Committing Bandits
(Supplementary Material)

1 Relevant policies and results

1.1 Allocation policies:

Uniform allocation (Unif): Plays all arms in the round robin fashion. Formally, for each time
t=1,2,...,setl; =t mod K.

Upper Confidence Bound (UCB) [1]: From time 1 to time K, pull each arm once. For time
t=K+1,K+2,...,pull thearm I; such that

A 2In(t —1
I; = arg [ax <9i,Ti(t1) + ﬁ) )

where éi,Ti(t—l) is the empirical average of rewards associated with arm ¢ so far, i.e.,
N 1
0irt—1) = 77— Z Xis- ey
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1.2 Recommendation policies:

Empirical Distribution of Plays (EDP): Recommend arm ¢ with probability T;(n)/n. That is,

Empirical Best Arm (EBA): Recommend the arm which achieves maximum empirical average of
rewards so far, i.e.,

Jy € arg ax 0i.7:(n)>

where éini(n) is defined in (1).
Most Played Arm (MPA): Recommend the most played arm, i.e.,

Jn € arg JHax Ti(n).

1.3 Known results

First, it is easy to see that E[R,,] < 6*n for any allocation policy.
Result 1 (Distribution-dependent [5]). For any allocation policy, and for any set of reward distri-

butions such that their parameters 0; are not all equal, there exists an ordering of (01, ..., 0 ) such
that
E[R,] > Z i* o(1) | Inn,
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where D(p;||p*) = p; 1og L 4+ p* log E_js the Kullback-Leibler divergence between two Bernoulli
reward distributions p; (ofarm 1) andp (of the optimal arm), and o(1) — 0 as n — oo.

Result 2 (Distribution-free [6]). There exist positive constants ¢ and Ny such that for any allocation
policy, there exists a set of Bernoulli reward distributions such that

E[R,] > cK(lnn—InK), ¥n > Np.

Result 3 (Distribution-dependent [3]). For any pair of allocation and recommendation policies, if
the allocation policy can achieve an upper-bound such that for all (Bernoulli) reward distributions
01,...,0k, there exists a constant C > 0 with

then, for all sets of K > 3 Bernoulli reward distributions, with parameters 0; that are all distinct
and all different from 1, there exists an ordering (01, . . ., 0k ) such that

E[r,] > %efo(n)’
where D is a constant which can be calculated in closed form from C, and 0+, ... ,0k.

In particular, since E[R,,] < 6*n for any allocation policy, there exists a constant § depending only
on0y,...,0k suchthat E[r,] > (A/2)e ",

Result 4 (Distribution-free [3]). For any pair of allocation policy and any recommendation policy,
there exists a set of Bernoulli reward distributions such that

1 /K
Elrn,] > —y/—.
20V n

Result 5 (Distribution-dependent [1]). For the UCB allocation algorithm,

EUCB < Z —+O )lnn

1A>O

where o(1) — 0 as n — 0o. Thus, by Result 3, for UCB together with any recommendation policy,
there exists a constant p such that E[r,| > (A/2)n™".

Result 6 (Distribution-dependent [3]). Upper-bounds on simple regret:

1. For the pair [Unif, EBA], E Z A; e~ Ailn/K] , foralln > K.
i#£L*

KS
2. For the pair [UCB, MPA], E[r,] < CEYSE for all n sufficiently large, such that
n—

n>K+4KInn/A%?andn > K(K + 2).

2 Theorem 1 and its proof

Theorem 1. (/) Distribution-dependent lower bound: In Regime 1, for any algorithm, and any set
of K > 3 Bernoulli reward distributions such that 0; are all distinct and all different from 1, there
exists an ordering (61, ..., 0k) such that

E[Reg] > | max u —57)9*7;

where o(1) = 0 as T — 0o, and & is the constant discussed in Result 3.

Ai InT
o(l) | —,
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(2) Distribution-free lower bound: Also, for any algorithm in Regime 1, there exists a set of Bernoulli
reward distributions such that

In K

E[Reg] > cK (1 - —) T

InT) T

where c is the constant in Result 2.



