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1 Word tree

We trained the tree structure on frequency of words from NIPS proceedings. For each document
we calculate a number of times each word appeared in the document and normalized. We only
considered the 8274 most frequent words. The result is shown in the Figure 1. We see that dictionary
elements correspond to reasonable NIPS topics and related categories closer in the tree are typically
more related.

2 Bilinear structured sparse models

2.1 Patch based parts model

Each of the previous models has, at least cosmetically, a bilinear form. Suppose we have two data
sets, X and Y . By setting

E(W,A, V,B, S,X, Y ) =∑
j

||WAj −Xj ||2 + ||V Bj − Yj ||2 + |Aj |TS|Bj |, (1)

we get a model that modulates the sparsity of the representation of x = Xj with the representation
of y = Yj via S. The penalty term |a|TS|b| is “bilinear” in b = Bj and a = Aj , and with a fixed, E
reduces to a weighted basis pursuit sparse coding model

Ea(V, b, Y ) = ||V b− y||2 + |b|Λ,

where for any vectors c and Λ,
|c|Λ =

∑
|ci| · Λi,

and where Λ = |a|TS. The equivalent statement holds with b fixed.

Note that equation (2) can be rewritten as∑
j

||Wzj − p||2 + |zj |TT |zj |, (2)

where zj = [aTj b
T
j ]T ,

W =

(
W1 0
0 W2

)
, p =

(
x
y

)
T =

(
0 ST

S 0

)
.

Thus this model is a special case of the previous ones.
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Figure 1: The coding units were placed on a tree. Displayed are the most common words of each
dictionary element.

We give an example of learning S in a bilinear setting. We use the centered faces from the faces
in the wild dataset, available at http://vis-www.cs.umass.edu/lfw/. From each of the
13233 images we extract the center 128 × 128 pixels, and resize by half. We then pick a random
48×48 window within the 64×64 square. The 48×48 window is broken up into 9 16×16 patches.
We remove the mean from each patch, project it to the l2 unit sphere, and write it as a 256 vector,
producing 9 vectors p1, ..., p9. Finally, we construct the 8 · 256 vector x = [pT1 ...p

T
4 pT6 ...p

T
9 ]T and

y = p5; that is, y is the center 16× 16 patch and x is the 8 outside patches concatenated. We obtain
data matrices X with dimensions 8 ·256×13233 and Y with dimensions 256×13233. The purpose
of the two layers of windowing is to insure that each image contains only parts of faces, but to allow
the window to not always center on the same part of the face.

We then train a model minimizing the energy

E(W,Z1, Z2, S) =

∑
x∈X, y∈Y

(
1

8
||W̃z1 − x||2 + ||Wz2 − y||2 + zT1 Sz2

)
,
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such that W is a 256× 400 dictionary (i.e. a dictionary with 400 atoms),

W̃ =



400︷︸︸︷ 400︷︸︸︷ 400︷︸︸︷
256
{

W 0 · · · 0

256
{

0 W · · · 0
...

...
. . . 0

256
{

0 0 0 W

,

and Z1, Z2 ≥ 0, 0 ≤ S ≤ .01003, mean(S) = .01. The constraint on W̃ and W just forces each
patch uses the same dictionary, regardless of where the patch lies on the 3× 3 grid.

The energy is minimized via the batch procedure. The updates forZ are done via coordinate descent,
the updates for W via least squares, and at each update, S is averaged with .1 of the solution to the
linear program with fixed Z and renormalized. W is initialized via random patches from Y , and S
is initialized as the all ones matrix. In Figure 2.1 the dictionary W is displayed.

To understand the S which is learned, we will try to use it to generate new images. The model
allows the dictionary elements used in the patch in the middle to modulate the dictionary elements
used in the reconstruction of each of the outer patches, and the dictionary elements used in the
reconstruction of the patches on the outside to modulate the dictionary elements used for the center
patch, but it does not directly allow generation of new patches without any data to reconstruct. We
will ignore the reconstruction term, but to prevent the model from collapsing, we will specify that
the code used to generate each patch has unit sum. In equations, we will try to minimize:

Eg(z1, z2, S) = zT1 Sz2,

subject to
z1, z2 ≥ 0

k+400∑
j=k+1

z1(j) = 1, k ∈ {0, 1, ..., 7}

and
zT2 1 = 1.

Note that at the minimum, one element in each block is turned on. We will start with z2 chosen as
uniform random vector normalized to have sum 1, and then alternate between solving for z2 and z1

until we hit a local minimum. Results of several runs are shown in Figure 2.1

The interesting thing about this experiment is the fact that no patch ever is allowed to see global
information; the dictionary elements used in the reconstruction of the outside patches only get to see
the value of the dictionary elements used in the center patch through S, and vice versa. Thus even
though W is blind to anything larger than a 16 × 16 patch, and is the same for every location, the
model is able to learn the global structure through S.

3 Learning the S on mean-zero patches

We use the model
min
S

min
W,Z

∑
x∈X
||Wz − x||2 + |z|TS|z|, (3)

Z ≥ 0, ||Wj || = 1 ∀j,

0 ≤ S ≤ β, S = ST , and|Sj |1 = α ∀j

on 50000 patches 8× 8 patches taken from the Pascal dataset. The mean of each patch is removed,
but they are otherwise unprocessed. Here, β = 12 and α = .13. Note that these two numbers
roughly specify the number of zeros in the solution of the S problem to be 800.
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Figure 2: The dictionary W of 16 × 16 patches learned by the bilinear model on faces; Generated
faces. Each patch is forced to have coefficients summing to 1.
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Figure 3: W and S, ordered by the sparsity of the interactions in S, as measured by l1/l2 of the
row. S is on the right, with blue signifying small inhibition, and red signifying large inhibition;
W is on the left, the atoms are arranged column major in the same order as the rows of S. Atoms
corresponding to sparse rows of S have many low cost interactions with other elements (and pay for
these with other, larger interactions); these tend to be low frequency. The non-sparse rows of S tend
to correspond to high frequency atoms; these essentially always incur a cost to activate. Note that
all the structure is learned from the data.

4 A Different way of learning the interaction matrix

In the main paper we provided an algorithm for learning the inhibitory interaction matrix S. The
difficulty lies in the providing a contrastive term. In this section we give another model where
learning is more naturally done by stochastic gradient descent. We write S simply as S = e−P

where P is a matrix, exponential is done component-wise. We add a contrastive term proportional
to the P 2 to the energy. The model becomes

min
S,W,Z

∑
x∈X
||Wz − x||2 + α|z|T e−P |z|+ βP 2, (4)

||Wj || = 1 ∀j.
We can understand the behavior as follows. The Pij is pushed down by the L2 term and pushed
up in proportion to the frequency and magnitude of co-activity of elements zi, zj . Because of the
functional form the P will stay bounded and will be larger for units that co-occur together. We
trained this system on natural image patches and looked which neighbors a given unit has strongest
connections to. We found, in agreement with [GO08] that these are units with similar orientations,
Figure 3.
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Figure 4: Each column shows the filters of the units that have strongest connections P to the unit
with the first filter in the column in the model (4). Units of similar orientations tend do be connected
(not inhibited).
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