
Committing Bandits
(Supplementary Material)

1 Relevant policies and results

1.1 Allocation policies:

Uniform allocation (Unif): Plays all arms in the round robin fashion. Formally, for each time
t = 1, 2, . . . , set It = t mod K.

Upper Confidence Bound (UCB) [1]: From time 1 to time K, pull each arm once. For time
t = K + 1,K + 2, . . . , pull the arm It such that

It = arg max
1≤i≤K

(

θ̂i,Ti(t−1) +

√

2 ln(t− 1)

Ti(t− 1)

)

,

where θ̂i,Ti(t−1) is the empirical average of rewards associated with arm i so far, i.e.,

θ̂i,Ti(t−1) =
1

Ti(t− 1)

Ti(t−1)
∑

s=1

Xi,s. (1)

1.2 Recommendation policies:

Empirical Distribution of Plays (EDP): Recommend arm i with probability Ti(n)/n. That is,

P(Jn = i) =
Ti(n)

n
.

Empirical Best Arm (EBA): Recommend the arm which achieves maximum empirical average of
rewards so far, i.e.,

Jn ∈ arg max
1≤i≤K

θ̂i,Ti(n),

where θ̂i,Ti(n) is defined in (1).

Most Played Arm (MPA): Recommend the most played arm, i.e.,

Jn ∈ arg max
1≤i≤K

Ti(n).

1.3 Known results

First, it is easy to see that E[Rn] ≤ θ∗n for any allocation policy.
Result 1 (Distribution-dependent [5]). For any allocation policy, and for any set of reward distri-
butions such that their parameters θi are not all equal, there exists an ordering of (θ1, . . . , θK) such
that

E[Rn] ≥





∑

i$=i∗

∆i

D(pi‖p∗)
+ o(1)



 lnn,
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where D(pi‖p∗) = pi log
pi

p∗
+ p∗ log p∗

pi
is the Kullback-Leibler divergence between two Bernoulli

reward distributions pi (of arm i) and p∗ (of the optimal arm), and o(1) → 0 as n → ∞.
Result 2 (Distribution-free [6]). There exist positive constants c andN0 such that for any allocation
policy, there exists a set of Bernoulli reward distributions such that

E[Rn] ≥ cK(lnn− lnK), ∀n ≥ N0.

Result 3 (Distribution-dependent [3]). For any pair of allocation and recommendation policies, if
the allocation policy can achieve an upper-bound such that for all (Bernoulli) reward distributions
θ1, . . . , θK , there exists a constant C ≥ 0 with

E[Rn] ≤ Cf(n),

then, for all sets of K ≥ 3 Bernoulli reward distributions, with parameters θi that are all distinct
and all different from 1, there exists an ordering (θ1, . . . , θK) such that

E[rn] ≥
∆

2
e−Df(n),

where D is a constant which can be calculated in closed form from C, and θ1, . . . , θK .

In particular, since E[Rn] ≤ θ∗n for any allocation policy, there exists a constant ξ depending only
on θ1, . . . , θK such that E[rn] ≥ (∆/2)e−ξn.
Result 4 (Distribution-free [3]). For any pair of allocation policy and any recommendation policy,
there exists a set of Bernoulli reward distributions such that

E[rn] ≥
1

20

√

K

n
.

Result 5 (Distribution-dependent [1]). For the UCB allocation algorithm,

EUCB [Rn] ≤

(

∑

i:∆i>0

8

∆i
+ o(1)

)

lnn,

where o(1) → 0 as n → ∞. Thus, by Result 3, for UCB together with any recommendation policy,
there exists a constant ρ such that E[rn] ≥ (∆/2)n−ρ.
Result 6 (Distribution-dependent [3]). Upper-bounds on simple regret:

1. For the pair [Unif, EBA], E[rn] ≤
∑

i$=i∗

∆ie
−∆2

i%n/K&, for all n ≥ K .

2. For the pair [UCB, MPA], E[rn] ≤
K3

(n−K)2
, for all n sufficiently large, such that

n ≥ K + 4K lnn/∆2 and n ≥ K(K + 2).