Proof. We first derive the distribution-dependent lower-bound. Combining two lower bounds in
Results 1 and 3 yields that

yeyInN T-N _ y (1—~)NO*
T + T coe + T
1
2 7 ((T = N)cge™ N + (1 — y)NO*),

E[Reg] >

where c1 = 37, . Ai/D(pillp*); c2 = A/2; and c3 = §. Now, let Fy(N) := (1 —9)NO* + (T -
N)cge™#N . We have that Fy(N) is convex for N € [0, 77, and

OF
8_]\? = (1 —7)0" — coe N (1 + ¢c3(T — N)).
Thus defining N* by 0Fy(N*)/ON = 0, we have:
(1 _7)9 ngN* + N* _ i — T. (2)
CoC3 C3

With T' going to infinity, N* also goes to infinity, and hence, the first term in (2) dominates the
second term if 7" is large enough. Therefore, for 7" large enough,
(1 - 7)9 ec;gN* +N* _ i < 2(1 - 7)9 603N*

C2C3 €3 C2C3

. 1 CoC3
e. N> (lnT-In{—=2_—1).
he = c3<“ “(2(1—%*))

Substituting (2) into Fp, we obtain:

T =

§ ) . 1 C2 —c3N*
> = (1- a el
Fo(N) = Fo(N7) = (1—)f (N "o es(1—7)0"° )
(T 1 C2C3 1 _2
y - 1 -
> (1-7)0 (—03 c3 (2(1 - )0*) c3 ch)
Therefore,

where 0o(1) - 0as T — oc.

Alternatively, we note that
E[Ry] T-N

N .
E[Reg] = « T + T E[TN]—I—(I—'y)TG

> % (E[RN] + (T — N)E[ry]),

since E[Ry] < 6*N. But the right hand side is nothing but the regret of a particular strategy for
the usual multi-armed bandit problem in 7" slots, and hence, it is further lower-bounded by Result 1.
Thus,

A, InT
E[Reg] > ;7D(pi||p*)+0(1) HT (4)

Combining (3) and (4) yields the first bound.

Now, the distribution-free lower-bound can be obtained by noticing the following:

E|R T—-N
ElReg] = a0 4 1o

1

= (B[R] + (T = N)E[rw])

since E[Ry] < 6*N. As we claimed before, the right hand side is nothing but the regret of a
particular strategy for the usual multi-armed bandit problem in 7' slots, and hence, it is further
lower-bounded by Result 2. Thus, E[Reg] > ¢K/T(InT — In K), for all T > Ng, where ¢ and Ny
are defined in Result 2. The result then follows. (]

Elry] 4+ (1 — 7)%9*

Y



3 Theorem 2 and its proof

Theorem 2. For the Non-adaptive Unif-EBA algorithm,

(1- 9*+—ZA+— nT

E[Reg] <
[Reg] < 2 7| 7T

K
A?

Proof. The proof follows immediately from the known upper bound of the pair [Unif, EBA] (see
[3]). Since the algorithm chooses uniformly each arm ﬂn T/ Aﬂ <14InT/ A? times, we have

that W | T
n n
N < K(F—i—l) < ) oA ( )
iF£L*
1
< L—AI(InT/A%) o
S T < g
iF£L* iFL*
Therefore,
(1= .~ T-N
E[R = —— N+ =E[R E
Reg] LEN + LE[Ry] + ———Elry]
K v A? InT
< — 1A=y + = A+ — | (1—79)0" 1) —
s A (=) +KZ o7 | ¢ +Z (v+ T
iF£L* iF£L*
K ¥ 2A2\ InT
< _ * L= | =
< |- +K;Al+lnT T
where the last inequality is due to the facts that 0 < * < 1land 0 < A; < 1. O

4 Theorem 3 and its proof

Theorem 3. (/) Distribution-dependent lower bound: In Regime 2, for any algorithm, and any set
of K > 3 Bernoulli reward distribution such that 6; are all distinct and all different from 1, there
exists an ordering (01, . .., 0k ) such that

Ai InT
i#£L*

where o(1) = 0as T — oco.

(2) Distribution-free lower bound: Also, for any algorithm in Regime 2, there exists a set of Bernoulli
reward distributions such that
In K ) InT

> _ ==
E[Reg] > cK (1 wT ) T

where c is the constant from Result 2.

