
Supplementary Material

Proof of Theorem 1 and comments

Consider the BA-UCT algorithm: UCT applied to the Bayes-Adaptive MDP (dynamics are de-
scribed in Equation 1). Let Dπ(hT) be the rollout distribution of BA-UCT: the probability that
history hT is generated when running the BA-UCT search from 〈st, ht〉, with ht a prefix of hT ,
T − t the effective horizon in the search tree, and π an arbitrary BAMDP policy. Similarly define
the similar quantity D̃π(hT): the probability that history hT is generated when running the BAMCP
algorithm. The following lemma shows that these two quantities are in fact equivalent.3

Lemma 1. Dπ(hT) = D̃π(hT) for all BAMDP policies π : H → A.

Proof. Let π be arbitrary. We show by induction that for all suffix histories h of ht,Dπ(h) = D̃π(h);
but also P (P |h) = P̃h(P) where P (P |h) denotes (as before) the posterior distribution over the
dynamics given h and P̃h(P) denotes the distribution of P at node h when running BAMCP.

Base case: At the root (h = ht, suffix history of size 0), it is clear that P̃ht
(P) = P (P |ht) since we

are sampling from the posterior at the root node and Dπ(ht) = D̃π(ht) = 1 since all simulations
go through the root node.

Step case:
Assume proposition true for all suffices of size i. Consider any suffix has′ of size i+1, where a ∈ A
and s′ ∈ S are arbitrary and h is an arbitrary suffix of size i ending in s. The following relation
holds:

Dπ(has′) = Dπ(h)π(h, a)

∫
P

dP P (P |h)P(s, a, s′) (3)

= D̃π(h)π(h, a)

∫
P

dP P̃h(P)P(s, a, s′) (4)

= D̃π(has′), (5)

where the second line is obtained using the induction hypothesis, and the rest from the definitions.
In addition, we can match the distribution of the samples P at node has′:

P (P |has′) = P (has′| P)P (P)/P (has′) (6)

= P (h| P)P (P)P(s, a, s′)/P (has′) (7)

= P (P |h)P (h)P(s, a, s′)/P (has′) (8)

= ZP (P |h)P(s, a, s′) (9)

= ZP̃h(P)P(s, a, s′) (10)

= ZP̃ha(P)P(s, a, s′) (11)

= P̃has′(P), (12)

where Equation 10 is obtained from the induction hypothesis, Equation 11 is obtained from the
fact that the choice of action at each node is made independently of the samples P . Finally, to
obtain Equation 12 from Equation 11, consider the probability that a sample P arrives at node
has′, it first needs to traverse node ha (this occurs with probability P̃ha(P)) and then, from
node ha, the state s′ needs to be sampled (this occurs with probability P(s, a, s′)); therefore,
P̃has′(P) ∝ P̃ha(P)P(s, a, s′). Z is the normalization constant: Z = 1/

∫
P P(s, a, s

′)P (P |h) =
1/

∫
P P(s, a, s

′)P̃h(P). This completes the induction.

Proof of Theorem 1. The UCT analysis in Kocsis and Szepesvári [16] applies to the BA-UCT algo-
rithm, since it is vanilla UCT applied to the BAMDP (a particular MDP). By Lemma 1, BAMCP

3For ease of notation, we refer to a node with its history as opposed to its state and history as done in the
rest of the paper.

10

simulations are equivalent in distribution to BA-UCT simulations. The nodes in BAMCP are there-
fore being evaluated as in BA-UCT, providing the result.

Lemma 1 provides some intuition for why belief updates are unnecessary in the search tree: the
search tree filters the samples from the root node so that the distribution of samples at each node
is equivalent to the distribution obtained when explicitly updating the belief. In particular, the root
sampling in POMCP [20] and BAMCP is different from evaluating the tree using the posterior mean.
This is illustrated empirically in the section below in the case of simple Bandit problems.

