
An Expanded Description of the TD-DO
Optimization Algorithm

J. Zico Kolter
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
Cambridge, MA 02139

kolter@csail.mit.edu

This supplementary document describes the optimization procedure for the TD-DO algorithm in
greater detail. In particular, we are interested in solvingthe optimization problem

min
d

m
∑

i=1

−p̂i log di s.t. , di ≥ 0, ∀i, 1T d = 0 F̂ (d) � 0. (1)

whered ∈ R
m is the optimization variable,̂pi is given by the problem data,

F̂ (d) =

m
∑

i=1

di

[

φ(s(i))φ(s(i))T φ(s(i))φ(s′
(i)
)T

φ(s′
(i)
)φ(s(i))T φ(s(i))φ(s(i))T

]

≡

m
∑

i=1

diF̂i (2)

and where for simplicity we will ignore any additional constraintsd ∈ C. If we want to impose ad-
ditional constraints ond, then the algorithm below must be modified to account for suchconstraints,
but for many classes of constraints this can be done in a straightfoward manner. We will discuss this
point in greater detail below.

We begin by forming the Lagrangian of (1), with Lagrange multiplier Z ∈ R
2k×2k for the constraint

F̂ (d) � 0, ν ∈ R for the constraint1T d = 1, and by noting we can drop the constraintd ≥ 0, since
− log di → ∞ asdi → 0

L(d, Z, ν) =

m
∑

i=1

−p̂i log di − tr(ZT F̂ (d)) + ν(1T d− 1). (3)

The dual problem is them simply
max
Z≥0,ν

min
d

L(d, Z, ν). (4)

Optimizing over ν and d

We solve the maximization overν and minimization overd (the optimization overZ will be per-
formed seperately) using an equally-constrained, feasible start Newton method. For fixedZ, this
subproblem is given by

max
ν

min
d

m
∑

i=1

−p̂i log di + cT d+ ν(1T d− 1) (5)

where−tr(ZT F̂ (d)) = cT d for ci = −tr(ZT F̂i). The equality-constrained Newton step∆dnt for
this optimization problem (see [1, pg 526] is given by a solution to the linear equation

[

∇2
df(d) 1
1T 0

] [

∆dnt
µ

]

=

[

−∇df(d)
0

]

(6)

1

whereµ is the Lagrange multiplier for the equality contraint in theNewton update (i.e.,1T∆dnt = 0,
which implies1T (d+α∆dnt) = 1 for any1T d = 1) and where∇2

df(d) and∇df(d) are the Hessian
and gradient w.r.td of the objective

f(d) ≡

m
∑

i=1

−p̂i log di + cT d. (7)

Crucially, since the objective (7) is decomposable overdi, the Hessian term is diagonal, which
allows for solving the Newton step very efficiently; in particular, the gradient and Hessian are given
by

(∇df(d))i = −
p̂i

di
+ ci,

(

∇2
df(d)

)

ii
=

p̂i

d2i
. (8)

We solve the Newton update equation (6) by block elimination(see [1, pg 456, Algorithm 10.3]),
giving

µ = −(1T∇2
df(d)

−11)−11T∇2
df(d)∇df(d)

∆dnt = −(∇2
df(d))

−1(∇df(d) + 1µ)
(9)

which, after, simplification, gives

µ =

∑m

i=1

(

di +
cid

2

i

p̂i

)

∑m

i=1
d2

i

p̂i

(∆dnt)ii =

p̂i

di

− µ− ci
p̂i

d2

i

.

(10)

We use a simple backtracking line search for the Newton update. Although the number of iterations
of Newton’s method may very, since we are solving this optimization problem repeatedly for many
nearby values ofZ, we can warm-start the method from the solution at previous iterations, and so in
practice optimizing overx andν also takes timeO(m).

Optimizing over Z

Now we return to the optimization overZ, which we write as

max
Z�0

g(Z) ≡ max
Z�0

{

∑

i

−p̂i log d
⋆
i (Z)− trZT F̂ (d⋆(Z)) + ν⋆(Z)(1T d⋆(Z)− 1)

}

(11)

whered⋆i (Z) andν⋆(Z) denote the optimal values ofdi andν determined by the Newton procedure
above (since thec term depends onZ, these optimal values will of course depend onZ as a well).

