
A Proofs

Proof of Theorem 1. The proof is identical to that in [10]. For simplicity, denote ψ(x1:T ) =

inff∈F

∑T
t=1 f(xt). The first step in the proof is to appeal to the minimax theorem for every couple

of inf and sup:

inf
q1∈Q

sup
p1∈P1

E
f1∼q1
x1∼p1

· · · inf
qT∈Q

sup
pT∈PT

E
fT∼qT
xT∼pT

[

T
∑

t=1

ft(xt)− ψ(x1:T )

]

= sup
p1∈P1

inf
q1∈Q

E
f1∼q1
x1∼p1

. . . sup
pT∈PT

inf
qT∈Q

E
fT∼qT
xT∼pT

[

T
∑

t=1

ft(xt)− ψ(x1:T )

]

= sup
p1∈P1

inf
f1∈F

Ex1∼p1
. . . sup

pT∈PT

inf
fT∈F

ExT∼pT

[

T
∑

t=1

ft(xt)− ψ(x1:T )

]

From now on, it will be understood that xt has distribution pt and that the suprema over pt are in
fact over pt ∈ Pt(x1:t−1). By moving the expectation with respect to xT and then the infimum with
respect to fT inside the expression, we arrive at

sup
p1

inf
f1

Ex1
. . . sup

pT−1

inf
fT−1

ExT−1
sup
pT

[

T−1
∑

t=1

ft(xt) +

[

inf
fT

ExT
fT (xT )

]

− ExT
ψ(x1:T )

]

= sup
p1

inf
f1

Ex1
. . . sup

pT−1

inf
fT−1

ExT−1
sup
pT

ExT

[

T−1
∑

t=1

ft(xt) +

[

inf
fT

ExT
fT (xT )

]

− ψ(x1:T )

]

Let us now repeat the procedure for step T − 1. The above expression is equal to

sup
p1

inf
f1

Ex1
. . . sup

pT−1

inf
fT−1

ExT−1

[

T−1
∑

t=1

ft(xt) + sup
pT

ExT

[

inf
fT

ExT
fT (xT )− ψ(x1:T )

]

]

= sup
p1

inf
f1

Ex1
. . . sup

pT−1

[

T−2
∑

t=1

ft(xt) +

[

inf
fT−1

ExT−1
fT−1(xT−1)

]

+ ExT−1
sup
pT

ExT

[

inf
fT

ExT
fT (xT )− ψ(x1:T )

]

]

= sup
p1

inf
f1

Ex1
. . . sup

pT−1

ExT−1
sup
pT

ExT

[

T−2
∑

t=1

ft(xt) +

[

inf
fT−1

ExT−1
fT−1(xT−1)

]

+

[

inf
fT

ExT
fT (xT )

]

− ψ(x1:T )

]

Continuing in this fashion for T − 2 and all the way down to t = 1 proves the theorem.

Proof of Proposition 2. Even though Theorem 1 shows equality to some quantity with a supremum
over oblivious strategies p, it is not immediate that there exists an oblivious minimax strategy for
the adversary, and a proof is required. To this end, for any oblivious strategy p, define the regret the
player would get playing optimally against p:

Vp

T
△

= inf
f1∈F

Ex1∼p1
inf

f2∈F
Ex2∼p2(·|x1) · · · inf

fT∈F
ExT∼pT (·|x1:T−1)

[

T
∑

t=1

ft(xt)− inf
f∈F

T
∑

t=1

f(xt)

]

.

(10)

We will prove that for any oblivious strategy p,

VT (P1:T ) ≥ Vp

T = inf
π

E

[

T
∑

t=1

Eft∼πt(·|x1:t−1)Ext∼pt
ft(xt)− inf

f∈F

T
∑

t=1

f(xt)

]

(11)

with equality holding for p∗ which achieves the supremum in (3). Importantly, the infimum is
over strategies π = {πt}T

t=1 of the player that do not depend on player’s previous moves, that is
πt : X t−1 7→ Q.

Fix an oblivious strategy p and note that VT (P1:T ) ≥ Vp

T . From now on, it will be understood that

xt has distribution pt(·|x1:t−1). Let π = {πt}T
t=1 be a strategy of the player, that is, a sequence of

mappings πt : (F × X )t−1 7→ Q.

10



By moving to a functional representation in Eq. (10),

Vp

T = inf
π

Ef1∼π1
Ex1∼p1

. . .EfT∼πT (·|f1:T−1,x1:T−1)ExT∼pT (·|x1:T−1)

[

T
∑

t=1

ft(xt)− inf
f∈F

T
∑

t=1

f(xt)

]

Note that the last term does not depend on f1, . . . , fT , and so the expression above is equal to

inf
π

{

Ef1∼π1
Ex1∼p1

. . .EfT∼πT (·|f1:T−1,x1:T−1)ExT∼pT (·|x1:T−1)

[

T
∑

t=1

ft(xt)

]

− Ex1∼p1
. . .ExT∼pT (·|x1:T−1)

[

inf
f∈F

T
∑

t=1

f(xt)

]}

= inf
π

{

Ef1∼π1
Ex1∼p1

. . .EfT∼πT (·|f1:T−1,x1:T−1)ExT∼pT (·|x1:T−1)

[

T
∑

t=1

ft(xt)

]}

−
{

E

[

inf
f∈F

T
∑

t=1

f(xt)

]}

Now, by linearity of expectation, the first term can be written as

inf
π

{

T
∑

t=1

Ef1∼π1
Ex1∼p1

. . .EfT∼πT (·|f1:T−1,x1:T−1)ExT∼pT (·|x1:T−1)ft(xt)

}

= inf
π

{

T
∑

t=1

Ef1∼π1
Ex1∼p1

. . .Eft∼πt(·|f1:t−1,x1:t−1)Ext∼pt(·|x1:t−1)ft(xt)

}

= inf
π

{

T
∑

t=1

Ex1∼p1
. . .Ext∼pt(·|x1:t−1)

[

Ef1∼π1
. . .Eft∼πt(·|f1:t−1,x1:t−1)ft(xt)

]

}

(12)

Now notice that for any strategy π = {πt}T
t=1, there is an equivalent strategy π

′ = {π′t}T
t=1 that

(a) gives the same value to the above expression as π and (b) does not depend on the past decisions
of the player, that is π′t : X t−1 7→ Q. To see why this is the case, fix any strategy π and for any t
define

π′t(·|x1:t−1) = Ef1∼π1
. . .Eft−1∼πt(·|f1:t−2,x1:t−2)πt(·|f1:t−1, x1:t−1)

where we integrated out the sequence f1, . . . , ft−1. Then

Ef1∼π1
. . .Eft∼πt(·|f1:t−1,x1:t−1)ft(xt) = Eft∼π′t(·|x1:t−1)ft(xt)

and so π and π
′ give the same value in (12).

We conclude that the infimum in (12) can be restricted to those strategies π that do not depend on
past randomizations of the player. In this case,

Vp

T = inf
π

{

T
∑

t=1

Ex1∼p1
. . .Ext∼pt(·|x1:t−1)Eft∼πt(·|x1:t−1)ft(xt)

]

}

−
{

E

[

inf
f∈F

T
∑

t=1

f(xt)

]}

= inf
π

{

T
∑

t=1

Ex1,...,xt−1
Eft∼πt(·|x1:t−1)Ext

ft(xt)
]

}

−
{

E

[

inf
f∈F

T
∑

t=1

f(xt)

]}

= inf
π

E

[

T
∑

t=1

Eft∼πt(·|x1:t−1)Ext∼pt
ft(xt)− inf

f∈F

T
∑

t=1

f(xt)

]

.

Now, notice that we can choose the Bayes optimal response ft in each term:

Vp

T = inf
π

E

[

T
∑

t=1

Eft∼πt(·|x1:t−1)Ext∼pt
ft(xt)− inf

f∈F

T
∑

t=1

f(xt)

]

≥ inf
π

E

[

T
∑

t=1

inf
ft∈F

Ext∼pt
ft(xt)− inf

f∈F

T
∑

t=1

f(xt)

]

= E

[

T
∑

t=1

inf
ft∈F

Ext∼pt
ft(xt)− inf

f∈F

T
∑

t=1

f(xt)

]

.
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Together with Theorem 1, this implies that

Vp
∗

T = VT (P1:T ) = inf
π

E

[

T
∑

t=1

Eft∼πt(·|x1:t−1)Ext∼p∗t
ft(xt)− inf

f∈F

T
∑

t=1

f(xt)

]

for any p∗ achieving supremum in (3). Further, the infimum is over strategies that do not depend on
the moves of the player.