2 Theorem 1 and its proof

Theorem 1. (1) Distribution-dependent lower bound: In Regime 1, for any algorithm, and any set
of K ≥ 3 Bernoulli reward distributions such that θi are all distinct and all different from 1, there
exists an ordering (θ1, . . . , θK) such that

E[Reg] ≥



max







(1 − γ)θ∗

ξ
,
∑

i$=i∗

∆i

D(pi‖p∗)







+ o(1)





lnT

T
,

where o(1) → 0 as T → ∞, and ξ is the constant discussed in Result 3.

(2)Distribution-free lower bound: Also, for any algorithm in Regime 1, there exists a set of Bernoulli
reward distributions such that

E[Reg] ≥ cK

(

1−
lnK

ln T

)

lnT

T
,

where c is the constant in Result 2.
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Proof. We first derive the distribution-dependent lower-bound. Combining two lower bounds in
Results 1 and 3 yields that

E[Reg] ≥
γc1 lnN

T
+

T −N

T
c2e

−c3N +
(1− γ)Nθ∗

T

≥
1

T

(

(T −N)c2e
−c3N + (1 − γ)Nθ∗

)

,

where c1 =
∑

i$=i∗ ∆i/D(pi‖p∗); c2 = ∆/2; and c3 = ξ. Now, let F0(N) := (1 − γ)Nθ∗ + (T −

N)c2e−c3N . We have that F0(N) is convex for N ∈ [0, T ], and
∂F0

∂N
= (1 − γ)θ∗ − c2e

−c3N (1 + c3(T −N)).

Thus definingN∗ by ∂F0(N∗)/∂N = 0, we have:
(1− γ)θ∗

c2c3
ec3N

∗

+N∗ −
1

c3
= T. (2)

With T going to infinity, N∗ also goes to infinity, and hence, the first term in (2) dominates the
second term if T is large enough. Therefore, for T large enough,

T =
(1− γ)θ∗

c2c3
ec3N

∗

+N∗ −
1

c3
≤ 2

(1− γ)θ∗

c2c3
ec3N

∗

i.e. N∗ ≥
1

c3

(

lnT − ln

(

c2c3
2(1− γ)θ∗

))

.

Substituting (2) into F0, we obtain:

F0(N) ≥ F0(N
∗) = (1− γ)θ∗

(

N∗ +
1

c3
−

c2
c3(1− γ)θ∗

e−c3N
∗

)

≥ (1− γ)θ∗
(

lnT

c3
−

1

c3
ln

(

c2c3
2(1− γ)θ∗

)

+
1

c3
−

2

c23T

)

.

Therefore,
E[Reg] ≥

(

(1− γ)θ∗

ξ
+ o(1)

)

lnT

T
, (3)

where o(1) → 0 as T → ∞.

Alternatively, we note that

E[Reg] = γ
E[RN ]

T
+

T −N

T
E[rN ] + (1− γ)

N

T
θ∗

≥
1

T
(E[RN ] + (T −N)E[rN ]) ,

since E[RN ] ≤ θ∗N. But the right hand side is nothing but the regret of a particular strategy for
the usual multi-armed bandit problem in T slots, and hence, it is further lower-bounded by Result 1.
Thus,

E[Reg] ≥





∑

i$=i∗

∆i

D(pi‖p∗)
+ o(1)





lnT

T
. (4)

Combining (3) and (4) yields the first bound.

Now, the distribution-free lower-bound can be obtained by noticing the following:

E[Reg] = γ
E[RN ]

T
+

T −N

T
E[rN ] + (1− γ)

N

T
θ∗

≥
1

T
(E[RN ] + (T −N)E[rN ]) ,

since E[RN ] ≤ θ∗N. As we claimed before, the right hand side is nothing but the regret of a
particular strategy for the usual multi-armed bandit problem in T slots, and hence, it is further
lower-bounded by Result 2. Thus, E[Reg] ≥ cK/T (lnT − lnK), for all T ≥ N0, where c and N0

are defined in Result 2. The result then follows.
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3 Theorem 2 and its proof

Theorem 2. For the Non-adaptive Unif-EBA algorithm,

E[Reg] ≤
K

∆2



(1− γ)θ∗ +
γ

K

∑

i$=i∗

∆i +
2∆2

ln T





ln T

T
.

