
Supplementary materials for the paper:
Sparse Recovery with Brownian Sensing

Proof of Proposition 1

First, we prove a very short Lemma describing some properties of the matrix A.

Lemma 1 Let us consider M independent Brownian motions (B1, ..., BM ) on X , and define the
M ×K matrix A with elements

Am,k =
1√
M

��

C
ϕk(x)dB

m(x)
�
.

Then A is a centered Gaussian matrix where each row Am,· is i.i.d. from N (0, 1
M VC), where VC is

theK ×K covariance matrix of the basis, defined by its elements Vk,k� =
�
C ϕk(x)ϕk�(x)dx.

Proof: Indeed, from the definition of stochastic integrals, each Am,k ∼ N (0, 1
M

�
C ϕ

2
k(x)dx),

and Cov(Am,k, Am,k�) = 1
M

�
C ϕk(x)ϕk�(x)dx. Thus each row Am,· ∼ N (0, 1

M VC) and are
independent by independence of the Brownian motions. Additionally, we have

E[(ATA)k,k� ] = E

� 1

M

M�

m=1

Am,kAm,k�

�
= Vk,k�,C .

�

Now let us define B = AV
−1/2
C . Since each row of A is an independent draw of N (0, VC), then

each row of B is an independent draw of N (0, I). Thus B is a matrix with elements i.i.d. from
N (0, 1). We thus can use the following result (as stated in [9], see also [14, 1]):

Theorem 5 For p� > 0 and any integer t > 0, whenM > C �δ−2(t log(K/t) + log 1/p�)), with C �

being a universal constant, see [14, 1], then with probability at least 1 − p�, there exists δt ≤ δ (δt
is the RIP constant of B for t-sparse vectors) such that for all t−sparse vectors x ∈ R

K ,

(1− δt)�x�2 ≤ �Bx�2 ≤ (1 + δt)�x�2.

Since VC is symmetric, it is possible to write VC = UDUT with U an orthogonal matrix and
D a diagonal matrix with the eigenvalues of V as diagonal elements (SVD decomposition). Thus,

V 1/2 = UD1/2UT whereD1/2 is the diagonal matrix with the square roots of the diagonal elements

of D (i.e., the eigenvalues of V
1/2
C ).

Note that if U is an orthogonal matrix, BU is also RIP with the same constant as B (see [7] for the
preservation of the RIP property to a change of orthonormal basis). Applying this and Theorem 5
with δ = 1/2 for 2t-sparse vectors, we have that wheneverM > 4C �(2t log(K/2t) + log 1/p�), the
RIP constant δ2t ≤ 1/2, i.e. for all 2t−sparse vectors x,

1

2
�x�2 ≤ �BUx�2 ≤ 3

2
�x�2.

Now if we consider a 2t−sparse vector x, thenD1/2x is also 2t−sparse with same support as x, and
we also have that νmin,C�x�2 ≤ �D1/2x�2 ≤ νmax,C�x�2. Thus the matrix BUD1/2 satisfies

νmin,C
2

�x�2 ≤ �BUD1/2x�2 ≤ 3νmax,C
2

�x�2.

As mentioned before, the preservation of the RIP property to a change of orthonormal base (see [7])

can be applied with U and thus as A = BV 1/2 = BUD1/2UT to obtain:

1

2
νmin,C�x�2 ≤ �Ax�2 ≤ 3

2
νmax,C�x�2.
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Proof of Proposition 2

We prove here without loss of generality (because of we can always parametrize the curve) the result
forX = [0, l]. Let us recall that f is (L, β)-Hölder and that we write σ = �η�2. The estimation error
εm = bm − �bm, given the samples (xn, yn)n, follows a centered Gaussian distribution (w.r.t. the
choice of the Brownian Bm) with variance

V(εm) = V

�
1√
M

�� l

0

f(x)dBm(x)−
N−1�

n=0

yn(B
m
xn+1

−Bm
xn
)
��

=
1

M
V

�� l

0

�
f(x)−

�

n

(f(l
(n+ 1)

N
) + ηn)Ix∈[l n

N
;l

(n+1)
N

]

�
dBm(x)

�

=
1

M

� l

0

�
f(x)−

�

n

(f(l
n

N
) + ηn)Ix∈[l n

N
;l

(n+1)
N

]

�2
dx

=
1

M

�

n

� l
(n+1)

N

l n
N

(f(x)− f(l n
N

)− ηn)2dx

≤ 1

MN

�

n

(
Llβ

Nβ
+ |ηn|)2dx

=
2

MN

� L2l2β

N2β−1
+
�

n

|ηn|2
�

≤ 2

MN

� L2l2β

N2β−1
+ σ2

�
.

We now wish to apply Bernstein’s inequality in order to bound �ε�2 in high probability. We recall
the following result (see e.g. [2]):

Theorem 6 (Bernstein’s inequality) Let (X1, ....XM ) be independent real valued random vari-

ables and assume that there exist two positive numbers v and d such that:
�M

m=1 E(X
2
m) ≤ v and

for all integers r ≥ 3,
M�

m=1

E[(Xm)r+] ≤
r!

2
vdr−2.