We conclude that there is an oblivious minimax optimal strategy of the adversary, and there is a
corresponding minimax optimal strategy for the player that does not depend on its own moves.

Proof of Theorem 3. From Eq. (3),

VT = sup
p∈P

E

[

T
∑

t=1

inf
ft∈F

Et−1 [ft(xt)]− inf
f∈F

T
∑

t=1

f(xt)

]

= sup
p∈P

E

[

sup
f∈F

{

T
∑

t=1

inf
ft∈F

Et−1 [ft(xt)]− f(xt)

}]

≤ sup
p∈P

E

[

sup
f∈F

{

T
∑

t=1

Et−1 [f(xt)]− f(xt)

}]

(13)

The upper bound is obtained by replacing each infimum by a particular choice f . Note that
Et−1 [f(xt)] − f(xt) is a martingale difference sequence. We now employ a symmetrization tech-
nique. For this purpose, we introduce a tangent sequence {x′t}T

t=1 that is constructed as follows. Let
x′1 be an independent copy of x1. For t ≥ 2, let x′t be both identically distributed as xt as well as
independent of it conditioned on x1:t−1. Then, we have, for any t ∈ [T ] and f ∈ F ,

Et−1 [f(xt)] = Et−1 [f(x′t)] = ET [f(x′t)] . (14)

The first equality is true by construction. The second holds because x′t is independent of xt:T

conditioned on x1:t−1. We also have, for any t ∈ [T ] and f ∈ F ,

f(xt) = ET [f(xt)] . (15)

Plugging in (14) and (15) into (13), we get,

VT ≤ sup
p∈P

E

[

sup
f∈F

{

T
∑

t=1

ET [f(x′t)]− ET [f(xt)]

}]

= sup
p∈P

E

[

sup
f∈F

{

ET

[

T
∑

t=1

f(x′t)− f(xt)

]}]

≤ sup
p∈P

E

[

sup
f∈F

{

T
∑

t=1

f(x′t)− f(xt)

}]

.

For any p, the expectation in the above supremum can be written as

E

[

sup
f∈F

{

T
∑

t=1

f(x′
t)− f(xt)

}]

= Ex1,x′
1
∼p1

Ex2,x′
2
∼p2(·|x1) . . . ExT ,x′

T
∼pT (·|x1,...,xT−1)

[

sup
f∈F

{

T
∑

t=1

f(x′
t)− f(xt)

}]

.

Now, let’s see what happens when we rename x1 and x′1 in the right-hand side of the above inequal-
ity. The equivalent expression we then obtain is

Ex′
1
,x1∼p1

Ex2,x′
2
∼p2(·|x′

1
)Ex3,x′

3
∼p3(·|x′

1
,x2) . . . ExT ,x′

T
∼pT (·|x′

1
,x2:T−1)

[

sup
f∈F

{

−(f(x′
1)− f(x1)) +

T
∑

t=2

f(x′
t)− f(xt)

}]

.
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Now fix any ǫ ∈ {±1}T . Informally, ǫt = 1 indicates whether we rename xt and x′t. It is not hard
to verify that

Ex1,x′
1
∼p1

Ex2,x′
2
∼p2(·|x1) . . .ExT ,x′

T
∼pT (·|x1,...,xT−1)

[

sup
f∈F

{

T
∑

t=1

f(x′t)− f(xt)

}]

= Ex1,x′
1
∼p1

Ex2,x′
2
∼p2(·|χ1(−1)) . . .ExT ,x′

T
∼pT (·|χ1(−1),...,χT−1(−1))

[

sup
f∈F

{

T
∑

t=1

f(x′t)− f(xt)

}]

(16)

= Ex1,x′
1
∼p1

Ex2,x′
2
∼p2(·|χ1(ǫ1)) . . .ExT ,x′

T
∼pT (·|χ1(ǫ1),...,χT−1(ǫT−1))

[

sup
f∈F

{

T
∑

t=1

−ǫt(f(x′t)− f(xt))

}]

(17)

Since Eq. (16) holds for any ǫ ∈ {±1}T , we conclude that

E

[

sup
f∈F

{

T
∑

t=1

f(x′t)− f(xt)

}]

(18)

= EǫEx1,x′
1
∼p1

Ex2,x′
2
∼p2(·|χ1(ǫ1)) . . .ExT ,x′

T
∼pT (·|χ1(ǫ1),...,χT−1(ǫT−1))

[

sup
f∈F

{

T
∑

t=1

−ǫt(f(x′t)− f(xt))

}]

= Ex1,x′
1
∼p1

Eǫ1Ex2,x′
2
∼p2(·|χ1(ǫ1))Eǫ2 . . .ExT ,x′

T
∼pT (·|χ1(ǫ1),...,χT−1(ǫT−1))EǫT

[

sup
f∈F

{

T
∑

t=1

−ǫt(f(x′t)− f(xt))

}]

.

The process above can be thought of as taking a path in a binary tree. At each step t, a coin is flipped
and this determines whether xt or x′t is to be used in conditional distributions in the following steps.
This is precisely the process outlined in (4). Using the definition of ρ, we can rewrite the last
expression in Eq. (18) as

E(x1,x′
1
)∼ρ1(ǫ)Eǫ1E(x2,x′

2
)∼ρ2(ǫ)(x1,x′

1
) . . . EǫT−1

E(xT ,x′
T

)∼ρT (ǫ)((x1,x′
1
),...,(xT−1,x′

T−1
))EǫT

[

sup
f∈F

{

T
∑

t=1

ǫt(f(xt)− f(x′
t))

}]

.

More succinctly, Eq. (18) can be written as

E(x,x′)∼ρ

[

sup
f∈F

{

T
∑

t=1

f(x′t(−1))− f(xt(−1))

}]

= E(x,x′)∼ρEǫ

[

sup
f∈F

{

T
∑

t=1

ǫt(f(xt(ǫ))− f(x′t(ǫ)))

}]

.

(19)

It is worth emphasizing that the values of the mappings x,x′ are drawn conditionally-independently,
however the distribution depends on the ancestors in both trees. In some sense, the path ǫ defines
“who is tangent to whom”.

We now split the supremum into two:

E(x,x′)∼ρEǫ

[

sup
f∈F

{

T
∑

t=1

ǫt(f(xt(ǫ))− f(x′t(ǫ)))

}]

≤ E(x,x′)∼ρEǫ

[

sup
f∈F

T
∑

t=1

ǫtf(xt(ǫ))

]

+ E(x,x′)∼ρEǫ

[

sup
f∈F

T
∑

t=1

−ǫtf(x′t(ǫ))

]

(20)

= 2E(x,x′)∼ρEǫ

[

sup
f∈F

T
∑

t=1

ǫtf(xt(ǫ))

]

The last equality is not difficult to verify but requires understanding the symmetry between the paths
in the x and x′ trees. This symmetry implies that the two terms in Eq. (20) are equal. Each ǫ ∈
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{±1}T in the first term defines time steps twhen values in x are used in conditional distributions. To
any such ǫ, there corresponds a−ǫ in the second term which defines times when values in x′ are used
in conditional distributions. This implies the required result. As a more concrete example, consider
the path ǫ = −1 in the first term. The contribution to the overall expectation is the supremum over
f ∈ F of evaluation of −f on the left-most path of the x tree which is defined as successive draws
from distributions pt conditioned on the values on the left-most path, irrespective of the x′ tree. Now
consider the corresponding path ǫ = 1 in the second term. Its contribution to the overall expectation
is a supremum over f ∈ F of evaluation of −f on the right-most path of the x′ tree, defined as
successive draws from distributions pt conditioned on the values on the right-most path, irrespective
of the x tree. Clearly, the contributions are the same, and the same argument can be done for any
path ǫ.

Alternatively, we can see that the two terms in Eq. (20) are equal by expanding the notation. We
thus claim that

Ex1,x′
1
∼p1

Eǫ1Ex2,x′
2
∼p2(·|χ1(ǫ1))Eǫ2 . . .ExT ,x′

T
∼pT (·|χ1(ǫ1),...,χT−1(ǫT−1))EǫT

[

sup
f∈F

{

T
∑

t=1

−ǫtf(x′t)

}]

= Ex1,x′
1
∼p1

Eǫ1Ex2,x′
2
∼p2(·|χ1(ǫ1))Eǫ2 . . .ExT ,x′

T
∼pT (·|χ1(ǫ1),...,χT−1(ǫT−1))EǫT

[

sup
f∈F

{

T
∑

t=1

ǫtf(xt)

}]

The identity can be verified by simultaneously renaming x with x′ and ǫwith−ǫ. Since χ(x, x′, ǫ) =
χ(x′, x,−ǫ), the distributions in the two expressions are the same while the sum of the first term
becomes the sum of the second term.

