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1 Multivariate Bernoulli model

The multivariate Bernoulli (MVB) model of random variables h&s* — 1 natural parameters [1].
Given the predictive variablé&’, these parameters are functionsXof called conditional log odds
ratios. From the distribution of the MVB*(X) can be written as:

f9(x) =logOR(Y;,i € w|Y; =0,j ¢ w; X = x) (1)
Here, the odds ratios are calculated recursively
P(Y; =1|X =z)

ORWIX =) = 1 by —1x = a) @
_ OR(Yyicw|Yp=1,X=12)
Yi, EHX =2) = : , with & 3
OR(Y;,i € wU{k}| x) OR(Y,.i € Vs =0.X =) with & ¢ w (3)
The following two notations are useful in optimization aratgmeter tuning:
S(yw) =Y Yt fr@); S€(w) = fr(@); 4)
~KCw ~KCw
It follows from the definition of the conditional log oddsi@tn (1) that
" _ P(Yi=1licw,andY; =0,j € N\w|X =)
Then the normalization factor is:
exp(b(f(x)) =1+ Y exp(5(x)) (6)

weW K

In practice, thexxp(b(f(x))) is calculated by the junction tree algorithm to avoid enwatieg 2%
possible values of’, which is intractable in large graphs.

2 Dual of the proximal linearization problem

To solve the following objective of the proximal lineariizat problem

min Ly + VLE (c = ) + %HC—CMFMJ(C) @)

we solve its dual problem as suggested in Liu and Ye [2]. Zet {v € V||| = 0}, and
7 = Vg — Z be the complement. Defing, v € ¥ as:

5y €Sy = {5 = (5%)wecuy | s ERP||s]| < Apy,s¥ =0if we T,} (8)



then the subgradient of (7) is:
VL + ai(c—cg) + ZS@ + Zru C)
veZ u€Z
wheres, is the subgradient ofp, ||’ || for v € Z andr, is the subgradient foz € Z:
ry = argmax, (sy,c), forue Z (20)

The subgradient, is in a unit ball of certain subspaceRf. These subspaces are not perpendicular
to each other. Thus,’s are not separable, and closed form solution of (7) caneatttained. We
solve the proximal subproblem (7) by its smoothing and crigieel problem. Note (7) is equivalent
to:

gelﬁ&% rélgé(d)(c S)=VLI(c—cp)+ %Hc —cil* + UEZQ<SU7 c) (12)
where S is ap x |V | matrix whose columns are,. S = {S|S = (s1,...,50,...,5),8y €

S, forv € Wk} is the feasible region of. Sinceg(-, S) is lower semicontinuous angl(c, -) is
upper semicontinuous, there exists a saddle point andntheand min are exchangeable. The
solution of minimizingg(c, S) is:

- . 1 1
= argmin_¢(c, S) = ¢, — a—kVLk T ; Sy (12)
Substituter back into (11), we have the dual problem of (7) as:
1 2 T
max(S) = 5| ZU:SUII + (aker — VL) zﬂ:sv (13)

Following the proof in L|u and Ye [2], we can show thgtS) is convex and Lipschitz continuous.
The differential isa.ée” wheree € R? is a vector of ones. Hence, (13) can be solved by existing
gradient methods.

3 B-spline

Givenm knots,ty < t; < --- < t,,_1, the B-spline basis functions of degrdeare defined
recursively [3]:

1, it <t <tpgr
bpo=1+_. — fork=0,---,m—2
0 {0; otherwise ’ m
t—t t
bri = ——k bri—1(t) + Lbk+ll 1(t), fork=0,--- ,m—d—-2;1=0,--- ,d
L1 — tk Uti+1 — tht1

Let Bi(-) = b q(-), then{By,k =0,--- ,m —d — 2} arem — d — 1 basis functions, which span
the functional spacg. The B-spline curve i is:

2

d—
=Y aB (14)

k=0

m—

wherec;’s are the control points to be estimated. In our simulattoies,c;’s are assumed to be
one dimensional scalers for simplicity.