Let S =
�M

m=1(Xm − E(Xm)), then for any x ≥ 0, we have P(S ≥
√
2vx+ dx) ≤ exp(−x).

Let us check that the assumptions for applying Bernstein’s inequality hold with the choice v =
8M(V(εm))2 and d = 2V(εm). Indeed, since the εm are i.i.d. centered Gaussian, by writing

Xm = ε2m, we have Xm ≥ 0 and for any integer r ≥ 2, E(Xr
m) = (V(εm))r (2r)!

2rr! . This gives�M
m=1 E[X

2
m] = 3M(V(εm))2 ≤ v, and for r ≥ 3,

M�

m=1

E[Xr
m] =M(V(εm))r

(2r)!

2rr!
≤M(V(εm))r × 2rr! ≤ r!

2
vdr−2.

We thus apply Bernstein’s inequality (and recall that V(εm) ≤ 2
MN

�
L2l2β

N2β−1 + σ2
�
) to obtain that

with probability at least 1− p,

�ε�22 ≤ 2
�L2l2β

N2β
+
σ2

N

��
1 + 4

�
log(1/p)

M
+ 2

log(1/p)

M

�
.
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Proof of Theorem 4

Following [10], we define αt > 0 (respectively βt > 0) as the maximal (resp. minimal) values such
that for all x ∈ R

K which are t−sparse,
αt�x�2 ≤ �Ax�2 ≤ βt�x�2. (4)

We now define γt = βt

αt
and use Theorem 3.1 of [10] applied to sparse vectors, in the case of �1

minimization, reminded below:

Theorem 7 (Foucart, Lai) For any integer S > 0, for t ≥ S, whenever γ2t − 1 ≤ 4(
√
2− 1)

�
t
S ,

the solution �α to the �1-minimization problem

min �a�1, under the constraint �Aa− b�22 ≤ �ε�22,

satisfies �α− �α�2 ≤ D2�ε�2

β2S
, whereD2 is a constant which depends on γ2t, S and t defined in [10].

In order to apply this results, we now provide conditions such that (4) holds, as well as an upper
bound on the noise �ε2�, and a lower bound on β2S .
Step 1. Recovery Condition: We recall the results of Proposition 1 and have that (4) holds with

α2t ≥ 1
2νmin,C and β2t ≤ 3

2νmax,C with probability 1 − p� as long as M > C�

4 (t log(K/t) +

log 1/p�)). Thus γ2t ≤ 3
νmax,C

νmin,C
= 3κC .

A sufficient condition for (7) is that 3κC − 1 ≤ 4(
√
2− 1)

�
t
S .

By defining r =
�
(3κC − 1)( 1

4
√
2−1

)
�2

(note that r only depends on VC), condition (7) holds when-

ever t > Sr, thus with probability 1− p�, whenever

M > 4C ��2�Sr� log K

2Sr
+ log 1/p�

�
. (5)

Note that this condition holds when the number of Brownian motions M (which can be chosen
arbitrarily) is large enough (and does not depend on the number of observations N ).

Step 2. Upper bound on �ε2�: This is the result of Proposition 2.

Step 3. Lower bound on β2S In order to apply Theorem 7, we now provide a lower bound on β2S .

Lemma 2 If
M > C � log 1/u, (6)

then with probability 1− u we have: β2S ≥ 1
2

�
maxk

�
C ϕ

2
k.

Proof: Let us define i = argmaxk
�
C ϕ

2
k(x)dx. Let us now consider the 1−sparse vector a such

that ai = 1 and ak = 0 otherwise. We have: (Aa)m =
�
C ϕi(x)dB

m(x). So each (Aa)m is a

sample drawn independently from N (0,
�
C ϕ

2
i (x)dx).

By applying Theorem 5, with S = K = 1 and δ = 1/2, when M > C � log 1/u, then with
probability 1− u,

1

2

��

C
ϕ2
i (x)dx�a�2 ≤ �Aa�2 ≤ 3

2

��

C
ϕ2
i (x)dx�a�2.

And since β2S is the minimal constant such that for every 2S−sparse vector x (in particular for a)
we have �Ax�2 ≤ β2S�x�2, we deduce that

β2S ≥ 1

2

��

C
ϕ2
i (x)dx =

1

2

�
max

k

�

C
ϕ2
k(x)dx.
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�

We now apply Theorem 7 and deduce that whenM satisfies (5) (which implies that (6) also holds)
using Lemma 2, with probability 1− p� − u,

��α− α�2 ≤ 2D2σ̃(N,M, p)
√
N
�
maxk

�
C ϕ

2
k

(7)

Thus from Proposition 2, with probability 1− p− p� − u,

��α− α�22 ≤
8D2

2

�
L2

N2β−1 l
2β + σ2

�
(1 + c(p,M))

N(maxk
�
C ϕ

2
k)

,

and from [10], we deduce that if we are able to recover 4S−sparse vectors, i.e., if M >
4C ��4Sr log K

4Sr + log 1/p�
�
then D2 ≤ Cκ2C where C can be loosely bounded by 90, see [10]

(note that this numerical constant can be greatly improved). The result follows with the choice
p = p� = u.
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