More generally, the split of Eq. (20) can be performed via an additional “centering” term. For any t,
let Mt be a function with the property Mt(p, f,x,x

′, ǫ) = Mt(p, f,x
′,x,−ǫ)

We then have

E(x,x′)∼ρEǫ

[

sup
f∈F

{

T
∑

t=1

ǫt(f(xt(ǫ))− f(x′t(ǫ)))

}]

≤ E(x,x′)∼ρEǫ

[

sup
f∈F

T
∑

t=1

ǫt(f(xt(ǫ))−Mt(p, f,x,x
′, ǫ))

]

(21)

+ E(x,x′)∼ρEǫ

[

sup
f∈F

T
∑

t=1

−ǫt(f(x′t(ǫ))−Mt(p, f,x,x
′, ǫ))

]

= 2E(x,x′)∼ρEǫ

[

sup
f∈F

T
∑

t=1

ǫt(f(xt(ǫ))−Mt(p, f,x,x
′, ǫ))

]

To verify equality of the two terms in (21) we can expand the notation.

Ex1,x′
1
∼p1

Eǫ1Ex2,x′
2
∼p2(·|χ1(ǫ1))Eǫ2 . . . ExT ,x′

T
∼pT (·|χ1(ǫ1),...,χT−1(ǫT−1))EǫT

[

sup
f∈F

{

T
∑

t=1

−ǫt(f(x′
t)−Mt(p, f,x,x

′
, ǫ))

}]

= Ex1,x′
1
∼p1

Eǫ1Ex2,x′
2
∼p2(·|χ1(ǫ1))Eǫ2 . . . ExT ,x′

T
∼pT (·|χ1(ǫ1),...,χT−1(ǫT−1))EǫT

[

sup
f∈F

{

T
∑

t=1

ǫt(f(xt)−Mt(p, f,x,x
′
, ǫ))

}]

Proof of Corollary 4. Define a function Mt as the conditional expectation

Mt(p, f,x,x
′, ǫ) = Ex∼pt(·|χ1(ǫ1),...,χt−1(ǫt−1))f(x).

The propertyMt(p, f,x,x
′, ǫ) = Mt(p, f,x

′,x,−ǫ) holds because χ(x, x′, ǫ) = χ(x′, x,−ǫ).
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Proof of Proposition 5. By definition, we have,

RT (F ,p) = E(x,x′)∼ρEǫ

[

sup
f∈F

T
∑

t=1

ǫtf(xt(ǫ))

]

(22)

In the i.i.d. case, however, the tree generation according to the ρ process simplifies: for any ǫ ∈
{±1}T , t ∈ [T ],

(xt(ǫ),x
′
t(ǫ)) ∼ p× p .

Thus, the 2 · (2T − 1) random variables xt(ǫ),x
′
t(ǫ) are all i.i.d. drawn from p. Writing the expec-

tation (22) explicitly as an average over paths, we get

RT (F ,p) =
1

2T

∑

ǫ∈{±1}T

E(x,x′)∼ρ

[

sup
f∈F

T
∑

t=1

ǫtf(xt(ǫ))

]

=
1

2T

∑

ǫ∈{±1}T

Ex1,...,xT∼p

[

sup
f∈F

T
∑

t=1

ǫtf(xt)

]

= EǫEx1,...,xT∼p

[

sup
f∈F

T
∑

t=1

ǫtf(xt)

]

.

The second equality holds because, for any fixed path ǫ, the T random variables {xt(ǫ)}t∈[T ] have

joint distribution pT . This proves the first claim.

We now prove the second claim. To make the ρ process associated with p more explicit, we use the
expanded definition:

RT (F ,p)

= Ex1,x′
1
∼p1

Eǫ1Ex2,x′
2
∼p2(·|χ1(ǫ1))Eǫ2 . . . ExT ,x′

T
∼pT (·|χ1(ǫ1),...,χT−1(ǫT−1))EǫT

[

sup
f∈F

T
∑

t=1

ǫtf(xt)

]

≤ sup
x1,x′

1

Eǫ1 sup
x2,x′

2

Eǫ2 . . . sup
xT ,x′

T

EǫT

[

sup
f∈F

T
∑

t=1

ǫtf(xt)

]

(23)

= sup
x1

Eǫ1 sup
x2

Eǫ2 . . . sup
xT

EǫT

[

sup
f∈F

T
∑

t=1

ǫtf(xt)

]

= RT (F) .

The inequality holds by replacing expectation over xt, x
′
t by a supremum over the same. We then

get rid of xt’s since they do not appear anywhere.

Proof of Corollary 7. The first steps follow the proof of Theorem 3:

VT ≤ sup
p∈P

E

[

sup
f∈F

{

T
∑

t=1

f(x′t)− f(xt)

}]

and for a fixed p ∈ P,

E

[

sup
f∈F

{

T
∑

t=1

f(x′t)− f(xt)

}]

(24)

= Ex1,x′
1
∼p1

Eǫ1Ex2,x′
2
∼p2(·|χ1(ǫ1))Eǫ2 . . .ExT ,x′

T
∼pT (·|χ1(ǫ1),...,χT−1(ǫT−1))EǫT

[

sup
f∈F

{

T
∑

t=1

−ǫt(f(x′t)− f(xt))

}]

.

At this point we pass to an upper bound, unlike the proof of Theorem 3. Notice that
pt(·|χ1(ǫ1), . . . , χt−1(ǫt−1)) is a distribution with support in Xt(χ1(ǫ1), . . . , χt−1(ǫt−1)). That
is, the sequence χ1(ǫ1), . . . , χt−1(ǫt−1) defines the constraint at time t. Passing from t = T down
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to t = 1, we can replace all the expectations over pt by the suprema over the set Xt, only increasing
the value:

Ex1,x′
1
∼p1

Eǫ1Ex2,x′
2
∼p2(·|χ1(ǫ1))Eǫ2 . . .ExT ,x′

T
∼pT (·|χ1(ǫ1),...,χT−1(ǫT−1))EǫT

[

sup
f∈F

{

T
∑

t=1

−ǫt(f(x′t)− f(xt))

}]

≤ sup
x1,x′

1
∈X1

Eǫ1 sup
x2,x′

2
∈X2(·|χ1(ǫ1))

Eǫ2 . . . sup
xT ,x′

T
∈XT (χ1(ǫ1),...,χT−1(ǫT−1))

EǫT

[

sup
f∈F

{

T
∑

t=1

−ǫt(f(x′t)− f(xt))

}]

= sup
(x,x′)∈T

Eǫ

[

sup
f∈F

{

T
∑

t=1

−ǫt(f(x′t(ǫ))− f(xt(ǫ)))

}]

In the last equality, we passed to the tree representation. Indeed, at each step, we are choosing xt, x
′
t

from the appropriate set and then flipping a coin ǫt which decides which of xt, x
′
t will be used to

define the constraint set through χt(ǫt). This once again defines a tree structure and we may pass
to the supremum over trees (x,x′) ∈ T . However, T is not a set of all possible X -valued trees:
for each t, xt(ǫ),x

′
t(ǫ) ∈ Xt(χ1(x1,x

′
1, ǫ1), . . . , χt−1(xt−1(ǫt−1),x

′
t−1(ǫt−1), ǫt−1)). That is, the

choice at each node of the tree is constrained by the values of both trees according to the path. As
before, the left-most path of the x tree (as well as the right-most path of the x′ tree) is defined by
constraints applied to the values on the path only disregarding the other tree.

The rest of the proof exactly follows the proof of Theorem 3.