Proof. The proof follows immediately from the known upper bound of the pair [Unif, EBA] (see
[3]). Since the algorithm chooses uniformly each arm

⌈

lnT/∆2
⌉

≤ 1 + lnT/∆2 times, we have
that

N ≤ K

(

lnT

∆2
+ 1

)

, E[RN ] ≤
∑

i$=i∗

∆i

(

lnT

∆2
+ 1

)

,

E[rN ] ≤
∑

i$=i∗

∆ie
−∆2

i
(lnT/∆2) ≤

∑

i$=i∗

∆i
1

T
.

Therefore,

E[Reg] =
(1− γ)θ∗

T
N +

γ

T
E[RN ] +

T −N

T
E[rN ]

≤
K

∆2



(1− γ)θ∗ +
γ

K

∑

i$=i∗

∆i +
∆2

lnT



(1− γ)θ∗ +
∑

i$=i∗

∆i

K
(γ + 1)









ln T

T

≤
K

∆2



(1− γ)θ∗ +
γ

K

∑

i$=i∗

∆i +
2∆2

lnT





lnT

T
,

where the last inequality is due to the facts that 0 < θ∗ ≤ 1 and 0 < ∆i ≤ 1.

4 Theorem 3 and its proof

Theorem 3. (1) Distribution-dependent lower bound: In Regime 2, for any algorithm, and any set
of K ≥ 3 Bernoulli reward distribution such that θi are all distinct and all different from 1, there
exists an ordering (θ1, . . . , θK) such that

E[Reg] ≥





∑

i$=i∗

∆i

D(pi‖p∗)
+ o(1)





lnT

T
,

where o(1) → 0 as T → ∞.

(2)Distribution-free lower bound: Also, for any algorithm in Regime 2, there exists a set of Bernoulli
reward distributions such that

E[Reg] ≥ cK

(

1−
lnK

ln T

)

lnT

T
,

where c is the constant from Result 2.

Proof. Given a fixedN , using the same technique as in the proof of Theorem 1, we note that:

E[Reg|N ] = γ
E[RN |N ]

T
+

T −N

T
E[rN |N ] + (1− γ)

N

T
θ∗

≥
1

T
(E[RN |N ] + (T −N)E[rN |N ]) ,

since E[RN |N ] ≤ θ∗N. However, any algorithm in Regime 2 is just a particular algorithm for the
usual stochastic multi-armed bandit problem in T slots, and the right hand side is nothing but its
regret. Therefore, applying the distribution-dependent lower bound in Result 1 and the distribution-
free lower bound in Result 2, and taking the expectation overN yield the results.
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5 Theorem 4 and its proof

Theorem 4. For the SEC1 algorithm,

E[Reg] ≤
K

∆2



(1− γ)θ∗ +
γ

K

∑

i$=i∗

∆i + b





lnT

T
,

where

b =

(

2 +
∆2(K + 2)

(1− e−∆2/2)2

)

1

ln T
→ 0 as T → ∞.

Proof. Let P ∗
k (n) denote the probability that the optimal arm i∗ is kept until the end of n-th round,

and P ∗
r (n) denote the probability that i∗ is rejected within the first n rounds. By definition,P ∗

k (n) =
1− P ∗

r (n).

For n ≤ α lnT , using the “maximal” version of Chernoff-Hoeffding bound [4], we have that

P ∗
r (n) = P

(

max
1≤j≤n

∣

∣

∣
Si∗

j − jθ∗
∣

∣

∣
> ε1 lnT

)

≤ 2e−2ε2
1
(lnT )2/n ≤ 2e−2ε2

1
(lnT )/α = 2T−2, (5)

since α = 1/∆2, ε1 = 1/∆.