Proof. Given a fixed IV, using the same technique as in the proof of Theorem 1, we note that:

BReglN] = 7o TNl N+ (- ) T
> 1 (BIRNIN] + (T — N)E[rx|N])

since E[Ryx|N] < 6*N. However, any algorithm in Regime 2 is just a particular algorithm for the
usual stochastic multi-armed bandit problem in 7' slots, and the right hand side is nothing but its
regret. Therefore, applying the distribution-dependent lower bound in Result 1 and the distribution-
free lower bound in Result 2, and taking the expectation over N yield the results. O



5 Theorem 4 and its proof
Theorem 4. For the SEC1 algorithm,

K . InT
E[REg]SF (1—7)0 +—;A +b T

where

A%(K 42 1
(+)) — 0 as T — oo.

b= (24 —— ) —
(+(1—e—A2/2)2 InT

Proof. Let P (n) denote the probability that the optimal arm ¢* is kept until the end of n-th round,
and P’ (n) denote the probability that ;* is rejected within the first n rounds. By definition, P; (n) =
1— P*(n).

For n < aln T, using the “maximal” version of Chernoff-Hoeffding bound [4], we have that

sy o

Pr(n) =P ( max

1<j<n

> €11n T) < 9p—2¢1(InT)?/n < 9p—261(InT)/a _ 272, (5)

since = 1/A?,¢; = 1/A.
For alnT" < n < T, using the union bound, Chernoff-Hoeffding bound [4] and (5), we have that:

P¥(n) < P(“i* is rejected before a In T) 4+ Z P(“arm ¢* is rejected at time ;)
j=alnT

n

= PialmT)+ Y P(S; —j6"| > ej)

Jj=alnT
n —2e2aInT
< 2T—2 + Z 26_263‘7. — 2T—2 + 2672—252(1 _ e—2e§(n—o¢lnT))
j=alnT 1—e 2
—2e2a —1/2
o), 2T 2T
< 2T /> 4 71 ey 21 + T o=a73 (6)

since ea = A/2.

Now, consider any arm 4 that is not optimal, and let P} (n) denote the probability that arm i is kept
until the end of n-th round. Let h(n) denote the rejecting threshold at time n, i.e., h(n) = ¢; InT
forn < alnT,and h(n) = ean forn > alnT. Then forn > alnT,

Pi(n) = (|Si-—j9*|<h' 1<j<n)
(|Sl no* ‘<€2TL)

( eon < S’Z —nA; —nb; < 62n)

P (S, —nb; > n(A; —e)) < e A2,

IN

IN

Therefore,forn > o InT', the probability that any suboptimal arm is kept until the end of n-th round
at most (K — 1)6_"A2/ 2, and hence, the probability that all suboptimal arms are rejected within first
n rounds is at least 1 — (K — 1)e~"A%/2,

Let N? denote the stopping time of the algorithm. Then, forn > aln T,

P (N?® < n) > P (all suboptimal arms are rejected within first n rounds) > 1 — (K — 1)6‘"A2/2.

= P(N*>n) < (K-1e "2 forn>alnT.



And hence,

E[N°] =

Z P(N°>n) < alnT+ Z (K—l)e‘"A2/2
1<n<T alnT<n<T
(K — 1)T—oA°/2
1 —e—A%/2
th (K — 1) T71/2

= alnT+ (1- e_TA2/2)

Thus, the cumulative regret bound is:

R L g
< BT/ AMK 1) (7)
- A2 (1—e2*2)InT )"

InT AZ(K —1)

i

Now, let us consider the simple regret:

E[rn,]

IN

Z A; P(“arm ¢ is kept until the stopping time”)
iti*

T
Z Z A;P(“arm i is kept until n” , Ny =n)
i£i* n=1
T
Z Z A;P(“arm 4 is kept until n” , “arm ¢* is rejected before n”)
i£i* n=1
T
Z Z A;P(“arm 7 is kept until n””) x P(“arm ¢* is rejected before n”).
i£i* n=1

T
Y ALY Pi(n)Pr(n)
A n=1
oA, Pin)Pi(n)+ Y PFim)Pi(n) |,
i#£L* 1<n<alnT alnT<n<T

where the fourth equality is because SEC1 makes decision on each arm independently. Then, ap-
plying (6) and (5) yields that

E[r]