Proof of Proposition 8. Let Mt(f,x,x
′, ǫ) = 1

t−1

∑t−1
τ=1 f(χτ (ǫτ )). Note that since χ(x, x′, ǫ) =

χ(x′, x,−ǫ), we have that Mt(f,x,x
′, ǫ) = Mt(f,x

′,x,−ǫ). Using 7 we conclude that

VT ≤ 2 sup
(x,x′)∈T

Eǫ

[

sup
f∈F

T
∑

t=1

ǫt

(

〈f,xt(ǫ)〉 −
1

t− 1

t−1
∑

τ=1

〈f, χτ (ǫτ )〉
)]

= 2 sup
(x,x′)∈T

Eǫ

[

sup
f∈F

〈

f,
T
∑

t=1

ǫt

(

xt(ǫ)−
1

t− 1

t−1
∑

τ=1

χτ (ǫτ )

)〉]

By linearity and Fenchel’s inequality, the last expression is upper bounded by

2

α
sup

(x,x′)∈T

Eǫ

[

sup
f∈F

〈

f, α
T
∑

t=1

ǫt

(

xt(ǫ)−
1

t− 1

t−1
∑

τ=1

χτ (ǫτ )

)〉]

≤ 2

α
sup

(x,x′)∈T

Eǫ

[

sup
f∈F

Ψ(f) + Ψ∗

(

α

T
∑

t=1

ǫt

(

xt(ǫ)−
1

t− 1

t−1
∑

τ=1

χτ (ǫτ )

))]

≤ 2

α

(

sup
f∈F

Ψ(f) + sup
(x,x′)∈T

Eǫ

[

Ψ∗

(

α
T
∑

t=1

ǫt

(

xt(ǫ)−
1

t− 1

t−1
∑

τ=1

χτ (ǫτ )

))])

≤ 2R2

α
+

2

α
sup

(x,x′)∈T

Eǫ

[

Ψ∗

(

α
T
∑

t=1

ǫt

(

xt(ǫ)−
1

t− 1

t−1
∑

τ=1

χτ (ǫτ )

))]

≤ 2R2

α
+
α

λ

T
∑

t=1

Eǫ





∥

∥

∥

∥

∥

xt(ǫ)−
1

t− 1

t−1
∑

τ=1

χτ (ǫτ )

∥

∥

∥

∥

∥

2

∗



 (25)

Where the last step follows from Lemma 2 of [5] (with a slight modification). However since
(x,x′) ∈ T are pairs of tree such that for any ǫ ∈ {±1}T and any t ∈ [T ].

C(χ1(ǫ1), . . . , χt−1(ǫt−1),xt(ǫ)) = 1

we can conclude that for any ǫ ∈ {±1}T and any t ∈ [T ],
∥

∥

∥

∥

∥

xt(ǫ)−
1

t− 1

t−1
∑

τ=1

χτ (ǫτ )

∥

∥

∥

∥

∥

∗

≤ σt
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Using this with Equation 25 and the fact that α is arbitrary, we can conclude that

VT ≤ inf
α>0

{

2R2

α
+
α

λ

T
∑

t=1

σ2
t

}

≤ 2
√

2R

√

√

√

√

T
∑

t=1

σ2
t

Proof of Proposition 9. Let Mt(f,x,x
′, ǫ) = f(χt−1(ǫt−1)). Note that since χ(x, x′, ǫ) =

χ(x′, x,−ǫ) we have that Mt(f,x,x
′, ǫ) = Mt(f,x

′,x,−ǫ). Using 7 we conclude that

VT ≤ 2 sup
(x,x′)∈T

Eǫ

[

sup
f∈F

T
∑

t=1

ǫt (〈f,xt(ǫ)〉 − 〈f, χt−1(ǫt−1)〉)
]

= 2 sup
(x,x′)∈T

Eǫ

[

sup
f∈F

〈

f,
T
∑

t=1

ǫt (xt(ǫ)− χt−1(ǫt−1))

〉]

As before, using linearity and Fenchel’s inequality we pass to the upper bound

2

α
sup

(x,x′)∈T

Eǫ

[

sup
f∈F

〈

f, α

T
∑

t=1

ǫt (xt(ǫ)− χt−1(ǫt−1))

〉]

≤ 2

α
sup

(x,x′)∈T

Eǫ

[

sup
f∈F

Ψ(f) + Ψ∗

(

α

T
∑

t=1

ǫt (xt(ǫ)− χt−1(ǫt−1))

)]

≤ 2

α

(

sup
f∈F

Ψ(f) + sup
(x,x′)∈T

Eǫ

[

Ψ∗

(

α

T
∑

t=1

ǫt (xt(ǫ)− χt−1(ǫt−1))

)])

≤ 2R2

α
+

2

α
sup

(x,x′)∈T

Eǫ

[

Ψ∗

(

α

T
∑

t=1

ǫt (xt(ǫ)− χt−1(ǫt−1))

)]

≤ 2R2

α
+
α

λ

T
∑

t=1

Eǫ

[

‖xt(ǫ)− χt−1(ǫt−1)‖2∗
]

(26)

Where the last step follows from Lemma 2 of [5] (with slight modification). However since (x,x′) ∈
T are pairs of tree such that for any ǫ ∈ {±1}T and any t ∈ [T ].

C(χ1(ǫ1), . . . , χt−1(ǫt−1),xt(ǫ)) = 1

we can conclude that for any ǫ ∈ {±1}T and any t ∈ [T ],

‖xt(ǫ)− χt−1(ǫt−1)‖∗ ≤ δ

Using this with Equation 26 and the fact that α is arbitrary, we can conclude that

VT ≤ inf
α>0

{

2R2

α
+
αδ2T

λ

}

≤ 2Rδ
√

2T

Proof of Theorem 10. First, using the fact that the maximum of a linear functional over a simplex
is achieved at the corners,

VT = inf
q1

sup
x1

E
f1∼q1
s1∼σ

. . . inf
qT

sup
xT

E
fT∼qT
sT∼σ

[

T
∑

t=1

ft(ω(xt, st))− inf
f∈F

T
∑

t=1

f(ω(xt, st))

]

= inf
q1

sup
p1

E
f1∼q1,x1∼p1

s1∼σ

. . . inf
qT

sup
pT

E
fT∼qT ,xT∼pT

sT∼σ

[

T
∑

t=1

ft(ω(xt, st))− inf
f∈F

T
∑

t=1

f(ω(xt, st))

]

.
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Next, appealing to the minimax theorem, the last quantity is equal to

sup
p1

inf
f1

E
x1∼p1
s1∼σ

. . . sup
pT

inf
fT

E
xT∼pT

sT∼σ

[

T
∑

t=1

ft(ω(xt, st))− inf
f∈F

T
∑

t=1

f(ω(xt, st))

]

Using the technique of [1, 10], we can rewrite the last quantity as

= sup
p1

E
x1∼p1
s1∼σ

. . . sup
pT

E
xT∼pT

sT∼σ

[

T
∑

t=1

inf
ft

Ex′t,s
′
t
ft(ω(x′t, s

′
t))− inf

f∈F

T
∑

t=1

f(ω(xt, st))

]

where x′t has the same distribution as xt conditioned on the history up to time t. Further, the s′t
sequence is i.i.d. with distribution σ. Rewriting the above, we arrive at

sup
p1

E
x1∼p1
s1∼σ

. . . sup
pT

E
xT∼pT

sT∼σ

[

sup
f∈F

{

T
∑

t=1

inf
ft

Ex′t,s
′
t
ft(ω(x′t, s

′
t))−

T
∑

t=1

f(ω(xt, st))

}]

≤ sup
p1

E
x1∼p1
s1∼σ

. . . sup
pT

E
xT∼pT

sT∼σ

[

sup
f∈F

{

T
∑

t=1

Ex′t,s
′
t
f(ω(x′t, s

′
t))−

T
∑

t=1

f(ω(xt, st))

}]

≤ sup
p1

E
x1,x′

1
∼p1

s1,s′
1
∼σ

. . . sup
pT

E
xT ,x′

T
∼pT

sT ,s′
T
∼σ

[

sup
f∈F

{

T
∑

t=1

f(ω(x′t, s
′
t))−

T
∑

t=1

f(ω(xt, st))

}]

where we’ve substituted ft with a suboptimal choice f , and then used Jensen’s inequality. The
expectation over xt, x

′
t can be upper bounded by the suprema, yielding

sup
x1,x′

1

E
s1,s′

1
∼σ

Eǫ1 . . . sup
xT ,x′

T

E
sT ,s′

T
∼σ

EǫT

[

sup
f∈F

{

T
∑

t=1

ǫt(f(ω(x′t, s
′
t))− f(ω(xt, st)))

}]

≤ 2 sup
x1

E
s1∼σ

Eǫ1 . . . sup
xT

E
sT∼σ

EǫT

[

sup
f∈F

T
∑

t=1

ǫtf(ω(xt, st)

]

Proof of Lemma 11. Let us calculate the probability that for no distinct t, t′ ∈ [T ] do we have zt+st

and zt′ + st′ in the same “bin” [θi, θi+1). We can deal with the boundary behavior by ensuring that
F is in fact a set of thresholds that is γ/2-away from 0 or 1, but we will omit this discussion for the
sake of clarity. The probability that no two elements zt+st and zt′+st′ fall into the same bin clearly
depends on the behavior of the adversary in choosing xt’s. Keeping in mind that the distribution of
all st’s is uniform on [−γ/2, γ/2], we see that the probability of a collision is maximized when zt

is chosen to be constant throughout the T rounds. To see this, let us recast the problem as throwing
balls into bins. Observe that the choice of zt defines the set of γT a bins into which the ball zt + st

falls. To maximize the probability of a “collision”, the set of bins should be kept the same for all T
rounds.