The gradient of the dual objective with respect toZ is simply

∇Zg(Z) = −F̂ (d⋆(Z)); (12)

all the∇Zd
⋆
i (Z) and∇Zν

⋆(Z) terms drop out, a fact that can be shown by considering the partial
derivatives

∂g(Z)

∂Z
=

∂ (
∑

i −p̂i log d
⋆
i (Z))

∂d⋆(Z)

∂d⋆(Z)

∂Z
− F̂ (d⋆(Z))T −

∂tr(ZT F̂ (d⋆(Z)))

∂d⋆(Z)

∂d⋆(Z)

∂Z
+

∂ν⋆(Z)

∂Z
(1T d⋆(Z)− 1) +

∂ν⋆(Z)(1d⋆(Z)− 1)

∂d⋆(Z)

∂d⋆(Z)

∂Z

=

(

∂f(d⋆(Z))

∂d⋆(Z)
+ 1ν⋆(Z)

)

∂d⋆(Z)

∂Z
− F̂ (d⋆(Z))T +

∂ν⋆(Z)

∂Z
(1T d⋆(Z)− 1)

= −F̂ (d⋆(Z))T

(13)

using the fact that∇df(d
⋆(Z)) + ν⋆(Z)1 = 0, an optimality condition of the optimization problem

(5), and that fact that1T d⋆(Z) = 1.

2

At this point, we use use a projected gradient method to optimize the dual objective; however,
projecting onto the positive semidefinite cone requiresO(k3) operations at each point to compute
the eigenvalue decomposition of the currenteZ iterate. Instead, we use a recent technique from
semidefinite optimization [2], factorZ asZ = Y Y T , and optimize the (now non-convex) objective
g(Y Y T). The gradient of the objective with respect toY is simply

∇Y g(Y Y T) = ∇Zg(Y Y T) = −2F̂ (d⋆(Y Y T))Y (14)

and note that we can now omit the semidefinite constraint, since aZ of this form will always be
positive semidefinite. Thus, this is just an unconstrained optimization problem, solvable by off-the-
shelf methods such as LBFGS. Crucially, although the optimization problem is non-convex, it has
been shown that local optimization will stll converge to theglobal solution of the original problem
providedY is chosen to be sufficient rank to represent the true solutionZ⋆ [2]. Thus, choosing
Y ∈ R

2k×2k will guarantee that we find the optimal solution; of course, the complexity of this
update would still beO(k3) owning to the matrix multiplication, even though it may be faster due
to the fact that matrix multiplication is typically faster than an eigenvalue decomposition.

The real benefit of this approach comes from the fact that in practice we often find that the optimal
Z is low-rank: the KKT conditions of semidefinite programming imply thatF̂ (d⋆) andZ⋆ will have
complementary ranks, and we often expectF̂ (d⋆) to be nearly full rank in practice. This is not a
mathematically precise statement, since the rank ofF̂ (d⋆) will of course depend on the MDP and
value function features. However, in practice we expectF (d⋆) to be close to full rank: recall that
when states are sampled on-policy,F̂ (d⋆) � 0 (and indeed,F̂ (d⋆) ≻ 0 except on a subspace for
constant-valued features). Empirically,F̂ (d) tends to have only a few negative eigenvalues for when
computed for an off-policy distributiond, and thus we expectZ to have small rank, just enough
to “force” these eigenvalues to be zero. We can thus useY ∈ R

2k×p with p ≪ 2k, which lets us
compute∇Zg(Y Y T) in timeO(mkp).

Although it is difficult to bound the rankp a priori, we have found that very small valuesp = 2
were sufficient in all our experiements. Importantly, however, we can always check a solution to see
whether the chosenp was sufficient: if we choosep to be one larger than the presumed rank ofZ⋆,
we can check to ensure that the resultingY ⋆ is rank-deficient (to within the numerical precision of
the optimization); if this is the case, then the chosenp was sufficient and the solution is optimal.

Additional constraints on d

The above discussion assumed no addition constraintsd ∈ C. As mentioned in the text, we do
need to ensure that|di − dj | → 0 as‖φ(si) − φ(sj)‖ → 0. This can be done (as we do in the
experimental sections on sampling) by clustering states sothat multiple states must be assigned the
same probabilitydi; this effectively reduces the number ofdi variables we need to consider, and
always us to perform the optimization without any additional constraints on thedi’s. However, if
additional constraintsare desired, such as requiring that|di − dj | be bounded by some function
of ‖φ(si) − φ(sj)‖, then this constraintd ∈ C would need to be included in the optimization of
the subproblem (5). Fortunately, the number of such constraints woudl typically be small, because
only small values of‖φ(si) − φ(sj)‖ need to be constrained in this manner. Thus, the additional
constraints are thed terms would typically be sparse, and so could be incorporated into the Newton
update with little additional difficult. For the finite sampling results in the paper, we use clustering
to define a small number of variablesdi that each correspond to a large number of samples; in this
case we can solve the optimization problem directly, and do not need to worry about any additional
constraints ond.

References

[1] S. Boyd and L. Vandenberghe.Convex Optimization. Cambridge University Press, 2004.

[2] M. Journee, F. Bach, P.A. Absil, and R. Sepulchre. Low-rank optimization on the cone of
positive semidefinite matrices.SIAM Journal on Optimization, 20(5):2327–2351, 2010.

3