IN

IN

IN

IN

Z A; Z 272 + Z e~nAY/2 (T2 t I ae 37;_1/3/2)

i

> 1<n<alnT alnT<n<T
T—1/2 2T71/2
-2 —2
Z A’L (20&(111 T)T + —1 — 8_—A2/2 (T + 1 — 8_A2/2)>
2 T-5/2 271
A; _T—2+1/e
; (AQ + 1 — e—A%/2 + (1 _ e—A2/2)2
_ A2
Yot (s 21— 2 ) ©
2% | Ty A2 !



where the third inequality is due to the fact that In 2 < 2'/€ for all 2 > 0. Combining (7)-(9) yields
that:

K InT ~
< — )0 + L ,
E[Reg] < AT T (1—-v)0"+ K;Az
AQ * —A?%/2
A rEnT [(1 —IE -1 (1 —e )}

A? (K —1) N
A= rEnT K DA (1 —et /2)

i
oo eAzA/Z)QKlnT ; Ai [?”L % (1 - e_Amﬂ
< %% (1—7)9*+%;Ai
S ),
= g% (1—7)0*+%;Ai+ﬁ[2+(fjg{7;i))2] ,

where the second inequality is due to the facts that 0 < §* < 1,0 < A; <1, and e=A%/2 >0. 0O

6 Theorem 5 and its proof

Theorem 5. For the SC-UCB algorithm,

(”yAi—l- (1 —7)9*> In(TA?) <32 A? +96)

AZ T In(TA2?)

E[Reg] < >

ki

Proof. This proof is based on the proof of Theorem 3.1 in [2].

First, let N¢ denote the number of time slots that arm 4 is chosen during experimentation phase (i.e.,
before commitment), and N, 2 denote the number of time slots that ¢ is chosen during commitment
phase (that is, N7 = 0 if the algorithm does not commit to arm j). Also, let N* = N? + N’ be the
total number of time slots that the algorithm spent on arm 3.

We then observe that in Regime 2, in any time slot before commitment, if the algorithm chooses a
suboptimal arm ¢, then it suffers an expected loss yA; + (1 — )6*; otherwise, it suffers an expected
loss (1 — ~)6* if it chooses i*. Furthermore, in any time slot after commitment, if the algorithm
commits to a suboptimal arm 7, then it suffers an expected loss A;; otherwise, it does not suffer any
loss if committing to ¢*.

Now, let us define A = /e/T, let A be the set of arms ¢ for which A; > A ie., A = {i € [K] :
A; > A\}. Forany arm ¢ € A, its contributed regret is

A+ (1 —~)6* Né-i-AlNé " Nez—l-Né N
(i ( 7;1 ) < (A + (1L =m0) == T

Following the steps in the proof of Theorem 3.1 in [2], one can show that the expected number of
time slots that SC-UCB spent on arm ¢ for ¢ € A is bounded by:

321n(TA2) 96 .
T F) y 1€ A

= (vAi + (1 = 7)0)

E[NT] < <1+



Thus, the expected regret contributed by an arm ¢ € A is bounded by
FYA; 4+ (1 —7)6* 32In(TA2) 96
1 — |-
T TTAar tar
Next, for i ¢ A, we have that N} < 1+ 21In(7'A?)/\? under SC-UCB, since SC-UCB will stop

when m = |log,(T'/€)/2]. Moreover, N is trivially bounded by T'. Thus, the contributed regret of
an arm i ¢ A is bounded by

. _AG* 2
YA + (1 =)0 <2ln(T/\ ) n 1> AL

T A2
Therefore, the total regret bound would be

E[Reg] < > R Gk ) (1 4 2nida) In(T'A7) + %)

; T A2 A2
A > 7 7
YA; + (1 = 7)o" 21n(T\?)
+ | Z A+ T 1+ 2
A <A
YA + (1= 7)0" In(TA3) A2 96

<
P> T A7\t @Ay T Ay

A > g 7 7

YA; + (1 —7)8* In(T'A?) A2 TA,; A2
2
+MZ.<A T A7 i n(TA?) HE7NEN =TT In(T'A?)