Now, for zt’s constant throughout the game, we have reduced the problem to that of T balls falling
uniformly into γT a > T bins. The probability of two elements zt + st and zt + st′ falling into the
same bin is

P (no two balls fall into same bin) =
γT a(γT a − 1) · · · (γT a − T )

γT a · γT a · · · γT a

≥
(

γT a − T
γT a

)T

=

(

1− 1

γT a−1

)

γT a−1

γT a−2

The last term is approximately exp
{

−1/(γT a−2)
}

for large T , so

P (no two balls fall into same bin) ≥ 1− 1

γT a−2

using e−x ≥ 1− x.
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Proof of Proposition 12. The idea for the proof is the following. By discretizing the interval into
bins of size well below the noise level, we can guarantee with high probability that no two smoothed
choices zt + st of the adversary fall into the same bin. If this is the case, then the supremum of
Theorem 10 can be taken over a discretized set of thresholds. Now, for each fixed threshold f ,
ǫtf(ω(xt, st)) forms a martingale difference sequence, yielding the desired bound.

For any fθ ∈ F , define

Mθ
t = ǫtfθ(ω(xt, st)) = ǫt |yt − 1 {zt + st < θ}| .

Note that {Mθ
t }t is a zero-mean martingale difference sequence, that is E[Mt|z1:t, y1:t, s1:t] = 0.

We conclude that for any fixed θ ∈ [0, 1],

P

(

T
∑

t=1

Mθ
t ≥ ǫ

)

≤ exp

{

− ǫ2

2T

}

by Azuma-Hoeffding’s inequality. Let F ′ = {fθ1
, . . . , fθN

} ⊂ F be obtained by discretizing the
interval [0, 1] into N = T a bins [θi, θi+1) of length T−a, for some a ≥ 3. Then

P

(

max
fθ∈F ′

T
∑

t=1

Mθ
t ≥ ǫ

)

≤ N exp

{

− ǫ2

2T

}

.

Observe that the maximum over the discretization coincides with the supremum over the class F if
no two elements zt + st and zt′ + st′ fall into the same interval [θi, θi+1). Indeed, in this case all
the possible values of F on the set {z1 + s1, . . . , zT + sT } are obtained by choosing the discrete
thresholds in F ′.
By Lemma 11,

P

(

sup
f∈F

T
∑

t=1

ǫtf(ω(xt, st)) ≥ ǫ

)

≤ P

(

sup
f∈F

T
∑

t=1

ǫtf(ω(xt, st)) ≥ ǫ ∧ none of (zt + st)’s fall into same bin

)

+ P (some of (zt + st)’s fall into same bin)

= P

(

max
fθ∈F ′

T
∑

t=1

Mθ
t ≥ ǫ ∧ none of (zt + st)’s fall into same bin

)

+
1

γT a−2

≤ P

(

max
fθ∈F ′

T
∑

t=1

Mθ
t ≥ ǫ

)

+
1

γT a−2

≤ T a exp

{

− ǫ2

2T

}

+
1

γT a−2
.

Using the above and the fact that for any f ∈ F , |∑T
t=1 ǫtf(ω(xt, st))| ≤ T we can conclude that

VT ≤ E

[

sup
f∈F

T
∑

t=1

ǫtf(ω(xt, st))

]

≤ ǫ+ T a+1 exp

{

− ǫ2

2T

}

+
T 3−a

γ
.

Setting ǫ =
√

2(a+ 1)T log T we conclude that

VT ≤ 1 +
√

2(a+ 1)T log T +
T 3−a

γ
.
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Pick a = 3 + log(1/γ)
log T (this choice is fine because γT a−1 = T 2 which grows with T as needed for

the previous approximation). Hence we see that

VT ≤ 2 +

√

2

(

4 +
log(1/γ)

log T

)

T log T

= 2 +
√

2T (4 log T + log(1/γ)) .

Proof of Proposition 13. As in the one dimensional case, we divide the surface of the sphere into
bins (e.g. via tessellation of the sphere), with diameter T−a, for some a > 1. Then the vol-

ume of each bin is at most O(T−(d−1)a). Once again, the choice of zt is deciding on the set of

Ω(γd−1T (d−1)a) bins. The probability of two perturbed values in the sequence falling into the
same bin is maximized when zt is kept constant. In this case, with the same calculation as for the

one-dimensional case, the probability of a collision is at most O(γ1−dT 2−(d−1)a).

w

Sd−1

Figure 1: As w varies over the small bin, only a small number of bins change the side of the
hyperplane 〈w, z〉

It remains to show that for any w ∈ Sd−1, we can pass to the center of the associated bin at the cost
of a small number of bins changing the side of the hyperplane. It is not hard to see that all such
bins form a narrow “ring”. The number of bins is thus O(vd−2 · T a), where vd−2 is the volume of a
d− 2-dimensional “ring” on the sphere Sd−1.

The final result is obtained by choosing a = log 1/γ
log T + 3

d−1 , similarly to the proof of Proposition 12.

B Application: The I.I.D. Adversary

In this section, we consider an adversary who is restricted to draw the moves from a fixed distribution
p throughout the game. That is, the time-invariant restrictions are Pt(x1:t−1) = {p}. A reader will
notice that the definition of the value in (1) forces the restrictions P1:T to be known to the player
before the game. This, in turn, means that the distribution p is known to the learner. In some sense,
the problem becomes not interesting, as there is no learning to be done. This is indeed an artifact of
the minimax formulation in the extensive form. To circumvent the problem, we are forced to define
a new value of the game in terms of strategies. Such a formulation does allow us to “hide” the
distribution from the player since we can talk about “mappings” instead of making the information
explicit. We then show two novel results. First, the regret-minimization game with i.i.d. data when
the player does not observe the distribution p is equivalent (in terms of learnability) to the classical
batch learning problem. Second, for supervised learning, when it comes to minimizing regret, the
knowledge of p does not help the learner for some distributions.

Let us first define some relevant quantities. Let s = {st}T
t=1 be a T -round strategy for the player,

with st : (F × X )t−1 → Q. The game where the player does not observe the i.i.d. distribution of
the adversary will be called a distribution-blind i.i.d. game, and its minimax value will be called the
distribution-blind minimax value:

Vblind
T

△

= inf
s

sup
p

[

Ex1,...,xT∼pEf1∼s1
. . .EfT∼sT (x1:T−1,f1:T−1)

{

T
∑

t=1

ft(xt)− inf
f∈F

T
∑

t=1

f(xt)

}]
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Furthermore, define the value for a general (not necessarily supervised) setting:

Vbatch
T

△

= inf
f̂T

sup
p∈P

{

Ef̂T − inf
f∈F

Ef

}

For a distribution p, the value (1) of the online i.i.d. game, as defined through the restrictions
Pt = {p} for all t, will be written as VT ({p}). For the non-blind game, we say that the problem is
online learnable in the i.i.d. setting if supp VT ({p}) → 0 .

We now proceed to study relationships between online and batch learnability.

Theorem 14. For a given function class F , online learnability in the distribution-blind game is
equivalent to batch learnability. That is, Vblind

T /T → 0 if and only if Vbatch
T → 0 .

At this point, the reader might wonder if the game formulation studied in the rest of the paper, with
the restrictions known to the player, is any easier than batch and distribution-blind learning. In the
next section, we show that this is not the case for supervised learning.

B.1 Distribution-Blind vs Non-Blind Supervised Learning

In the supervised game, at time t, the player picks a function ft ∈ [−1, 1]X , the adversary provides
input-target pair (xt, yt), and the player suffers loss |ft(xt)−yt|. The value of the online supervised
learning game for general restrictions P1:T is defined as

V sup

T (P1:T )
△

= inf
q1∈Q

sup
p1∈P1

E
f1,(x1,y1)

· · · inf
qT ∈Q

sup
pT ∈PT

E
fT ,(xT ,yT )

[

T
∑

t=1

|ft(xt)− yt| − inf
f∈F

T
∑

t=1

|f(xt)− yt|

]

where (xt, yt) has distribution pt. As before, the value of an i.i.d. supervised game with a dis-

tribution pX×Y will be written as V sup
T (pX×Y ). The distribution-blind supervised value is defined

as

Vblind, sup

T

△

= inf
s

sup
p

[

Ez1:T ∼pEf1∼s1
. . . EfT ∼sT (z1:T−1,f1:T−1)

{

T
∑

t=1

|ft(xt)− yt| − inf
f∈F

T
∑

t=1

|f(xt)− yt|

}]

where we use the shorthand zt = (xt, yt) for each t, and the batch supervised value for the absolute
loss is defined as

Vbatch, sup
T = inf

f̂
sup

PX×Y

{

E|Y − f̂(X)| − inf
f∈F

|Y − f(X)|
}

(27)

The following relationships hold:

Lemma 15. In the supervised case,

1

4
TVbatch, sup

T ≤ sup
pX

RT (F , pX) ≤ sup
pX

V sup

T ({pX × UY }) ≤ sup
pX×Y

V sup

T ({pX×Y }) ≤ Vblind, sup

T

where RT (F , pX) is the classical Rademacher complexity, and UY is the Rademacher distribution.