For α lnT < n ≤ T , using the union bound, Chernoff-Hoeffding bound [4] and (5), we have that:

P ∗
r (n) ≤ P(“i∗ is rejected before α lnT ”) +

n
∑

j=α lnT

P(“arm i∗ is rejected at time j”)

= P ∗
r (α lnT ) +

n
∑

j=α lnT

P(|Si∗

j − jθ∗| > ε2j)

≤ 2T−2 +
n
∑

j=α lnT

2e−2ε2
2
j = 2T−2 +

2e−2ε2
2
α lnT

1− e−2ε2
2

(1− e−2ε2
2
(n−α lnT ))

≤ 2T−2ε2
1
/α +

2T−2ε2
2
α

1− e−2ε2
2

= 2T−2 +
2T−1/2

1− e−∆2/2
, (6)

since ε2 = ∆/2.

Now, consider any arm i that is not optimal, and let P i
k(n) denote the probability that arm i is kept

until the end of n-th round. Let h(n) denote the rejecting threshold at time n, i.e., h(n) = ε1 lnT
for n ≤ α lnT , and h(n) = ε2n for n > α lnT . Then for n > α lnT,

P i
k(n) = P

(∣

∣Si
j − jθ∗

∣

∣ ≤ h(j), 1 ≤ j ≤ n
)

≤ P
(
∣

∣Si
n − nθ∗

∣

∣ ≤ ε2n
)

= P
(

−ε2n ≤ Si
n − n∆i − nθi ≤ ε2n

)

≤ P
(

Si
n − nθi ≥ n(∆i − ε2)

)

≤ e−n∆2/2.

Therefore, for n > α lnT , the probability that any suboptimal arm is kept until the end of n-th round
at most (K−1)e−n∆2/2, and hence, the probability that all suboptimal arms are rejected within first
n rounds is at least 1− (K − 1)e−n∆2/2.

LetNs denote the stopping time of the algorithm. Then, for n > α lnT ,

P (Ns ≤ n) ≥ P (all suboptimal arms are rejected within first n rounds) ≥ 1− (K − 1)e−n∆2/2.

⇒ P (Ns > n) ≤ (K − 1)e−n∆2/2 for n > α lnT.

5



And hence,

E [Ns] =
∑

1≤n≤T

P (Ns > n) ≤ α lnT +
∑

α lnT<n≤T

(K − 1)e−n∆2/2

= α lnT +
(K − 1)T−α∆2/2

1− e−∆2/2
(1− e−T∆2/2)

≤
lnT

∆2
+

(K − 1)

1− e−∆2/2
T−1/2

≤
lnT

∆2

(

1 +
∆2(K − 1)

(1− e−∆2/2) lnT

)

. (7)

Thus, the cumulative regret bound is:

E [RNs
] ≤ γ





∑

i$=i∗

∆i





lnT

∆2

(

1 +
∆2(K − 1)

(1 − e−∆2/2) lnT

)

. (8)

Now, let us consider the simple regret:

E[rNs
] =

∑

i$=i∗

∆i P(“arm i is kept until the stopping time”)

=
∑

i$=i∗

T
∑

n=1

∆iP(“arm i is kept until n” , Ns = n)

≤
∑

i$=i∗

T
∑

n=1

∆iP(“arm i is kept until n” , “arm i∗ is rejected before n”)

=
∑

i$=i∗

T
∑

n=1

∆iP(“arm i is kept until n”)× P(“arm i∗ is rejected before n”).

