Appendix—Supplementary Materials

In the appendix, we give proofs of the theorems. First, we give some preliminaries.

If X ~ x?(k), then the non-central moments are given by

2nF(n +k/2) _

B =2 )

k(k+2)- - (k+2n—2),

where I'(z) is the Gamma function defined as

“+oo
T(z):= / t*~tetdt.
0

The Gamma function satisfies I'(z + 1) = 2I'(2), I'(1/2) = /7, and T'(1) = 1.

If X ~ N (1, 0?), central absolute moments (the moments of | X — p|) are given by

Eflz - pl’] = {Up(p —D1y/2/m, pisodd,

oP(p— 1N p is even,
where n!! denotes the double factorial defined by

n-(n—2)---5-3-1 nispositive odd,
nll:=<n-(n—2)---6-4-2 nis positive even,
1 n = 1or0.

A Proof of Theorem 1

For notational brevity, we denote the i-th component of f(68) = V,logp(@ | p) and the i-th
component of g(0) = V- logp(0 | p) as

i —ni
£:(8) =V, 10gp(8 | p) = =",

0i —mi)* — 77
6:(0) = V. logp(6 | p) = i) =7

T

Proof. According to Eq.(1), we have

0
Var[R(h) f(8)] < ZJE [(Rfi)?]
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Let v; = ((0; — n;)/7:)? fori = 1,...,£. We could know that ¥»; ~ x?(1) and E[¢;] = 1 since
0; ~ N (n;,7?), and thus

B*(1—~")B

Var[R(h)f(0)] < 11— )2
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Hence the first part of Theorem 1 follows due to

Var [V, (p)] = %Var[R(h) £(0)).
Similarly,

L
Var[R(h)g(8)] < > E[(Ra:)?]

. N
BA1—9")? i —mi
<2 aa e B [(( ) ‘1> ] |
Let ¢; = ((6; —n;)/7:)* fori=1,... L. Since 0; ~ N (n;, 72), we could know that
E[(: —1)?] = E [¢] - 2E[ys] + 1 = 2.

Hence
268°(1-+")*B

Var{R(1)g(0)] < 53

Notice that R 1
Var [V,J(p)} =N Var[R(h)g(0)],

which completes the proof.

B Proof of Theorem 2

To begin with, we note that p is a vector and o is a scalar in REINFORCE. We denote the i-th

component of f(h) = Zthl V. logp(as | s¢,6) and the scalar function g(h) as

T T a [.I,TS
t— t
h) = va logp(at | s¢,0) = Z T2z to
t=1 t=1
T T — uT8y)? — o2
Zv logp at | sfa Z f )
t=1 t=1

where all functions above are parameterized by 6.
Proof. Since
~ 1
Var(V,,.J(0)] = - Var[R(h) £ (1),

Var(V,7(60)] = . Var[R(h)g(1)
we can just focus on the bounds of Var[R(h) f (k)] and Var[R(h)g(h)].

The upper bound of Var[R(h) f(h)]:

0
Var Z Rf i
=1
(R

B —~T)? T (ar— p's)(ap — plsy)
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Let & = (a; — p's¢)/o fort = 1,...,T. Then, &,...,&r are independent standard normal
variables because of a; ~ N (u's;,0?). Since all V, log p(a; | s¢, ) in f(h) are parameterized by
the states s;, and the stochasticity of £ comes only from ay, it is sufficient to consider fixed states.
Given {st}le, &181, ..., &psy are £-dimensional independent normal variables with zero means,
that is, E[¢;s:] = 0. Hence,

. (ae — p's)(ay — psy) + S T
E Z B sisp || =E Z et/ 8y St/

g
t,t'=1 t,t/=1

T T
Z isi st] Z Elé:s:]"El¢ysy]
t=1 bt =1,

T

Z Isel”E [7] -

Since & ~ N(0, 1), we have €2 ~ x?(1) and E[¢2] = 1. Consequently,

Var[R(h) £(1)] < m Z Jol1°E [€7)

- 02 )2 Z”StHQ

< Dr2(1 —VT)z

with probability at least (1 — §)/2N.
The upper bound of Var[R(h)g(h)]:
Var[R(h)g(h)] < E [(Rg)?]

