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This supplementary document describes the optimizationguture for the TD-DO algorithm in
greater detail. In particular, we are interested in soltireggoptimization problem

min > —pilogd; st ,d; >0, Vi, 17d=0 F(d) = 0. (1)
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whered € R™ is the optimization variablej; is given by the problem data,
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and where for simplicity we will ignore any additional corahtsd € C. If we want to impose ad-
ditional constraints od, then the algorithm below must be modified to account for suetstraints,
but for many classes of constraints this can be done in ghktfaiard manner. We will discuss this
point in greater detail below.

We begin by forming the Lagrangian of (1), with Lagrange nplittr Z ¢ R2+*2* for the constraint
F(d) > 0, v € R for the constraini”d = 1, and by noting we can drop the constraint 0, since
—logd; - cocasd; — 0
L(d, Z,v) =Y —pilogd; — tr(Z"F(d)) + v(17d - 1). (3)
i=1
The dual problem is them simply
nax min £(d, Z,v). (4)
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Optimizing over v and d

We solve the maximization over and minimization overl (the optimization ovelZ will be per-
formed seperately) using an equally-constrained, feastart Newton method. For fixed, this
subproblem is given by
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where—tr(ZT F(d)) = ¢Td for ¢; = —tr(Z7 F}). The equality-constrained Newton stéya,,; for
this optimization problem (see [1, pg 526] is given by a soluto the linear equation
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wherey is the Lagrange multiplier for the equality contraint in tdewton update (i.e1,” Ad,; = 0,
which implies1” (d+aAd,) = 1 forany1”d = 1) and whereV? f(d) andV ;. f (d) are the Hessian
and gradient w.r.d of the objective
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Crucially, since the objective (7) is decomposable a¥grthe Hessian term is diagonal, which
allows for solving the Newton step very efficiently; in pattiar, the gradient and Hessian are given

by

(Var@), = -2 v (Vi@), = 5. @

We solve the Newton update equation (6) by block eliminafs®e [1, pg 456, Algorithm 10.3]),
giving
p=—"Vif(d)T ) TIVEf(d)Vaf(d)
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Adne = —(Vaf(d)”™ (Vaf(d) + 1p)
which, after, simplification, gives
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We use a simple backtracking line search for the Newton @pddthough the number of iterations
of Newton’s method may very, since we are solving this optation problem repeatedly for many
nearby values of/, we can warm-start the method from the solution at previtarations, and so in
practice optimizing over andv also takes timé& (m).

Optimizing over Z
Now we return to the optimization oveéf, which we write as

max g(Z) = max {Z —pilogd} (Z) —xZTF(d*(2)) +v*(2)(17d*(Z) — 1)} 11)

whered} (Z) andv*(Z) denote the optimal values df andr determined by the Newton procedure
above (since the term depends o#, these optimal values will of course dependzas a well).
The gradient of the dual objective with respecttdas simply

Vz9(Z) = —F(d*(Z)); (12)

alltheVzd;(Z) andV zv*(Z) terms drop out, a fact that can be shown by considering theapar
derivatives
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using the fact thaV, f (d*(Z)) + v*(Z)1 = 0, an optimality condition of the optimization problem
(5), and that fact that” d*(Z) = 1.



At this point, we use use a projected gradient method to dpgirthe dual objective; however,
projecting onto the positive semidefinite cone requités?*) operations at each point to compute
the eigenvalue decomposition of the currefitéterate. Instead, we use a recent technique from
semidefinite optimization [2], factaf asZ = YYT, and optimize the (now non-convex) objective
g(YYT). The gradient of the objective with respectifds simply

Vyg(YYT) =V,9(YYT) = 2F @ (vYT))Y (14)

and note that we can now omit the semidefinite constraintesa of this form will always be
positive semidefinite. Thus, this is just an unconstraingihtzation problem, solvable by off-the-
shelf methods such as LBFGS. Crucially, although the ogtition problem is non-convex, it has
been shown that local optimization will stll converge to thebal solution of the original problem
providedY is chosen to be sufficient rank to represent the true solutiofi2]. Thus, choosing
Y € R2?#x2k will guarantee that we find the optimal solution; of courdes tomplexity of this
update would still be)(k3) owning to the matrix multiplication, even though it may betéx due
to the fact that matrix multiplication is typically fastdran an eigenvalue decomposition.

The real benefit of this approach comes from the fact thatastjwe we often find that the optimal
Z islow-rank: the KKT conditions of semidefinite programming imply thatd*) andZ* will have
complementary ranks, and we often exp&¢t/*) to be nearly full rank in practice. This is not a

mathematically precise statement, since the rank@f) will of course depend on the MDP and
value function features. However, in practice we expgégi*) to be close to full rank: recall that

when states are sampled on—poliﬂ?}(d*) = 0 (and indeedF(d*) = 0 except on a subspace for

constant-valued features). Empirically(d) tends to have only a few negative eigenvalues for when
computed for an off-policy distributiod, and thus we expecd® to have small rank, just enough
to “force” these eigenvalues to be zero. We can thusYuse R2**? with p < 2k, which lets us
computeV zg(YYT) in time O (mkp).

Although it is difficult to bound the rank a priori, we have found that very small valugs= 2
were sufficient in all our experiements. Importantly, hoaewe can always check a solution to see
whether the chosemwas sufficient: if we choosg to be one larger than the presumed ranliZof
we can check to ensure that the resulfingis rank-deficient (to within the numerical precision of
the optimization); if this is the case, then the chogevas sufficient and the solution is optimal.

Additional constraintson d

The above discussion assumed no addition constrdirgsC. As mentioned in the text, we do
need to ensure thad; — d;| — 0 as||¢(s;) — ¢(s;)|| — 0. This can be done (as we do in the
experimental sections on sampling) by clustering statelatanultiple states must be assigned the
same probabilityl;; this effectively reduces the number @f variables we need to consider, and
always us to perform the optimization without any additioc@nstraints on thel;’s. However, if
additional constraintsre desired, such as requiring thia, — d;| be bounded by some function
of ||¢(s;) — &(s;)]|, then this constraind € C would need to be included in the optimization of
the subproblem (5). Fortunately, the number of such coinssravoudl typically be small, because
only small values of|¢(s;) — ¢(s;)|| need to be constrained in this manner. Thus, the additional
constraints are the terms would typically be sparse, and so could be incorpdriate the Newton
update with little additional difficult. For the finite sanmud results in the paper, we use clustering
to define a small number of variabldsthat each correspond to a large number of samples; in this
case we can solve the optimization problem directly, andatmaed to worry about any additional
constraints ofl.
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