=
∑

i$=i∗

∆i

T
∑

n=1

P i
k(n)P

∗
r (n)

=
∑

i$=i∗

∆i





∑

1≤n≤α lnT

P i
k(n)P

∗
r (n) +

∑

α lnT<n≤T

P i
k(n)P

∗
r (n)



 ,

where the fourth equality is because SEC1 makes decision on each arm independently. Then, ap-
plying (6) and (5) yields that

E[r] ≤
∑

i$=i∗

∆i





∑

1≤n≤α lnT

2T−2 +
∑

α lnT<n≤T

e−n∆2/2

(

T−2 +
2T−1/2

1− e−∆2/2

)





≤
∑

i$=i∗

∆i

(

2α(lnT )T−2 +
T−1/2

1− e−∆2/2

(

T−2 +
2T−1/2

1− e−∆2/2

))

≤





∑

i$=i∗

∆i





(

2

∆2
T−2+1/e +

T−5/2

1− e−∆2/2
+

2T−1

(1− e−∆2/2)2

)

≤





∑

i$=i∗

∆i





1

T (1− e−∆2/2)2

(

3 +
2(1− e−∆2/2)2

∆2

)

, (9)
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where the third inequality is due to the fact that lnx ≤ x1/e for all x > 0. Combining (7)-(9) yields
that:

E[Reg] ≤
K

∆2

lnT

T



(1− γ)θ∗ +
γ

K

∑

i$=i∗

∆i

+
∆2

(1 − e−∆2/2)2 lnT

[

(1− γ)θ∗(K − 1)
(

1− e−∆2/2
)]

+
∆2

(1 − e−∆2/2)2 lnT





γ(K − 1)

K





∑

i$=i∗

∆i





(

1− e−∆2/2
)





+
∆2

(1 − e−∆2/2)2K lnT





∑

i$=i∗

∆i





[

3 +
2

∆2

(

1− e−∆2/2
)2
]





≤
K

∆2

lnT

T



(1− γ)θ∗ +
γ

K

∑

i$=i∗

∆i

+
∆2

(1 − e−∆2/2)2 lnT

[

(K − 1) + 3 +
2

∆2

(

1− e−∆2/2
)2
])

=
K

∆2

lnT

T



(1− γ)θ∗ +
γ

K

∑

i$=i∗

∆i +
1

lnT

[

2 +
∆2(K + 2)

(1 − e−∆2/2)2

]



 ,

where the second inequality is due to the facts that 0 < θ∗ ≤ 1, 0 < ∆i ≤ 1, and e−∆2/2 ≥ 0.

6 Theorem 5 and its proof

Theorem 5. For the SC-UCB algorithm,

E[Reg] ≤
∑

i$=i∗

(

γ∆i + (1 − γ)θ∗

∆2
i

)

ln(T∆2
i )

T

(

32 +
∆2

i + 96

ln(T∆2
i )

)

.

Proof. This proof is based on the proof of Theorem 3.1 in [2].

First, letN i
e denote the number of time slots that arm i is chosen during experimentation phase (i.e.,

before commitment), and N i
c denote the number of time slots that i is chosen during commitment

phase (that is, N j
c = 0 if the algorithm does not commit to arm j). Also, let N i = N i

e +N i
c be the

total number of time slots that the algorithm spent on arm i.

We then observe that in Regime 2, in any time slot before commitment, if the algorithm chooses a
suboptimal arm i, then it suffers an expected loss γ∆i+(1− γ)θ∗; otherwise, it suffers an expected
loss (1 − γ)θ∗ if it chooses i∗. Furthermore, in any time slot after commitment, if the algorithm
commits to a suboptimal arm i, then it suffers an expected loss ∆i; otherwise, it does not suffer any
loss if committing to i∗.

Now, let us define λ =
√

e/T , let A be the set of arms i for which ∆i > λ, i.e., A = {i ∈ [K] :
∆i > λ}. For any arm i ∈ A, its contributed regret is

(γ∆i + (1 − γ)θ∗)N i
e +∆iN i

c

T
≤ (γ∆i + (1− γ)θ∗)

N i
e +N i

c

T
= (γ∆i + (1− γ)θ∗)

N i

T
.

