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I would like to apologize for the following error in the published paper “Fast determinantal point
process sampling with application to clustering”.
The proofs for Theorem 1 and Theorem 2 rely on the wrong derivation of the Markov chains being
couplings.
In the proof of Theorem 1, the following claim is made (verbatim):

“The coupling process (vX , vY ) → (vX′ , vY ′) is simple: Assume that the
position vX and vY differs is i. If u 6= i, we set vX′ according to Algorithm 1,
and set vY ′ = vX′ . If u = i, vX and vY are updated separately and independently
using Algorithm 1.”

However, the process of setting vY ′ = vX′ violates the definition of a coupling. This is because vY ′
should be updated from vY by Algorithm 1 using the acceptance probability that depends on Y and
Y ′ only. vX′ is NOT derived from such probability, and thus this process does not qualify for a valid
coupling. The same logic applies to the case of Theorem 2 as well.

Furthermore, [1] proves that the mixing time of an MCMC-based DPP sampling can be arbitrarily
unbounded. Such negative results invalidate most of this work, hence readers should refrain from
citing this work, or take caution when doing so.

It is possible that the proposed chain does yield “good enough” samples, which seems to be the case
with the empirical result of this paper, but this may be due to the particular structure of the kernel
matrix. In general, this does not hold. For the general form of the mixing time, please refer to
theorems 1 and 2 of [2], where the individual acceptance probabilities are explicitly present in the
bound on the mixing time.
The theorems provided in [2] may be applicable to Algorithm 1, but this still does not guarantee
rapid mixing, since the mixing time bound can be arbitrarily large depending on the acceptance
probabilities. It can, however, be used to derive an educated guess on the approximate mixing time.
One might be able to use this guess to estimate the loss (e.g., total variation between the current
distribution and the target DPP distribution) of terminating the chain early. I leave this as a future
work for interested readers.

Remark: I would like to thank Dr. Jennifer Gillenwater for her helpful discussions. The following
portion of texts is the (erroneous) original text uploaded previously. It is left for your reference.

1 Path Coupling

Definition 1 (Coupling [3]). A coupling of a Markov chain M is a joint process (Xt, Yt) ∈ Ω× Ω,
such that

Pr(Xt+1 = x′|Xt = x, Yt = y) = P (x, x′)

Pr(Yt+1 = y′|Xt = x, Yt = y) = P (y, y′),

where P (·, ·) is the transition probability.

The ε-mixing time (τ(ε)) of M is bounded via the following path coupling lemma.
Path Coupling Lemma. Let δ be an integer valued metric defined on Ω× Ω which takes values in
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{0, 1, · · · , D}. Let the path setR be a subset of Ω×Ω s.t. for all (Xt, Yt) ∈ Ω×Ω, there exists a path
Xt = Z0, Z1, · · · , Zr = Yt, where (Zl, Zl+1) ∈ R, and

∑r−1
l=0 δ(Zl, Zl+1) = δ(Xt, Yt). Suppose a

Coupling (X,Y )→ (X ′, Y ′) is defined on all pairs in R, s.t. for all (X,Y ) ∈ R, E[δ(X ′, Y ′)] ≤
βδ(X,Y ) for some β < 1. Then, τ(ε) ≤ log(Dε−1)

1−β .

2 Proof of Proposition 1

Proof. The proof of irreducibility proceeds as follows: Since the state space of this chain is the set of
all characteristic vectors, each state can be represented as a 0-1 vector. For any two states, consider
the indices I = {i} at which the elements differ. Algorithm 1 assigns non-zero probabilities to
individual element transitions 0 → 1 and 1 → 0 (i.e., insertion and deletion probabilities). The
probabilities are non-zero since no possible principle minor of L can have a zero determinant, due
to L being positive definite.
Multiplying such probabilities for each i ∈ I yields the probability of transitioning from one state
to another. This means there is a non-zero probability of reaching an arbitrary state from any other
states, hence making the chain irreducible.

Finally, to prove the stationary distribution, it suffices to prove the detailed balance equation since
the chain is reversible by definition of the transition probability. The detailed balance equation is:

PL(X)Pr(X → Y ) = PL(Y )Pr(Y → X),∀X,Y ⊆ S,

for X = Y ∪ {u}, without loss of generality. Then, the following holds:

Pr(X → Y )

Pr(Y → X)
=
p−u (X)/n

p+u (Y )/n
=

det(LY )

det(LX)
.

This is because exactly one of p+u (Y ) and p−u (X) has to be 1, and the other less than 1. The last
ratio is expanded as:

det(LY )

det(LX)
=
Z det(LY )

Z det(LX)
=
PL(Y )

PL(X)
,

where Z is the normalization factor of the DPP PL. Hence, the detailed balance equation and,
consequently, our claim on the stationary distribution holds.