Theorem 14, specialized to the supervised setting, says that 1
T V

blind, sup
T → 0 if and only if

Vbatch, sup
T → 0. Since suppX×Y

1
T V

sup
T ({pX×Y }) is sandwiched between these two values, we con-

clude the following.

Corollary 16. Either the supervised problem is learnable in the batch sense (and, by Theorem 14, in
the distribution-blind online sense), in which case suppX×Y

V sup

T ({pX×Y }) = o(T ). Or, the problem

is not learnable in the batch (and the distribution-blind sense), in which case it is not learnable for
all distributions in the online sense: suppX×Y

V sup

T ({pX×Y }) does not grow sublinearly.

B.2 Proofs

Proof of Theorem 14. With a proof along the lines of Proposition 2 we establish that

1

T
Vblind

T = inf
s

sup
p

{

1

T

T
∑

t=1

Ex1,...,xt∼pEft∼st(x1:t−1,f1:t−1)[ft(xt)]− Ex1,...,xT∼p

[

inf
f∈F

1

T

T
∑

t=1

f(xt)

]}

≥ inf
s

sup
p

{

Ex1,...,xT∼p

[

1

T

T
∑

t=1

Eft∼st(x1,...,xt−1) [Ex∼p [ft(x)]]

]

− inf
f∈F

Ex1,...,xT∼p

[

1

T

T
∑

t=1

f(xt)

]}
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where in the second line we passed to strategies that do not depend on their own randomizations. The
argument for this can be found in the proof of Proposition 2. The last expression can be conveniently
written as

1

T
Vblind

T ≥ inf
s

sup
p

{

Ex1,...,xT∼p

[

Er∼Unif[T−1]Ef∼sr+1(x1,...,xr) [Ex∼p [f(x)]]− inf
f∈F

Ex∼p [f(x)]

]}

The above implies that if Vblind
T = o(T ) (i.e. the problem is learnable against an i.i.d adversary in

the online sense without knowing the distribution p), then the problem is learnable in the classical
batch sense. Specifically, there exists a strategy s = {st}T

t=1 with st : X t−1 7→ Q such that

sup
p

{

Ex1,...,xT∼p

[

Er∼Unif[1...T ]Ef∼sr+1(x1,...,xr) [Ex∼p [f(x)]]
]

− inf
f∈F

Ex∼p [f(x)]

}

= o(1).

This strategy can be used to define a consistent (randomized) algorithm f̂T : X T 7→ F as follows.

Given an i.i.d. sample x1, . . . , xT , draw a random index r from 1, . . . , T , and define f̂T as a random
draw from distribution sr(x1, . . . , xr−1). We have proven that Vbatch

T → 0 as T increases, which the
requirement of Eq. (27) in the general non-supervised case. Note that the rate of this convergence is
upper bounded by the rate of decay of 1

T Vblind
T to zero.

To show the reverse direction, say a problem is learnable in the classical batch sense. That is,
Vbatch

T → 0. Hence, there exists a randomized strategy s = (s1, s2, . . .) such that st : X t−1 7→ Q
and

sup
p

{

Ex1,...,xt−1∼p

[

Ef∼st(x1,...,xt−1)Ex∼p [f(x)]
]

− inf
f∈F

Ex∼p [f(x)]

}

= o(1)

as t→∞. Hence we have that

sup
p

{

Ex1,...,xT∼p

[

1

T

T
∑

t=1

Ef∼st(x1,...,xt−1)Ex∼p [f(x)]− inf
f∈F

Ex∼p [f(x)]

]}

≤ 1

T

T
∑

t=1

sup
p

{

Ex1,...,xT∼p

[

Ef∼st(x1,...,xt−1)Ex∼p [f(x)]− inf
f∈F

Ex∼p [f(x)]

]}

= o(1)

because a Cesàro average of a convergent sequence also converges to the same limit.

As shown in [12], the problem is learnable in the batch sense if and only if

Ex1,...,xT∼p

[

inf
f∈F

1

T

T
∑

t=1

f(xt)

]

→ inf
f∈F

Ex∼p [f(x)]

and this rate is uniform for all distributions. Hence we have that

sup
p

{

Ex1,...,xT∼p

[

1

T

T
∑

t=1

Ef∼st(x1,...,xt−1)Ex∼p [f(x)]− inf
f∈F

1

T

T
∑

t=1

f(xt)

]}

= o(1)

We conclude that if the problem is learnable in the i.i.d. batch sense then

o(T ) = sup
p

Ex1,...,xT∼p

[

T
∑

t=1

Ef∼st(x1,...,xt−1)Ex∼p [f(x)]− inf
f∈F

T
∑

t=1

f(xt)

]

= sup
p

Ex1,...,xT∼p

[

T
∑

t=1

Eft∼st(x1,...,xt−1)ft(xt)− inf
f∈F

T
∑

t=1

f(xt)

]

= sup
p

Ex1,...,xT∼pEf1∼s1
. . .EfT∼sT (x1:T−1)

{

T
∑

t=1

ft(xt)− inf
f∈F

T
∑

t=1

f(xt)

}

≥ Vblind
T (28)

Thus we have shown that if a problem is learnable in the batch sense then it is learnable versus all
i.i.d. adversaries in the online sense, provided that the distribution is not known to the player.
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Proof of Lemma 15. The first statement follows from the well-known classical symmetrization ar-
gument:

Vbatch, sup
T = inf

f̂
sup

pX×Y

{

E|y − f̂(x)| − inf
f∈F

E|y − f(x)|
}

≤ sup
pX×Y

{

E|y − f̃(x)| − inf
f∈F

E|y − f(x)|
}

≤ 2 sup
pX×Y

E sup
f∈F

∣

∣

∣

∣

∣

1

T

T
∑

t=1

|yt − f(xt)| − E|y − f(x)|
∣

∣

∣

∣

∣

≤ 4 sup
pX

Ex1:T
Eǫ1:T sup

f∈F

1

T

T
∑

t=1

ǫtf(xt)

where the first inequality is obtained by choosing the empirical minimizer f̃ as an estimator.

The second inequality of the Lemma follows from the lower bound proved in Section D. Lemma 20
implies that the game with i.i.d. restrictions Pt = {pX × UY } for all t satisfies

V sup
T ({pX × UY }) ≥ RT (F , pX)

for any pX .

Now, clearly, the distribution-blind supervised game is harder than the game with the knowledge of
the distribution. That is,

sup
pX×Y

V sup
T ({pX×Y }) ≤ Vblind, sup

T

C Application: Hybrid Learning

In Section B, we studied the relationship between batch and online learnability in the i.i.d. setting,
focusing on the supervised case in Section B.1. We now provide a more in-depth study of the value
of the supervised game beyond the i.i.d. setting.

As shown in [10], the value of the supervised game with the worst-case adversary is upper and

lower bounded (to within O(log3/2 T )) by sequential Rademacher complexity. This complexity
can be linear in T if the function class has infinite Littlestone’s dimension, rendering worst-case
learning futile. This is the case with a class of threshold functions on an interval, which has a
Vapnik-Chervonenkis dimension of 1. Surprisingly, it was shown in [6] that for the classification
problem with i.i.d. x’s and adversarial labels y, online regret can be bounded whenever VC dimen-
sion of the class is finite. This suggests that it is the manner in which x is chosen that plays the
decisive role in supervised learning. We indeed show that this is the case. Irrespective of the way
the labels are chosen, if xt are chosen i.i.d. then regret is (to within a constant) given by the classical
Rademacher complexity. If xt’s are chosen adversarially, it is (to within a logarithmic factor) given
by the sequential Rademacher complexity.

We remark that the algorithm of [6] is “distribution-blind” in the sense of last section. The results
we present below are for non-blind games. While the equivalence of blind and non-blind learning
was shown in the previous section for the i.i.d. supervised case, we hypothesize that it holds for the
hybrid supervised learning scenario as well.