Following the steps in the proof of Theorem 3.1 in [2], one can show that the expected number of
time slots that SC-UCB spent on arm i for i ∈ A is bounded by:

E[N i] ≤

(

1 +
32 ln(T∆2

i )

∆2
i

+
96

∆2
i

)

, i ∈ A.
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Thus, the expected regret contributed by an arm i ∈ A is bounded by
γ∆i + (1− γ)θ∗

T

(

1 +
32 ln(T∆2

i )

∆2
i

+
96

∆2
i

)

.

Next, for i /∈ A, we have that N i
e ≤ 1 + 2 ln(Tλ2)/λ2 under SC-UCB, since SC-UCB will stop

whenm = +log2(T/e)/2,. Moreover,N i
c is trivially bounded by T . Thus, the contributed regret of

an arm i /∈ A is bounded by
γ∆i + (1− γ)θ∗

T

(

2 ln(Tλ2)

λ2
+ 1

)

+∆i.

Therefore, the total regret bound would be

E[Reg] ≤
∑

i:∆i>λ

γ∆i + (1 − γ)θ∗

T

(

1 +
32 ln(T∆2

i )

∆2
i

+
96

∆2
i

)

+
∑

i:∆i≤λ

∆i +
γ∆i + (1− γ)θ∗

T

(

1 +
2 ln(Tλ2)

λ2

)

≤
∑

i:∆i>λ

γ∆i + (1 − γ)θ∗

T

ln(T∆2
i )

∆2
i

(

32 +
∆2

i

ln(T∆2
i )

+
96

ln(T∆2
i )

)

+
∑

i:∆i≤λ

γ∆i + (1− γ)θ∗

T

ln(T∆2
i )

∆2
i

(

2 +
∆2

i

ln(T∆2
i )

+
T∆i

γ∆i + (1− γ)θ∗
∆2

i

ln(T∆2
i )

)

.

Note that for∆i ≤ λ =
√

e/T , T∆2
i ≤ e. Moreover,∆i ≤ γ∆i + (1− γ)θ∗. Thus,

E[Reg] ≤
∑

i:∆i>λ

γ∆i + (1− γ)θ∗

T

ln(T∆2
i )

∆2
i

(

32 +
∆2

i

ln(T∆2
i )

+
96

ln(T∆2
i )

)

+
∑

i:∆i≤λ

γ∆i + (1− γ)θ∗

T

ln(T∆2
i )

∆2
i

(

2 +
∆2

i

ln(T∆2
i )

+
e

ln(T∆2
i )

)

≤
∑

i$=i∗

(

γ∆i + (1− γ)θ∗

∆2
i

)

ln(T∆2
i )

T

(

32 +
∆2

i + 96

ln(T∆2
i )

)

.

7 Theorem 6 and its proof

Theorem 6. The cumulative regret of UCB-poly(δ) is upper-bounded by

E[Rn] ≤

(

∑

i:∆i>0

8

∆i
+ o(1)

)

nδ,

where o(1) → 0 as n → ∞. Moreover, the simple regret for the pair [UCB-poly(δ), EBA] is
upper-bounded by

E[rn] ≤



2
∑

i$=i∗

∆i



 e−χnδ

,

where χ = min
i

σ

2
∆2

i .

Proof. Following the steps in the proof of Theorem 1 in [1], we can easily show the following
cumulative regret bound for UCB-poly(δ):

EUCB-poly[Ti(n)] ≤

⌈

8nδ

∆2
i

⌉

+
n
∑

t=1

t
∑

s=1

t
∑

si=1

2e−4tδ ≤
8nδ

∆2
i

+ 1 + 2
n
∑

t=1

t2e−4tδ

≤
8nδ

∆2
i

+ 1 + 2A∞(δ),

8



where A∞(δ) =
∑∞

t=1 t
2e−4tδ . Since A∞(δ) is finite for any fixed δ > 0, the result is obtained.

In order to prove the simple regret bound for the pair [UCB-poly(δ), EBA], we need the following
lemma.

Lemma 1. There exists a positive constant σ such that under the UCB-poly(δ) policy, for any arm
i and any n > K,

Ti(n) ≥ σnδ.