3 Proof of Theorem 1

Proof. We prove the mixing time via the path coupling method [3].
The state distance metric we use is the Hamming distance: δ(vX , vY ) =

∑|S|
i=1 |vX(i) −

vY (i)|. As per the transition setting of Algorithm 1, we designate the path set to be R =
{(vX , vY ), δ(vX , vY ) = 1}. The coupling process (vX , vY ) → (vX′ , vY ′) is simple: Assume
that the position vX and vY differs is i. If u 6= i, we set vX′ according to Algorithm 1, and set
vY ′ = vX′ . If u = i, vX and vY are updated separately and independently using Algorithm 1.
Notice that δ(vX′ , vY ′) ≤ 1, and there are two possible cases when the distance is 1: 1) when u 6= i,
or 2) when u = i and both vX and vY are updated. The probability of the former event is 1− 1/n.
Assuming X = Y ∪ {u}, the probability of the latter event is p+u (Y )p−u (X)/n, which expands to

p+u (Y )p−u (X)

n
=

1

n
min

{
det(LY )

det(LX)
,

det(LX)

det(LY )

}
,
αu,X
n

.

Hence, we have

E[δ(vX′ , vY ′)] = 1− 1

n
(1− αu,X) ,

for a chosen u. Since this holds for any u, we upper-bound the final quantity by using α =
maxu,X αu,X . We get the statement of the theorem by applying the path coupling lemma.
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4 Proof of Proposition 2

Proof. We first show the irreducibility of the chain. Here, the state space is the set of all 0-1 vectors
of length n with exactly k 1’s. For any two states v and u, consider the index set I = {i} at which
the elements of the two states differ. We claim that |I| is always even. To see why this holds,
suppose there are an odd number of mismatches. Then, one of the states must hold extra 1’s at some
positions J = {j|j /∈ I} to account for the unequal number of 1’s in positions I . However, the
other state must also have 1’s at its positions J since the only mismatches are in I . This will make
one state have more than k 1’s, leading to a contradiction.
Since there are even mismatches, we can pair up the indices in I . We do so, so that for each
pair (i1, i2), v(i1) 6= v(i2) (the same holds for u by definition of I). Then, transitioning from
v to u (and vice versa) is done by swapping the elements at the indices of each pair; i.e.,
v(i1)↔ v(i2),∀(i1, i2). Each such swap, and hence the overall transition, has non-zero probability
by definition of our chain and the positive-definiteness of L. Thus, our chain is irreducible.

Proving the detailed balance equation is similar to Proposition 1. According to Algorithm 2, we
have:

Pr(X → X ′)/Pr(X ′ → X) = det(LX)/ det(LX′),

because exactly one of p = det(LX) and p−1 is 1, and the other less than 1. Expanding the final
ratio as Z det(LX)/Z det(LX′) gives PL(X)/PL(X ′), completing the proof.

5 Proof of Theorem 2

Proof. We again use the path coupling technique. The state space is Ω = {vZ ||Z| = k}. Let the
path set be R = {(vA, vB)|δ(vA, vB) ≤ 2}, under the Hamming metric δ. Define the coupling
(vX , vY )→ (vX′ , vY ′) as follows:
Let s and t be the indices at which vX and vY differ. By definition of the path set R, these will be
the only positions of difference. i.e., vX(s) = 1, vY (s) = 0 and vX(t) = 0, vY (t) = 1, without loss
of generality. Construct a bijection g : [n] 7→ [n] such that

g(x) =


s if x = t

t if x = s

x otherwise.

Choose i ∈ X and j ∈ R\X u.a.r. Compute p1 and p2 from Equation 5 for vX and vY , respectively.
Then, update vX′ with i, j, and vY ′ with g(i), g(j) independently using Algorithm 2, if at least one
of i = t or j = s holds. Otherwise, update vX′ as Algorithm 2 and set vY ′ ← vX′ .

To compute E[δ′], where δ′ , δ(vX′ , vY ′), there are four cases to consider (note that p1 and p2
differ from case to case).

• i = s and j = t (w.p. 1
k(n−k) ): With probability α1 = p1p2, both updates for vX′ and vY ′

are accepted, resulting in δ′ = 2. Otherwise, δ′ = 0.

• i = s and j 6= t (w.p. n−k−1k(n−k) ): With probability α2 = 1− p1p2, δ′ = 2.

• j 6= s and j = t (w.p. k−1
k(n−k) ): With probability α3 = 1− p1p2, δ′ = 2.

• Otherwise (w.p.
(
1− 1

k

) (
1− 1

n−k

)
): δ′ = 2 with probability 1 (due to coupling).
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Letting α , min{α1, α2, α3} over all possible p1, p2, the expected value is:

E[δ′] =δ(X,Y )

(
α1 + α2(n− k − 1) + α3(k − 1)

k(n− k)
+

(
1− 1

k

)(
1− 1

n− k

))
≤δ(X,Y )

(
1− (1− α)(n− 1)

k(n− k)

)
≤δ(X,Y )

(
1− 1− α

k

)
(k > 1).

We get the statement by applying the path coupling lemma.
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