Note that for A; < XA = /e/T,TA? < e. Moreover, A; < vA; + (1 — ~)6*. Thus,

YA; + (1 —7)0* In(TA?) A2 96
<
ElReg] < MZ; T AT\ ran T mray
YA; + (1 —7)0* In(TA?) A? e
+ Y 2+ ~+ >
T A2 In(TA2) " In(TA2)
A< K g g
YA; + (1 =)0\ In(TA2) A? + 96
=y : s 296
fored A? T In(TA?)

7 Theorem 6 and its proof

Theorem 6. The cumulative regret of UCB-poly(0) is upper-bounded by
E[R,] < <Z A% +o(1)> nd,
A >0
where o(1) — 0 as n — oo. Moreover, the simple regret for the pair [UCB-poly(d), EBA] is
upper-bounded by
E[r,] < 22 A; e_X"S,
£

where x = min %A?.
2

Proof. Following the steps in the proof of Theorem 1 in [1], we can easily show the following
cumulative regret bound for UCB-poly(6):

n t t
ES 5 2 20 >ESEEUIREES SR

EycB-poly Ti(n)] <
t=1 s=1s;,=1
8n 5
S Xz H1+24%0)



where A (6) = "7, t2e=4"  Since A (0) is finite for any fixed § > 0, the result is obtained.

In order to prove the simple regret bound for the pair [UCB-poly(d), EBA], we need the following
lemma.

Lemma 1. There exists a positive constant o such that under the UCB-poly(d) policy, for any arm
itand anyn > K,

Ti(n) > on®.
Proof. We first note that for any ¢, T;(n) > 1 for any n > K, and T;(n) is non-decreasing in n.
Therefore, if such constant ¢ does not exist, it has to be the case in which there exists an arm j such
that Tj(n)/n® — 0 asn — oo, or Tj(n) < n’. It is then elementary to prove that this cannot
happen under the UCB-poly(J) policy. O

Now we prove the simple regret bound the pair [UCB-poly(d), EBA]. Note that

Elr,] = E[0"-0,] = E|> Ai{J, =i}
iAi*
iAix i

A
2

If 0; 7,1y < 0; + 5t and 0. ) > 0" — 5%, then 6; 1,4 < 03, Thus,

A N ) i A, N LA
P (b 2 00| 0. T"(0) < P <9i,T7;(t) = 0i + 7) tr <9T*<t> S0 7)
APT() AT (1)
< exp|—"+—>) texp | "2
2 >
<

A2
2 exp (—02’115) ,

where the second inequality is due to the Chernoff-Hoeffding bound [4], and the third inequality is
due to Lemma 1. Taking the expectation over (T;(t), T*(t)) yields that

5 f oA?
P (ei_’Ti(t) > eT*(t)) < 2exp (—Tn‘;) .

Therefore,

oA? s
E[r,] < QZAiexp —Tln < 22Ai e X"

i i
. 0 9o
where y = min §Ai. O
8 Theorem 7 and its proof

In(In(T'(N) — N))
In N

Theorem 7. Suppose T = T'(N) is a continuous function of N such that J\}im
— 00

exists. Consider the function

N?O T(N)-N CaN?
Fs5(N) .= C Coe ™3 0<6i<1
5( ) 1T(N)+ T(N) 2€ ’ >~ = 1,
where Cy, Cs, and Cs are positive constants, and let
5 — Tim In(In(T'(N) — N))
N—oo In N

. Fs-(N)
Then, for any 6 € [0, 1], limsu
Joranyé € [0,1] msup o

, projected on [0, 1].

<1.



The above theorem show that in the limit, as 7" and N increase to infinity, the “optimal” value of §
can be chosen as limy_, oo In(In(7'(N) — N))/In N if that limit exists. For examples:

o If T(N) = Q(e), then we should choose § = 1. The corresponding scheme is [Unif,
EBA], i.e., to explore uniformly during the experimentation phase, and then commit to the
empirical best arm.

e If T(N) = ©(eV") (0 < a < 1), then we should choose § = a. The corresponding
scheme is [UCB-poly(a), EBA], i.e., to use the UCB-poly(«) algorithm during the experi-
mentation phase, and then commit to the empirical best arm.

o If T(N) = O(e* ), then we should choose § = 0. The corresponding scheme is [UCB,
MPA], i.e., to use the standard UCB algorithm during the experimentation phase, and then
commit to the most played arm. Note that as § = 0, we cannot get the cumulative regret
bound of N° = NV = constant, since In N is a lower bound (and the standard UCB
algorithm achieves that).