Let the loss class be φ(F) = {(x, y) 7→ φ(f(x), y) : f ∈ F} for some Lipschitz function
φ : R × Y 7→ R (i.e. φ(f(x), y) = |f(x) − y|). Let P1:T be the restrictions on the adversary.
Theorem 3 then states that

V sup
T (P1:T ) ≤ 2 sup

p∈P

RT (φ(F),p)

where the supremum is over all joint distributions p on the sequences ((x1, y1), . . . , (xT , yT )), such
that p satisfies the restrictions P1:T . The idea is to pass from a complexity of φ(F) to that of the
class F via a Lipschitz composition lemma, and then note that the resulting complexity does not
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depend on y-variables. If this can be done, the complexity associated only with the choice of x is
then an upper bound on the value of the game. The results of this section, therefore, hold whenever a
Lipschitz composition lemma can be proved for the distribution-dependent Rademacher complexity.

The following lemma gives an upper bound on the distribution-dependent Rademacher complexity
in the “hybrid” scenario, i.e. the distribution of xt’s is i.i.d. from a fixed distribution p but the
distribution of yt’s is arbitrary (recall that adversarial choice of the player translates into vacuous
restrictions Pt on the mixed strategies). Interestingly, the upper bound is a blend of the classical
Rademacher complexity (on the x-variable) and the worst-case sequential Rademacher complexity
for the y-variable. This captures the hybrid nature of the problem.

Lemma 17. Fix a class F ⊆ R
X and a function φ : R×Y 7→ R. Given a distribution p over X , let

P consist of all joint distributions p such that the conditional distribution px,y
t (xt, yt|xt−1, yt−1) =

p(xt)× pt(yt|xt−1, yt−1, xt) for some conditional distribution pt. Then,

sup
p∈P

RT (φ(F),p) ≤ E
x1,...,xT∼p

sup
y

Eǫ

[

sup
f∈F

T
∑

t=1

ǫtφ(f(xt),yt(ǫ))

]

.

Armed with this result, we can appeal to the following Lipschitz composition lemma. It says that the
distribution-dependent sequential Rademacher complexity for the hybrid scenario with a Lipschitz
loss can be upper bounded via the classical Rademacher complexity of the function class on the
x-variable only. That is, we can “erase” the Lipschitz loss function together with the (adversarially
chosen) y variable. The lemma is an analogue of the classical contraction principle initially proved
by Ledoux and Talagrand [7] for the i.i.d. process.

Lemma 18. Fix a class F ⊆ [−1, 1]X and a function φ : [−1, 1]×Y 7→ R. Assume, for all y ∈ Y ,
φ(·, y) is a Lipschitz function with a constant L. Let P be as in Lemma 17. Then, for any p ∈ P,

RT (φ(F),p) ≤ L RT (F , p) .

Lemma 17 in tandem with Lemma 18 imply that the value of the game with i.i.d. x’s and adversarial
y’s is upper bounded by the classical Rademacher complexity.

For the case of adversarially-chosen x’s and (potentially) adversarially chosen y’s, the necessary

Lipschitz composition lemma is proved in [10] with an extra factor of O(log3/2 T ). We summarize
the results in the following Corollary.

Corollary 19. For stochastic-adversarial supervised learning with absolute loss,

(1) If xt are chosen adversarially, then irrespective of the way yt’s are chosen,

V sup

T ≤ 2R(F)×O(log3/2(T )),

where R(F) is the (worst-case) sequential Rademacher complexity [10]. A matching lower
bound of R(F) is attained by choosing yt’s as i.i.d. Rademacher random variables.

(2) If xt are chosen i.i.d. from p, then irrespective of the way yt’s are chosen,

V sup

T ≤ 2R(F , p),

where R(F , p) defined in (6) is the classical Rademacher complexity. The matching lower
bound of R(F , p) is obtained by choosing yt’s as i.i.d. Rademacher random variables.

The lower bounds stated in Corollary 19 are proved in the Appendix.

C.1 Proofs

Proof of Lemma 17. We want to bound the supremum (as p ranges over P) of the distribution-
dependent Rademacher complexity:

sup
p∈P

RT (φ(F),p) = sup
p∈P

E
((x,y),(x′,y′)))∼ρ

Eǫ

[

sup
f∈F

T
∑

t=1

ǫtφ(f(xt(ǫ)),yt(ǫ))

]
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for an associated process ρ defined in Section 3. To elucidate the random process ρ, we expand the
succinct tree notation and write the above quantity as

sup
p

Ex1,x′
1
∼pEy1∼p1(·|x1)

y′1∼p1(·|x
′

1)

Eǫ1Ex2,x′
2
∼pEy2∼p2(·|χ1(ǫ1),x2)

y′2∼p2(·|χ1(ǫ1),x
′

2)

Eǫ2 . . .

. . . ExT ,x′
T
∼pEyT∼pT (·|χ1(ǫ1),...,χT−1(ǫT−1),xT )

y′T∼pT (·|χ1(ǫ1),...,χT−1(ǫT−1),x
′

T )

EǫT

[

sup
f∈F

T
∑

t=1

ǫtφ(f(xt), yt)

]

where χt(ǫt) now selects the pair (xt, yt) or (x′t, y
′
t). By passing to the supremum over yt, y

′
t for all

t, we arrive at

sup
p∈P

RT (φ(F),p) ≤ sup
p

Ex1,x′
1
∼p sup

y1,y′
1

Eǫ1Ex2,x′
2
∼p sup

y2,y′
2

Eǫ2 . . .ExT ,x′
T
∼p sup

yT ,y′
T

EǫT

[

sup
f∈F

T
∑

t=1

ǫtφ(f(xt), yt)

]

= Ex1∼p sup
y1

Eǫ1Ex2∼p sup
y2

Eǫ2 . . .ExT∼p sup
yT

EǫT

[

sup
f∈F

T
∑

t=1

ǫtφ(f(xt), yt)

]

where the sequence of x′t’s and y′t’s has been eliminated. By moving the expectations over xt’s
outside the suprema (and thus increasing the value), we upper bound the above by:

≤ Ex1,...,xT∼p sup
y1

Eǫ1 sup
y2

Eǫ2 . . . sup
yT

EǫT

[

sup
f∈F

T
∑

t=1

ǫtφ(f(xt), yt)

]

= E
x1,...,xT∼p

sup
y

Eǫ

[

sup
f∈F

T
∑

t=1

ǫtφ(f(xt),yt(ǫ))

]

Proof of Lemma 18. First without loss of generality assume L = 1. The general case follow from
this by simply scaling φ appropriately. By Lemma 17,

RT (φ(F),p) ≤ E
x1,...,xT∼p

sup
y

Eǫ

[

sup
f∈F

T
∑

t=1

ǫtφ(f(xt),yt(ǫ))

]

(29)

The proof proceeds by sequentially using the Lipschitz property of φ(f(xt),yt(ǫ)) for decreasing t,
starting from t = T . Towards this end, define

Rt = E
x1,...,xT∼p

sup
y

Eǫ

[

sup
f∈F

t
∑

s=1

ǫsφ(f(xs),ys(ǫ)) +

T
∑

s=t+1

ǫsf(xs)

]

.

Since the mappings yt+1, . . . ,yT do not enter the expression, the supremum is in fact taken over
the trees y of depth t. Note that R0 = R(F , p) is precisely the classical Rademacher complexity
(without the dependence on y), while RT is the upper bound on RT (φ(F),p) in Eq. (29). We need
to show RT ≤ R0 and we will show this by proving Rt ≤ Rt−1 for all t ∈ [T ]. So, let us fix t ∈ [T ]
and start with Rt:

Rt = E
x1,...,xT∼p

sup
y

Eǫ

[

sup
f∈F

t
∑

s=1

ǫsφ(f(xs),ys(ǫ)) +

T
∑

s=t+1

ǫsf(xs)

]

= E
x1,...,xT∼p

sup
y1

Eǫ1 . . . sup
yt

Eǫt
Eǫt+1:T

[

sup
f∈F

t
∑

s=1

ǫsφ(f(xs), ys) +
T
∑

s=t+1

ǫsf(xs)

]

= E
x1,...,xT∼p

sup
y1

Eǫ1 . . . sup
yt

Eǫt+1:T
S(x1:T , y1:t, ǫ1:t−1, ǫt+1:T )
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with

S(x1:T , y1:t, ǫ1:t−1, ǫt+1:T ) = Eǫt

[

sup
f∈F

t
∑

s=1

ǫsφ(f(xs), ys) +

T
∑

s=t+1

ǫsf(xs)

