A Margin upper bound

From (15) and (10)
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B Convexity
Defining 8, = Py|x (y*|z) and using (13)
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Denoting 7; ; = y* — v7 the functional derivatives of first and second order, with respect to f(z),
are
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If al codewords are different, i.e. ny ; # 0 Vk, j, the matrices [nk,jn,zj] are positive definite vk, j.
Since 5, > 0 Vk and 22/[:1 Br =1, 8; > 0 for at least one j and (49) is strictly positive definite.

Hence, R(f|x) isstrictly convex, and has a unique global minimum.

C BayesConsistency

Using B = Py |x (y*|z), setting

o—y<t@ms> _ [ Pi

B
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and substituting in (48)

OR(flz) _  1x~y-
8f(:c) = 5;; kﬂkj\/i (51)
- IS S - eER (52)
- 2k:1j=1 Y ) j Pk
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= —fzy’“fz Bi+3 Zy\/ﬁjzﬂ—o (53)

Hence, when f(x) is f*(z), the unique minimum of R(f|z), (50) holds. It follows that

ok i * k PY|X(y’L|x)
< fH(x),y" > — < [ (2),y >*10gm (54)
and ' _
< f*(x),y" >=log Py x(y'|z) + c.Vi (55)

for some constant c. This shows that (11) isequivalent to (18).

D Underdetermined predictor

Letd > M — 1 and consider aset of M vectorsy?, ...yM € R?. There are three possibilities

1. If d > M theny',...y™ belong to an at most M dimensional subspace S of R¢. S, the
orthogonal complement of S, is nonempty and R? = S’ U S. Since, by definition

VueS,vesS, <u,v>=0, (56)
any v € ' satisfies (20).

2. 1fd = M andy!, ...yM arelinearly dependent, then ¢, ...y belong to an, at most, M — 1
dimensional subspace S of RM. 1t follows that S’, the orthogonal complement of S, is
nonempty. Asin the previous case, thisimplies the existence of av € S’ that satisfies (20).

3.1fd = M and y',..y™ € RM are linearly independent, then, the matrix Y of rows
yt, ..yM isinvertible and
Yv=1, (57)

with 1 = [1,..1]7 € RM, has aunique solution. This solution satisfy (20) since

<yv>=1 Vi (58)

E Solving optimization problem of codewords

Lemma1. Consider the set of distinct unit vectorsy®, ...y € RM~! of smallest pairwise distance

2, =min|ly’ — 7[> (59)
i#]
Then
oM
d? 60
T)’LLIL —_ (M _ 1) ( )

Proof. Since the minimum distance cannot be larger than the average distance between the vectors,

d2

min — ZZ ||y yk‘|2 (61)

i jF#i
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To derive the bound of (60), we consider the following problem.
{ maxy',..yM %Zz Zj;éi ||y2 - ysz

st |[y*ll=1 Vk=1.M.

(62)

This problem can be solved with the Lagrange multiplier method. The Lagrangianis

L= S I - el - 1) (63

i g i
for which
oL - : o
sor = 2 W =YY 0 ) 200t =2t (M -0 23y (64)
Yy ik ik i=1
0L
o = 2(M — oy, — 1). (65)
This has a maximum when
M .
V(M —or) = >y (66)
i=1
M — Ok S 1 (67)

We next consider two possibilitiesfor M — oy.
1. 3k such that M — o, = 0. In this case, it follows from (66) that Zij\il y* = 0. Since
l|[y*|| = 1, it followsthat M — o, = OVEk.
2. M — o}, # 0 VE. Then, from (66)

M i
E_ Zi:l Y
V=N . Yk, (68)

Since the y* have to be distinct, there can be no pair such that M — oy,, = M — o4,,. Using
|l*|| = 1, it follows from (68) that

M
(M=) =1 y'II? (69)
=1
and, for any k,
M ) M )
(M —ay) € {=1D_ ¢l +I1D_¢'ll}- (70)
=1 =1

Hence, there is a contradiction for M > 2. For M = 2 the contradiction can be avoided if
M — oy, = —(M — oy,). Inthis case, using (68),

M 1 1 M
i 1 2 i
E =yl +9y* = + E =0 71
4 4 y [Mokl Makj y (71)

i=1 i=1

Since ||y*|| = 1, it follows from (66) that M — o}, = 0V, contradicting the initial hypoth-
esisthat M — o), # 0 Vk.

In summary, the Lagrangian is maximum when

M .
Yyt =0 (72)
=1

M, Vk. 73)

Ok
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Taking the dot product of both sides of (72) with * and using the fact that ||y*|| = 1,
o<y b > =1 (74)
J#k
Combining with the fact that ||y — 47| = 2 — 2 < y%, 3 > it follows that
YD —YIP = MM —1) =23 <yly > (75)
i g i g
= 2M? (76)
Combining this with (61) leads to (60)

Theorem 2. Any set of unit vectors 3!, ...y™ € RM~1 which formaregular smplexin R™~! isa
solution of (19)

Proof. From Lemmal, if d2,;, = min;,; [|y* — y||* then
2M
d? —_.
min — (M _ 1)
Since the pairwise distances between the vertices of aregular unit simplex inRM ! are al equal to
or-n M 0 [3], the set of these vertices achieves the upper bound of (77). Hence, this set isa solution

to (19). Note that this solution is not unique, since any rotation of the simplex is an equally valid
solution.

min

(77)

F Derivation of CD-M CBoost

From (13) and (22)
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1 n M
= 52 %Z<1y7% Y > e i et (83)
i=1 k=1
= Zg(xi)wz (84)
i=1
where
1Y 1 k
, koo L f eyt
w! = §Z<1j7yi—y > e"2<F (@)wimy™> (85)
k=1
1 , - K
Lt () 1otip )k
= 56 <[ ( 1)1y1>];< 1jayi _yk > 62<'f (i)Y >. (86)
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G Derivation of GD-M CBoost

Using (13) and (29)
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