Proof. For a fixed N, let us define an auxiliary variable y = N° for § € [0, 1] and define

y | T(N)-N
™) T T

F(y) := C’lT Coe™ Y, 1<y<N.

Note that F'(y) is convex for y € [1, N]. Therefore, it achieves a unique minimum at

SN (e 0K

> , projected on [1, N,

Yn = C3 Cl
or
1
N = (m <1n(T(N) —N)+In <CQC?3>) —In 03) , projectedon [0,1].  (10)
In other words, for any § € [0, 1], we have that
Fs« (N) < F5(N) or Fss V) ) foran v
R BN~ |

Also, taking the limit of (10) as IV goes to infinity yields that

. . In(In(T'(N) — N))
ngnoo (SN o ngnoo In N

="

Now, suppose there exists some § € [0, 1] such that
lim sup Fo-(N)
Then there exists an increasing subsequence {ng, n1,na, ...} such that

Fs<(ng) = (1 +e€)Fs(nk) > (1 + e)F‘;% (ng) > Fs, (ng), forall k.

=1+4+e>1, forsomee > 0.

This leads to a contradiction of the fact that limy_,, 03 = 0*. Therefore,

lim sup B (N)

< 1, foranyd € [0,1].

9 Additional simulation results

In this section, we present some additional numerical results on the performance of Non-adaptive
Unif-EBA, SEC1, SEC2, and SC-UCB algorithms with different sets of parameters.

We first recall Figure 1 which shows the regrets of the above algorithms for various values of 7' (in
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Figure 1: Numerical performances where K = 20,y = 0.75, and A = 0.02

logarithmic scale) with parameters K = 20,y = 0.75, and A = 0.02. We can see that the perfor-
mances of SEC1 and SEC2 are nearly identical, which suggests that the requirement of knowing
0* in SEC1 can be relaxed. Moreover, SEC1 (or equivalently, SEC2) performs much better than
Non-adaptive Unif-EBA due to its adaptive nature. Particularly, the performance of Non-adaptive
Unif-EBA is quite poor when the experimentation deadline is roughly equal to 7', since the algo-
rithm does not commit before the experimentation deadline. Finally, SC-UCB performs not as well
as the others when 7' is large, but this algorithm does not require us to know A, and thus suffers a
performance loss due to the additional effort required to estimate A.

Next, we keep K = 20, v = 0.75, and decrease the value of A. Figures 2 and 3 show the per-

0.45 — :
+~— Unif-EBA

0.40( »—x SEC1 b
+—+ SEC2

0.35f =—a SC-UCB [

0.30

0.25f

regret

0.20F

0.15f

0.10

0.05f

0'0%.0 5.5 6.0 6.5 7.0
log, T

Figure 2: Numerical performances where K = 20,y = 0.75, and A = 0.01

formances of these algorithms for A = 0.01 and A = 0.005, respectively. The decrease of A
affects all of the algorithms, but it seems to have more effect on SEC1 and SEC2 than SC-UCB,
and particularly has a huge effect on the performance of Non-adaptive Unif-EBA. The reason is
that the value of A is directly embedded in decision thresholds of SEC1, SEC2 and Non-adaptive
Unif-EBA, which is not the case for SC-UCB.
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Figure 3: Numerical performances where K = 20,~ = 0.75, and A = 0.005

We then investigate the effect of changing ~y. Figure 4 shows the result for X = 20,y = 0.9, and

0.40 .
el +— Unif-EBA
0.35 »—x SEC1
+—+ SEC2
0.30 =—a SC-UCB ||

O'Og.o 5.5 6.0 6.5 7.0
log, T

Figure 4: Numerical performances where K = 20,y = 0.9, and A = 0.02
A = 0.02. As expected, the regrets of all algorithms in this case are smaller than the ones in the

case of v = 0.75 (Figure 1).

Finally, we keep v = 0.9, A = 0.02, and increase K. Figures 5 and 6 shows the results for X = 50
and K = 100, respectively. Again, we see that the increase of K affects all of the algorithms, but it
has more effect on Non-adaptive Unif-EBA, SEC1, and SEC2 than SC-UCB.
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