BAMCP versus Gittins indices

5 10 15 20

5

10

15

20
BAMCP − Number of simulations: 5000

α

β

5 10 15 20

5

10

15

20
BAMCP − Number of simulations: 250000

α

β

5 10 15 20

5

10

15

20
BAMCP − Number of simulations: 2500000

α

β

5 10 15 20

5

10

15

20
BAMCP − Number of simulations: 5000000

α

β

5 10 15 20

5

10

15

20
Posterior mean decision

α

β

Probability of correct decision

0 0.2 0.4 0.6 0.8 1

Figure S1: Evaluation of BAMCP against the Bayes-optimal policy, for the case γ = 0.95, when choosing
between a deterministic arm with reward 0.5 and a stochastic arm with reward 1 with posterior probability
p ∼ Beta(α, β). The result is tabulated for a range of values of α, β, each cell value corresponds to the
probability of making the correct decision (computed over 50 runs) when compared to the Gittins indices [14]
for the corresponding posterior. The first four tables corresponds to different number of simulations for BAMCP
and the last table shows the performance when acting according to the posterior mean. In this range of α, β
values, the Gittins indices for the stochastic arm are larger than 0.5 (i.e., selecting the stochastic arm is optimal)
for β ≤ α + 1 but also β = α + 2 for α ≥ 6. Acting according to the posterior mean is different than
the Bayes-optimal decision when β >= α and the Gittins index is larger than 0.5. BAMCP is guaranteed
to converges to the Bayes-optimal decision in all cases, but convergence is slow for the edge cases where the
Gittins index is close to 0.5 (e.g., For α = 17, β = 19, the Gittins index is 0.5044 which implies a value
of 0.5044/(1 − γ) = 10.088 for the stochastic arm versus a value of 0.5 + γ × 10.088 = 10.0836 for the
deterministic arm).

11

Bayes−optimal BAMCP Posterior Mean

160

180

200

220

240

260

U
nd

is
co

un
te

d
su

m
of

re
w

ar
ds

(a)
Bayes−optimal BAMCP Posterior Mean

55

60

65

70

75

80

D
is

co
un

te
d

su
m

of
re

w
ar

ds

(b)

Figure S2: Performance comparison of BAMCP (50000 simulations, 100 runs) against the posterior mean
decision on an 8-armed Bernoulli bandit with γ = 0.99 after 300 steps. The arms’ success probability are all
0.6 except for one arm which has success probability 0.9. The Bayes-optimal result is obtained from 1000 runs
with the Gittins indices [14]. a. Mean sum of rewards after 300 steps. b. Mean sum of discounted rewards after
300 steps.

Inference details for the infinite 2D grid task of Section 5.2
We construct a Markov Chain using the Metropolis-Hastings algorithm to sample from the poste-
rior distribution of row and column parameters given observed transitions, following the notation
introduced in Section 5.2. Let O = {(i, j)} be the set of observed reward locations, each as-
sociated with an observed reward rij ∈ {0, 1}. The proposal distribution chooses a row-column
pair (ip, jp) from O uniformly at random, and samples p̃ip ∼ Beta(α1 + m1, β1 + n1) and
q̃jp ∼ Beta(α2 +m2, β2 + n2), where m1 =

∑
(i,j)∈O 1i=iprij (i.e., the sum of rewards observed

on that column) and n1 = (1 − β2/2(α2 + β2))
∑

(i,j)∈O 1i=ip(1 − rij), and similarly for m2, n2
(mutatis mutandis). The n1 term for the proposed column parameter p̃i has this rough correction
term, based on the prior mean failure of the row parameters, to account for observed 0 rewards on the
column due to potentially low row parameters. Since the proposal is biased with respect to the true
conditional distribution (from which we cannot sample), we also prevent the proposal distribution
from getting too peaked. Better proposals (e.g., taking into account the sampled row parameters)
could be devised, but they would likely introduce additional computational cost and the proposal
above generated large enough acceptance probabilities (generally above 0.5 for our experiments).
All other parameters pi, qj such that i or j is present in O are kept from the last accepted samples
(i.e., p̃i = pi and q̃j = pj for these is and js), and all parameters pi, qj that are not linked to ob-
servations are (lazily) resampled from the prior — they do not influence the acceptance probability.
We denote by Q(p,q → p̃, q̃) the probability of proposing the set of parameters p̃ and q̃ from the
last accepted sample of column/row parameters p and q. The acceptance probability A can then be
computed as A = min(1, A′) where:

A′ =
P (p̃, q̃ |h)Q(p̃, q̃→ p,q)

P (p,q |h)Q(p,q→ p̃, q̃)

=
P (p̃, q̃)Q(p̃, q̃→ p,q)P (h| p̃, q̃)

P (p,q)Q(p,q→ p̃, q̃)P (h|p,q)

=
pm1
ip

(1− pip)n1qm2
jp

(1− qjp)n2
∏

(i,j)∈O 1[i = ip or j = jp](p̃i q̃j)
rij (1− p̃i q̃j)

1−rij

p̃m1
ip

(1− p̃ip)n1 q̃m2
jp

(1− q̃jp)n2
∏

(i,j)∈O 1[i = ip or j = jp](piqj)rij (1− piqj)1−rij
.

The last accepted sampled is employed whenever a sample is rejected. Finally, reward values Rij
are resampled lazily based on the last accepted sample of the parameters pi, qj , when they have not
been observed already. We omit the implicit deterministic mapping to obtain the dynamics P from
these parameters.

12

Tree policy

Rollout
 policy

0

Past

Planning

1.