:/hp(h) nyt_lr(st,at,stﬂ)) (

t=1
B2(1 —~T)2 T ap — 'S, 2
R (2_: () -

Let & = (a; — p'sy)/o fort = 1,...,T. Then &, ..., & are independent standard normal
variables. Let k = Zthl £2. Then we have k ~ x*(T) and

E[(k—T)%] =E [*] — 2TE[x] + T = 2T.
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Hence
2T3%(1 = 77)?

Var[R(h)g(h)] < o%(1—7)2

The lower bound of Var[R(h)f(h)]: By the same technique used in the corresponding upper
bound, we can prove that with probability at least (1 — §)'/2,

L ) Cra2(1 —~T)2
IRICAY R

On the other hand, based on the existence of {d; }7_;, there must be {d; ;}7_, fori =1,...,¢, such
that d2 = 3¢, d? ; and the inequality |s; ;| < dy ; holds with probability at least (1 — §)*/2*. Let
&i = sgn(se)(ar — pu'sy)/ofort=1,... Tandi=1,..., ¢ Thenall & ; are independent stan-
= ZtT:l &t,idyi. Then k; ~ N(0, Zthl sfz)

dard normal variables. Let x; = ZtT:I &
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for fixed s1,4, ..., 87,4, G ~
ability at least (1 —4)/2N* over the choice of sy ;, . .

J ,» P(R)Rfidh > 0, with probability at least (1

J

_ 5)1/2NZ

p(h)Rfidh < / p(h)Rf;dh

{hlfi(h)>0}
B —AT)
1—7

_ M/
L= J{hsT €0ilses|>0}
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75(1 ’YT)/ p(k:)kidk;
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N, d2,), and E[|r| | 514,

,s7.4] < E[|¢;]] holds with prob-

., $t,; according to the underlying p(h). When

/ p(h) fudh
{h|fi(R)>0}

ildh

T
p(h) Y &
=1

Kil | sl,i,---,sT,i]D

When [, p(h)Rfidh < 0, with probability at least (1 — §)'/2V¢,

T 2
1—4T) /2= 42
/p(h)Rfidhz—ﬁ( 7)Y I
h L=y V2
Therefore,
‘ ‘ 2
SOERA? =Y ( / p(h szdh)
i=1 i=1 \h
‘
<Z 2 Zt 1d?z
o2 27
i=1
T ¢
_ -
T 2m02(1 — )2 1— ZZ b
T
_ Py
T 2no2(1— )2 tz
_ Drp*(1-9")?
27r02(1— v)?2 7
with probability at least (1 — §)/2V.
Finally, with probability at least (1 — §)/V, we have
Var|R Z]E (Rf:)?] — (EB[Rf:])?
(1 —7")?
—=L(T). O
= oai )
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C Proof of Theorem 3

Proof. According to Theorem 1 and Theorem 2, we could know that if there exists T such that

1-7")° L pPA-+")’B

Nor( - = T

we could get
L(Ty) > f?Bo?.

Under our assumption that £(7T') > 0 and £(T) is monotonically increasing with respect to T, we
will have that whenever
3Ty, L(Ty) > B2 Bo?,

there must be

~ ~

VT > Ty, Var[V,J(0)] > Var[V,J(p)]. O

D Proof of Theorem 4
We denote f(6) and its i-th component f;(0) as

.
£(0) = (Vylogp(@|p)',V-logp®|p)) =V,logp(®|p),
£:(0) = (Vy, logp(6 | p), V+, logp(6 | p))’ = V,, logp(0 | p).
Note that we still have

Var [v,,jb(p)} — Var [vnfb(p)] + Var [vfﬂ(p)}
= Varl(R(R) = D)V, logp(8 | p)) + ; Varl(R(k) — )V log (@ | p)

= - Var[(R(h) ~ D)f(O)]
Proof. According to Eq.(1), we have

Var[(R(h) = b)£(0)] = } E[(R—b)*f] fi] — (E[(R - b)f:))"(E[(R - b)f:])

-

i=1

E[R*f] fi] - 2E[Rbf] fi] + E[b* £} £i]

|
.MN

Il
_

— (E[Rfi] — E[bf]) (E[Rfi] — E[bfi]).