Proof. We first note that for any i, Ti(n) ≥ 1 for any n > K , and Ti(n) is non-decreasing in n.
Therefore, if such constant σ does not exist, it has to be the case in which there exists an arm j such
that Tj(n)/nδ → 0 as n → ∞, or Tj(n) - nδ. It is then elementary to prove that this cannot
happen under the UCB-poly(δ) policy.

Now we prove the simple regret bound the pair [UCB-poly(δ), EBA]. Note that

E[rn] = E [θ∗ − θJn
] = E





∑

i$=i∗

∆i{Jn = i}





=
∑

i$=i∗

∆iP (Jn = i) ≤
∑

i$=i∗

∆iP

(

θ̂i,Ti(t) ≥ θ̂∗T∗(t)

)

.

If θ̂i,Ti(t) < θi +
∆i

2 and θ̂∗T∗(t) > θ∗ − ∆i

2 , then θ̂i,Ti(t) < θ̂∗T∗i(t). Thus,

P

(

θ̂i,Ti(t) ≥ θ̂∗T∗(t)

∣

∣

∣
Ti(t), T

∗(t)
)

≤ P

(

θ̂i,Ti(t) ≥ θi +
∆i

2

)

+ P

(

θ̂∗T∗(t) ≤ θ∗ −
∆i

2

)

≤ exp

(

−
∆2

iTi(t)

2

)

+ exp

(

−
∆2

iT
∗(t)

2

)

≤ 2 exp

(

−
σ∆2

i

2
nδ

)

,

where the second inequality is due to the Chernoff-Hoeffding bound [4], and the third inequality is
due to Lemma 1. Taking the expectation over (Ti(t), T ∗(t)) yields that

P

(

θ̂i,Ti(t) ≥ θ̂∗T∗(t)

)

≤ 2 exp

(

−
σ∆2

i

2
nδ

)

.

Therefore,

E[rn] ≤ 2
∑

i$=i∗

∆i exp

(

−
σ∆2

i

2
nδ

)

≤



2
∑

i$=i∗

∆i



 e−χnδ

,

where χ = min
i

σ

2
∆2

i .

8 Theorem 7 and its proof

Theorem 7. Suppose T ≡ T (N) is a continuous function ofN such that lim
N→∞

ln(ln(T (N)−N))

lnN
exists. Consider the function

Fδ(N) := C1
N δ

T (N)
+

T (N)−N

T (N)
C2e

−C3N
δ

, 0 ≤ δ ≤ 1,

where C1, C2, and C3 are positive constants, and let

δ∗ := lim
N→∞

ln(ln(T (N)−N))

lnN
, projected on [0, 1].

Then, for any δ ∈ [0, 1], lim sup
N→∞

Fδ∗(N)

Fδ(N)
≤ 1.

9



The above theorem show that in the limit, as T and N increase to infinity, the “optimal” value of δ
can be chosen as limN→∞ ln(ln(T (N)−N))/ lnN if that limit exists. For examples:

• If T (N)
.
= Ω(eN ), then we should choose δ = 1. The corresponding scheme is [Unif,

EBA], i.e., to explore uniformly during the experimentation phase, and then commit to the
empirical best arm.

• If T (N)
.
= Θ(eN

α

) (0 < α < 1), then we should choose δ = α. The corresponding
scheme is [UCB-poly(α), EBA], i.e., to use the UCB-poly(α) algorithm during the experi-
mentation phase, and then commit to the empirical best arm.

• If T (N)
.
= O(elnN ), then we should choose δ = 0. The corresponding scheme is [UCB,

MPA], i.e., to use the standard UCB algorithm during the experimentation phase, and then
commit to the most played arm. Note that as δ = 0, we cannot get the cumulative regret
bound of N δ = N0 = constant, since lnN is a lower bound (and the standard UCB
algorithm achieves that).

Proof. For a fixed N , let us define an auxiliary variable y = N δ for δ ∈ [0, 1] and define

F (y) := C1
y

T (N)
+

T (N)−N

T (N)
C2e

−C3y, 1 ≤ y ≤ N.