Tree policy

Rollout
 policy

0 0

Past

Planning

2.

Tree policy

Rollout
 policy

Past

Planning

0 0

3.

2

Tree policy

Rollout
 policy

Past

Planning

0 0

4.

2

Figure S3: This diagram presents the first 4 simulations of BAMCP in an MDP with 2 actions from state
〈st, ht〉. The rollout trajectories are represented with dotted lines (green for the current rollouts, and greyed
out for past rollouts). 1. The root node is expanded with two action nodes. Action a1 is chosen at the root
(random tie-breaking) and a rollout is executed in P1 with a resulting value estimate of 0. Counts N(〈st, ht〉)
and N(〈st, ht〉, a1), and value Q(〈st, ht〉, a1) get updated. 2. Action a2 is chosen at the root and a rollout is
executed with value estimate 0. Counts and value get updated. 3. Action a1 is chosen (tie-breaking), then s′ is
sampled from P3(st, a1, ·). State node 〈s′, hta1s′〉 gets expanded and action a1 is selected, incurring a reward
of 2, followed by a rollout. 4. The UCB rule selects action a1 at the top, the successor state s′ is sampled from
P4(st, a1, ·). Action a2 is chosen from the internal node 〈s′, hta1s′〉, followed by a rollout using P4 and πro.
A reward of 2 is obtained after 2 steps from that tree node. Counts for the traversed nodes are updated and the
MC backup updates Q(〈s′, hta1s′〉, a1) to R = 0 + γ0 + γ22 + γ30 + · · · = γ22 and Q(〈st, ht〉, a1) to
γ + 2γ3 − γ/3 = 2

3
(γ + γ3).

13

...

· · · · · ·

...
Figure S4: A portion of an infinite 2D grid task generated with Beta distribution parameters α1 = 1, β1 = 2
(columns) and α2 = 2, β2 = 1 (rows). Black squares at location (i,j) indicates a reward of 1, the circles
represent the corresponding parameters pi (blue) and qj (orange) for each row and column (area of the circle is
proportional to the parameter value). One way to interpret these parameters is that following column i implies
a collection of 2pi/3 reward on average (2/3 is the mean of a Beta(2, 1) distribution) whereas following any
row j implies a collection of qj/3 reward on average; but high values of parameters pi are less likely than high
values parameters qj . These parameters are employed for the results presented in Figure 2.

(a)
10

−2
10

0
20

30

40

50

60

70

80

90

100

Planning time (s)

U
n
d
is

c
o
u
n
te

d
 s

u
m

 o
f
re

w
a
rd

s
 a

ft
e
r

2
0
0
 s

te
p
s

10
−2

10
0

4

5

6

7

8

9

10

11

12

13

14

Planning time (s)

D
is

c
o
u
n
te

d
 s

u
m

 o
f
re

w
a
rd

s
 a

ft
e
r

2
0
0
 s

te
p
s

BAMCP

BAMCP Wrong prior

Random

(b)
10

−2
10

0
10

15

20

25

30

35

40

45

50

Planning time (s)

U
n

d
is

c
o

u
n

te
d

 s
u

m
 o

f
re

w
a

rd
s
 a

ft
e

r
2

0
0

 s
te

p
s

10
−2

10
0

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

Planning time (s)

D
is

c
o

u
n

te
d

 s
u

m
 o

f
re

w
a

rd
s
 a

ft
e

r
2

0
0

 s
te

p
s

Figure S5: Performance of BAMCP on the Infinite 2D grid task of Section 5.2, for γ = 0.97, as in Figure 2
but where the grids are generated with Beta parameters (a) α1 = 0.5, β1 = 0.5, α2 = 0.5, β2 = 0.5 and (b)
α1 = 0.5, β1 = 0.5, α2 = 1, β2 = 3. In the wrong prior scenario (green dotted line), BAMCP is given the
parameters (a) α1 = 4, β1 = 1, α2 = 0.5, β2 = 0.5 and (b) α1 = 1, β1 = 3, α2 = 0.5, β2 = 0.5. The
behavior of the agent is qualitatively different depending on the prior parameters employed (see supplementary
videos). For example, for the scenario in Figure 2, rewards are often found in relatively dense blocks on the
map and the agents exploits this fact when exploring; for the scenario (b) of this Figure, good rewards rates can
be obtained by following the rare rows that have high qj parameters, but finding good rows can be expensive so
the agent might settle on sub-optimal rows (as in Bandit problems where the Bayes-optimal agent might settle
on sub-optimal arm if it believes it likely is the best arm given past data). It should be pointed out that the actual
Bayes-optimal strategy in this domain is not known — the behavior of BAMCP for finite planning time might
not qualitatively match the Bayes-optimal strategy.

14