Noticing that
Ejbfi] = / p(6; | i)V 5, log p(6; | pi)dt;
= /bvpip(@ | pi)dd;

=bV,, [ p(0;| pi)db;
=0bVy,1
=b(V,,1,V,1)"
= (0,0)",

we have

Var[(R(h) —b) f(0)] = E[R*f' f] — 2E[Rbf" f] + E[b*f' f] - E[Rf]'E[Rf].
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The optimal baseline is obtained by minimizing the variance, so that differentiating it with respect
to b and setting the result to zero will give us the optimal baseline for PGPE:

E[Rf'f]

b;’GPE: E[fo] :

Subsequently,
Var|(R — b)f] — Var[(R — bpgpg) f]
= —2E[Rbf' f] + E[0° fT f] + 2E[Rbpeppf ' f] — ElbpapeSf ' f]

T T £1\ 2
— s A+ 507+ 2wy - (AL s
BT g ELRTTED?

= (b - bl*DGPE)2 E[fo];
which leads to
Var[V,J7(p)] — Var[V,J7rere(p)] = — Var[(R — b)f] — - Var[(R — bpepg) f]
_ (- bpapr)’ o T
E Proof of Theorem 5
We denote the i-th component of f(6) = V,, logp(0 | p) as

;i —ni
1:(8) = V,, 1ogp(@ | p) = =

%

Proof. By the same technique used in the proof of Theorem 4, we know, when the baseline b = 0,

(B[RS F)”

Var[V,,J(p)] — Var[V,J"ers (p)] = NEFT

On one hand,

¢

E[fTf] =Y E[f}]
i=1
¢ 2
0; — n;
-xe| (%]

(9i - Th‘)Q]

Let v; = ((0; — n;)/7:)? fori = 1,...,£. We could know that ¥»; ~ x?(1) and E[¢;] = 1 since
0; ~ N (n;,7?), and thus




On the other hand, when E[RfT f] > 0, we have

_BA-")B
(1=v)
while E[Rf" f] < 0, we have
T _5(1 -")B
BIRSf) > -2
Hence,
(EIRFTF)” _ 820 —+")*B
Elftfl = (A=-7*
Similarly,

(E[RFTf])? _0*(1-47)%B
E[fTf] — (1-v?%

which completes the proof.

F Proof of Theorem 6
We denote f(h) = Zthl V. logp(as | s¢,0).

Proof. 1tis easy to prove that, when b = 0,

(E[Rf'f])

Var|V,,J(0)] — Var[V,J kenrorcr (9)] = NEF

From the proof of Theorem 2, we could have

1 T
BIfTf) = 5 > sl

t=1

On the other hand,

T - t—1 a - ' e a; — pu's,
]E[Rf f]:/hp(h) 27 T(Stvatast-&-l) ZTSt ZT& dh

t=1 t=1

B —~T) T (ar — pse)(ap — NTst’)STS )
§U2(1V)E[(Z o2 tt)]

Similarly,



Therefore,
(19" sl _ (EIRFTAD? _ B2 =9")2 S0 [sel?
o?(1—7)? - E[fTf] T o?(1-7)? ’
and subsequently, with probability at least (1 — § )1/ N we have
Cro®(1-9")* _ (B[RfTf])? _ B°(1—~")*Dr
o(1-7)? ElfTfl —  o*(1=9)?

From this, the theorem follows. O]

<

G Proof of Theorem 7

Proof. According to Theorem 5, we know
Var[V,,J'ers (p)] < Var [V, J(p)
According to Theorem 1, we have
= B2 -~")’B
Var [V, 7(p)] < ZU=1"P5,
ar |V,J(p)| < NI =)
Hence,

_ ATN2
VarlV, Thore (p)] < (5 — o) B

According to Theorem 6, we know that
* . 2 1— T\2
Var[V,, JPhenroncs ()] < Var [V,LJ(B)} - M

will hold with probability at least (1 — §)*/2. Furthermore, according to Theorem 2, we have the
following upper bound with probability at least (1 — §)*/2:

- DT52(1 _ ,YT)Q ‘

Var {Vuj(ﬂ)} S NoZ(I )2

Eventually, we arrive at the upper bound for REINFORCE with the optimal baseline:
: (1—~")?

Var|V :ﬂ’REINFORCE o< —-—r 7

ar[ 12 ( )] — NO'2(]_ _7)2

with probability at least 1 — 4. O

(DT62 - CTaz)a
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