We let eachf“ (x) wherex = (z1,--- ,x,)" beinBy@B,®---@&B,. Here, B, is a space of constant
functions and3;,j = 1--- ,pis a B-spline functional space on domaine ;. Therefore,

x)=cf + Y gjla;) (15)
j=1

whereg;(z;) € B, are defined in (14).



4 Tuning

Fori-th data poin{y(7),
(6]

_ x(7)), denoteS¥ = S“(z(i)), then the normalization factor of theh data
isb; = b(f(x(i))) = log (1

+ >, expSY). The mean of the augmented respop$é) in the MVB

model is:
(i) = BY(@)a(), f] = (' (@), - 1" @), 1 (0)) (16)
won  Obi EweTﬁ exp S¥
Whereu (’L) = 8f” = ex—pbl (17)
The |V k| x || covariance matrix of the augmented response is:
W (i) = var(Y(i)|2(i), f) (18)
where the(a, §)-th element ofil/ (i) is:
. D%b; YoweTanTy XPSY 8/
Wa,ﬁ(l) - (9fa((9fﬂ)T - exp b; — K (Z) s (Z) (19)

Let R, be ap x p diagonal matrix whoséi, i)-th elementis 1 it; # 0. Then, thev-th group penalty

J(fT+) can be written as:
T =po | D 1712 = poll Rocll (20)
weT,

Note R, is symmetric and?, - R, = R,, direct calculation yields the derivative and Hessian ef th
penalty term:

R,c
> b i (21)
v:Ryc£0 1Rl
0%J R, (| Roc||*T — ¢+ ") R,
peacT = 2. Ph= D me X #2

v: R, c#£0 v: R, c#£0

whereJ, = (R, (|Ryc||*I — ¢ cT)R,)/||R.c||®. Denote the grand design matrix as:

D= (DT .- Dm)T)" (23)
z(i)T 0 0
0 z(@)T .. 0
whereD (i) = ) ) ) ) (24)
0 0 2T
Suppose there ar€ non-zero elements efat location{a, ..., an}. Let D be the matrix composed
by theaq, ..., axnth column of D. Then, the Hessian matrix @fis:
321)\ 0%L 0%J ~ 7 -
= =D D vy 2
0cocT  0cdcT * AacacT WD+ Z pod (25)

v: R, c#0
Let H be then|V k| x n|¥ k| influence matrix that implies
Ire—x= He (26)

wheree is a small perturbation ol; f\ = Dc, is the estimated function value with tuning param-
eter)\; and f, . is the estimated function value with the perturbation. Ttiea analysis of the first
order Taylor expansion GL()) + €, ¢y ) leads to the formulation off as follows (refer to Xiang
and Wahba [4] and Ma [5 Chapter 3 for more details)

H= D(ai;{jT)flﬁT = D(D™WD + A,Ug:‘#opm)ly @7)



The (i, j)-th ¢ x ¢ submatrix ofH is

- 021, \—1 -
N T A .
H(ij) = DO (52%)  DG) (28)
LetQ(i) = I — H(i,i)W (i) fori = 1,...,n, define the generalized average matrix, denoteg,as
of {Q(i),i =1,...,n} as follows
6 ’g DY 'y
_ gl e
Q== gxg+7-ec’ = oo (29)
/y ’)/ DRI 5
wheree is the unit vector of length and
1 1
0= —~ —, =—— [eTQ(i)e —tr(Q(i 30
S @) T e A0 @) 0

Let H be the generalized average{df (i,i),i = 1,--- ,n}, the GACV score is
1o -
GACV(N) = OBS(N) + — > Y(O)TQ™ H(Y() - (i) (31)

where

OBS() = —[ = V)T frlai) + b(r ()] (32)
is the observed log-likelihood.

The degrees of freedom of multivariate Bernoulli data isegelty difficult to obtain. But we can
have a good approximation from GACYV [6] as

A=) VO QT H(Y(i) — u(i)) (33)

i=1

So the BGACV score can be defined as

BGACV()) = OBS(\) + ~ log” Zy V(i) — p(i)) (34)

For the model selection criteria AIC, the degree of freedsmpproximated by the number of non-
zeroc;y's in the group penalty.
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