible pairs of X and X;. We first consider the

case where X, X; € {1,..., R—1}. Then, the indicator functions will fail to satisfy the arguments
and disappear. In this case, as shown in [18, 19], we can simply deduce
E,...,Xs,...,0) —E(0) =84+Xs ifX;e{l,...,R—1} (15)

where (3,; is some constant.

Now, we fix X; = R and again X € {1, R — 1}. Then, we can combine (??) and (??) with one
indicator function out of two:

{E(O,...,Xt =R,...,0) —E(O)}Xs =
{E(o, Xy 0) = E(o)}R+ V(E(Q,...,X,,...,0)) — ¥(E(0)).
Since we are assuming X € {1,..., R — 1}, by (??), some elementary algebra yields that
Cle = \I/(CQXS) + c3.
where ¢, co and c3 are all fixed constants with respect to X.

Since the slope of function W(c2X;) is strictly increasing (i.e. ¥”(c2Xs) > 0) by definition,
U(ceX,) cannot be same as a constant factor of X, at more than 2 values in {1,..., R — 1}.
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B.3 Proof of Theorem 4

If 6, < 0, it can be trivially shown that the probability mass function is normalizable by similar
reasoning as in Proposition 1. Given parameters 6., > 0, 8, and 6,,, consider some positive integer
a that is large enough to satisfy 0,,R? + |0,|R + |6,|R < |0|a. Similarly, also consider some
positive integer b s.t. 0, R? + |0,|R + |0,| R < |0,|b. Then, for all (z,y) s.t. z > aory > b, we
have 0., R? + |0,|R + |0,| R < |0,|x + |0,]y. If each entry of one sequence is smaller than that of
another sequence, its summation is also smaller. Therefore, we have

Z exp (GmyB(:v)B(y) + 0, B(z) + 6,B(y) — log z! — log y!)

x>aory>b

(4)

< Y exp(Bay R’ + |02 R + [0, R — logz! —logy!)
r>aory>b

< Z exp (|9w|x—|—|9y|y—10gx!—1ogy!),
r>aory>b

where in inequality (¢) we use the fact that 6, > 0. Since > -, o > €XP (10|24 0,y —log ! —

log y!) is normalizable, sois >~ . . b XD (02yB(x)B(y)+0,B(x)+6,B(y) —log ! —log y!),
which completes the proof. -

B.4 Proof of Proposition 3

D(6, Ry, R) =log > exp{0B(Z) —log(Z!)}
ZEW

< log Z exp {9Z — 1og(Z!)} = Dpois(0) = exp(0)
ZEW

where the inequality holds if 8 > 0.
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