Note that F (y) is convex for y ∈ [1, N ]. Therefore, it achieves a unique minimum at

y∗N =
1

C3
ln

(

C2C3(T (N)−N)

C1

)

, projected on [1, N ],

or

δ∗N =
1

lnN

(

ln

(

ln(T (N)−N) + ln

(

C2C3

C1

))

− lnC3

)

, projected on [0, 1]. (10)

In other words, for any δ ∈ [0, 1], we have that

Fδ∗
N
(N) ≤ Fδ(N) or

Fδ∗
N
(N)

Fδ(N)
≤ 1 for all N.

Also, taking the limit of (10) as N goes to infinity yields that

lim
N→∞

δ∗N = lim
N→∞

ln(ln(T (N)−N))

lnN
= δ∗.

Now, suppose there exists some δ ∈ [0, 1] such that

lim sup
N→∞

Fδ∗(N)

Fδ(N)
= 1 + ε > 1, for some ε > 0.

Then there exists an increasing subsequence {n0, n1, n2, . . .} such that

Fδ∗(nk) = (1 + ε)Fδ(nk) ≥ (1 + ε)Fδ∗
nk

(nk) > Fδ∗
nk

(nk), for all k.

This leads to a contradiction of the fact that limN→∞ δ∗N = δ∗. Therefore,

lim sup
N→∞

Fδ∗(N)

Fδ(N)
≤ 1, for any δ ∈ [0, 1].

9 Additional simulation results

In this section, we present some additional numerical results on the performance of Non-adaptive
Unif-EBA, SEC1, SEC2, and SC-UCB algorithms with different sets of parameters.
We first recall Figure 1 which shows the regrets of the above algorithms for various values of T (in

10



Figure 1: Numerical performances whereK = 20, γ = 0.75, and∆ = 0.02

logarithmic scale) with parameters K = 20, γ = 0.75, and ∆ = 0.02. We can see that the perfor-
mances of SEC1 and SEC2 are nearly identical, which suggests that the requirement of knowing
θ∗ in SEC1 can be relaxed. Moreover, SEC1 (or equivalently, SEC2) performs much better than
Non-adaptive Unif-EBA due to its adaptive nature. Particularly, the performance of Non-adaptive
Unif-EBA is quite poor when the experimentation deadline is roughly equal to T , since the algo-
rithm does not commit before the experimentation deadline. Finally, SC-UCB performs not as well
as the others when T is large, but this algorithm does not require us to know ∆, and thus suffers a
performance loss due to the additional effort required to estimate∆.

Next, we keep K = 20, γ = 0.75, and decrease the value of ∆. Figures 2 and 3 show the per-

Figure 2: Numerical performances whereK = 20, γ = 0.75, and∆ = 0.01

formances of these algorithms for ∆ = 0.01 and ∆ = 0.005, respectively. The decrease of ∆
affects all of the algorithms, but it seems to have more effect on SEC1 and SEC2 than SC-UCB,
and particularly has a huge effect on the performance of Non-adaptive Unif-EBA. The reason is
that the value of ∆ is directly embedded in decision thresholds of SEC1, SEC2 and Non-adaptive
Unif-EBA, which is not the case for SC-UCB.

11



Figure 3: Numerical performances whereK = 20, γ = 0.75, and∆ = 0.005

We then investigate the effect of changing γ. Figure 4 shows the result for K = 20, γ = 0.9, and

Figure 4: Numerical performances whereK = 20, γ = 0.9, and∆ = 0.02

∆ = 0.02. As expected, the regrets of all algorithms in this case are smaller than the ones in the
case of γ = 0.75 (Figure 1).

Finally, we keep γ = 0.9,∆ = 0.02, and increaseK . Figures 5 and 6 shows the results forK = 50
andK = 100, respectively. Again, we see that the increase of K affects all of the algorithms, but it
has more effect on Non-adaptive Unif-EBA, SEC1, and SEC2 than SC-UCB.
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