]

=
1

2

{

sup
f∈F

t−1
∑

s=1

ǫsφ(f(xs), ys) + φ(f(xt), yt) +

T
∑

s=t+1

ǫsf(xs)

}

+
1

2

{

sup
f∈F

t−1
∑

s=1

ǫsφ(f(xs), ys)− φ(f(xt), yt) +

T
∑

s=t+1

ǫsf(xs)

}

The two suprema can be combined to yield

2S(x1:T , y1:t, ǫ1:t−1, ǫt+1:T )

= sup
f,g∈F

{

t−1
∑

s=1

ǫs(φ(f(xs), ys) + φ(g(xs), ys)) + φ(f(xt), yt)− φ(g(xt), yt) +

T
∑

s=t+1

ǫs(f(xs) + g(xs))

}

≤ sup
f,g∈F

{

t−1
∑

s=1

ǫs(φ(f(xs), ys) + φ(g(xs), ys)) + |f(xt)− g(xt)|+
T
∑

s=t+1

ǫs(f(xs) + g(xs))

}

(∗)

= sup
f,g∈F

{

t−1
∑

s=1

ǫs(φ(f(xs), ys) + φ(g(xs), ys)) + f(xt)− g(xt) +

T
∑

s=t+1

ǫs(f(xs) + g(xs))

}

(∗∗)

The first inequality is due to the Lipschitz property, while the last equality needs a justification. First,
it is clear that the term (∗∗) is upper bounded by (∗). The reverse direction can be argued as follows.
Let a pair (f∗, g∗) achieve the supremum in (∗). Suppose first that f∗(xt) ≥ g∗(xt). Then (f∗, g∗)
provides the same value in (∗∗) and, hence, the supremum is no less than the supremum in (∗). If,
on the other hand, f∗(xt) < g∗(xt), then the pair (g∗, f∗) provides the same value in (∗∗).
We conclude that

S(x1:T , y1:t, ǫ1:t−1, ǫt+1:T )

≤ 1

2
sup

f,g∈F

{

t−1
∑

s=1

ǫs(φ(f(xs), ys) + φ(g(xs), ys)) + f(xt)− g(xt) +

T
∑

s=t+1

ǫs(f(xs) + g(xs))

}

=
1

2

{

sup
f∈F

t−1
∑

s=1

ǫsφ(f(xs), ys) + f(xt) +

T
∑

s=t+1

ǫsf(xs)

}

+
1

2

{

sup
f∈F

t−1
∑

s=1

ǫsφ(f(xs), ys)− f(xt) +

T
∑

s=t+1

ǫsf(xs)

}

= Eǫt
sup
f∈F

{

t−1
∑

s=1

ǫsφ(f(xs), ys) + ǫtf(xt) +

T
∑

s=t+1

ǫsf(xs)

}

Thus,

Rt = E
x1,...,xT∼p

sup
y1

Eǫ1 . . . sup
yt

Eǫt+1:T
S(x1:T , y1:t, ǫ1:t−1, ǫt+1:T )

≤ E
x1,...,xT∼p

sup
y1

Eǫ1 . . . sup
yt

Eǫt:T
sup
f∈F

{

t−1
∑

s=1

ǫsφ(f(xs), ys) +
T
∑

s=t

ǫsf(xs)

}

= E
x1,...,xT∼p

sup
y1

Eǫ1 . . . sup
yt−1

Eǫt−1
Eǫt:T

sup
f∈F

{

t−1
∑

s=1

ǫsφ(f(xs), ys) +

T
∑

s=t

ǫsf(xs)

}

= Rt−1

where we have removed the supremum over yt as it no longer appears in the objective. This con-
cludes the proof.
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D Lower Bounds

We now give two lower bounds on the value V sup
T , defined with the absolute value loss function

φ(f(x), y) = |f(x) − y|. The lower bounds hold whenever the adversary’s restrictions {Pt}T
t=1

allow the labels to be i.i.d. coin flips. That is, for the purposes of proving the lower bound, it
is enough to choose a joint probability p (an oblivious strategy for the adversary) such that each
conditional probability distribution on the pair (x, y) is of the form pt(x|x1, . . . , xt−1)× b(y) with
b(−1) = b(1) = 1/2. Pick any such p.

Our first lower bound will hold whenever the restrictions Pt are history-independent. That is,
Pt(x1:t−1) = Pt(x

′
1:t−1) for any x1:t−1, x

′
1:t−1 ∈ X t−1. Since the worst-case (all distributions)

and i.i.d. (single distribution) are both history-independent restrictions, the lemma can be used to
provide lower bounds for these cases. The second lower bound holds more generally, yet it is weaker
than that of Lemma 20.

Lemma 20. Let P be the set of all p satisfying the history-independent restrictions {Pt} and P′ ⊆
P the subset that allows the label yt to be an i.i.d. Rademacher random variable for each t. Then

V sup

T (P1:T ) ≥ sup
p∈P′

RT (F ,p)

In particular, Lemma 20 gives matching lower bounds for Corollary 19.

Lemma 21. Let P be the set of all p satisfying the restrictions {Pt} and let P′ ⊆ P be the subset
that allows the label yt to be an i.i.d. Rademacher random variable for each t. Then

V sup

T (P1:T ) ≥ sup
p∈P′

E(x,x′)∼ρEǫ

[

sup
f∈F

T
∑

t=1

ǫtf(xt(−1))

]

Proof of Lemma 20. Notice that p defines the stochastic process ρ as in (4) where the i.i.d. yt’s
now play the role of the ǫt’s. More precisely, at each time t, two copies xt and x′t are drawn from
the marginal distribution pt(·|χ1(y1), . . . , χt−1(yt−1)), then a Rademacher random variable yt is
drawn i.i.d. and it indicates whether xt or x′t is to be used in the subsequent conditional distributions
via the selector χt(yt). This is a well-defined process obtained from p that produces a sequence
of (x1, x

′
1, y1), . . . , (xT , x

′
T , yT ). The x′ sequence is only used to define conditional distributions

below, while the sequence (x1, y1), . . . , (xT , yT ) is presented to the player. Since restrictions are
history-independent, the stochastic process is following the protocol which defines ρ.

For any p of the form described above, the value of the game in (2) can be lower-bounded via
Proposition 2.

V sup
T ≥ E

[

T
∑

t=1

inf
ft∈F

E(xt,yt)

[

|yt − ft(xt)|
∣

∣

∣
(x, y)1:t−1

]

− inf
f∈F

T
∑

t=1

|yt − f(xt)|
]

= E

[

T
∑

t=1

1− inf
f∈F

T
∑

t=1

|yt − f(xt)|
]

A short calculation shows that the last quantity is equal to

E sup
f∈F

T
∑

t=1

(1− |yt − f(xt)|) = E sup
f∈F

T
∑

t=1

ytf(xt).

The last expectation can be expanded to show the stochastic process:

Ex1,x′
1
∼p1

Ey1
Ex2,x′

2
∼p2(·|χ1(y1))Ey2

. . .ExT ,x′
T
∼pT (·|χ1(y1),...,χT−1(yT−1))EyT

sup
f∈F

T
∑

t=1

ytf(xt)

= E(x,x′)∼ρEǫ

[

sup
f∈F

T
∑

t=1

ǫtf(xt(ǫ))

]

= RT (F ,p)
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Since this lower bound holds for any p which allows the labels to be independent±1 with probability
1/2, we conclude the proof.

Proof of Lemma 21. For the purposes of this proof, the adversary presents yt an i.i.d. Rademacher
random variable on each round. Unlike the previous lemma, only the {xt} sequence is used for
defining conditional distributions. Hence, the x′ tree is immaterial and the lower bound is only
concerned with the left-most path. The rest of the proof is similar to that of Lemma 20:

V sup
T ≥ E

[

T
∑

t=1

inf
ft∈F

E(xt,yt)

[

|yt − ft(xt)|
∣

∣

∣
(x, y)1:t−1

]

− inf
f∈F

T
∑

t=1

|yt − f(xt)|
]

= E

[

T
∑

t=1

1− inf
f∈F

T
∑

t=1

|yt − f(xt)|
]

As before, this expression is equal to

E sup
f∈F

T
∑

t=1

ytf(xt) = Ex1∼p1
Ey1

Ex2∼p2(·|x1)Ey2
. . .ExT∼pT (·|x1,...,xT−1)EyT

sup
f∈F

T
∑

t=1

ytf(xt)

= E(x,x′)∼ρEǫ

[

sup
f∈F

T
∑

t=1

ǫtf(xt(−1))

]
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