Lagrangian analysis of the “swimmer” dynamical system

Model of friction

Given a small one-dimensional stick of length dA in a two-dimensional fluid medium, we
postulate two forces that act upon it: a “viscous” friction force normal to the direction of the stick
given by dﬁn =—kn(n-v)dA, and a “laminar” friction force tangent to the direction of the stick

given by dF, =—k,f(f -V)dA,where t , 7iand v are the tangent, normal, and velocity vectors.

Given a stick of length /, we can decompose its velocity into the linear center-of-mass velocity and
the angular velocity relative to the cm: V(1) =v,_ + A0, where A e[ ++,£]. The normal and
tangential frictional forces resulting from the linear part will be Fn =—kn(n-v,) and

cm

F, =—k,t (f -v,,)I , while the total moment arising from the angular part will be:

r= j/l df = [ 2 (~kA0)dr =510
Later we will derive these forces from the dissipation function, which is a measure of the rate of
energy being lost to friction.

Generalized coordinates

We now connect & sticks together, and choose our generalized coordinates q to be the location of
the center of mass and the angles of the sticks relative to the x direction.

r,

0=[6 0, .. 4] a=|7,
0
We define the unit tangent and normal vectors,
- |cos(@)| _ |-sin(8)
i [sin(@)} & :{ cos(6,) }
Defining 7, to be the location of the ith stick relative to the center-of-mass, we can now write the

equations that relate the 7, ’s to the 6. ’s:

rz+l ’: Elt TI i+l
> mE=0

The first k-1 equation can be understood from Figure 1, while the last equation stems from the
7 ’s being defined in the frame of the center-of-mass.
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By taking the derivative with respect to time, we get the equations which give the velocities
relative to the center-of-mass:
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Dynamics

We are now in a position to write the equations of the dynamics. The Lagrangian L has only the
kinetic energy component and is given by

L :%vczmzmi +%Zmi\7iz +%Zliéz’2
Where I; is the ith moment-of-inertia I, = &5 m.[” . The dissipation function is given by
- = 34 - —=\2
F= %klz[li(vi 'ni)2 +il_20i2] +%kZZli(vi ’ti)

Note that the velocities in the dissipation function are relative to the fluid, i.e. v, =v, +v_ . The
dynamics are now given by the E-L equations
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The E-L equations for the center-of-mass are given simply by
ﬁ(»mzmi + klZ(ﬁi 'ﬁi)ﬁi + kzZ(‘ji ;1);1 =0

However, for the angular variables 6,, we will require some better notation.



Matrix definitions

We now define several vectors and matrices which will help us reformulate the problem in a
more convenient and legible notation. First we define a set of diagonal matrices:

O = diag(0) L = diag(l,)

M = diag(m,) I=4ML’

T, =diag(cos(6)) T, =diag(sin(6,))

N, =diag(-sin(¢))) N, =diag(cos(¥,))
Note that for both the x and y dimensions N = —T® . Now, defining the relative and absolute
velocity vectors,

Vi V Vl.r+vz‘mx V +v,

Vo= " v =" vV = Vz.vamu v =" V.
x : y x : y

Vi Vi Vie TVemx Viy TV,

and the coefficient matrices,

Q= -1 1 A= 1 l .

moomy, my e omy 0 0 0 0

we can now rewrite equations (1) as
Qv, =1ALN 0

v
N o=
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Sothat £V, = (PN . )T =N_P’, and similarly for the tangential velocities.

We will additionally define the normal and tangential velocity vectors (relative to the fluid) as
B+ ) (Bt
v, =| @ =N v +N v, v, =@ =Ty +Tv,
(¥ +G;m )iy (¥ +F;m )1,
Also, it will be found convenient to define the constant matrix
G =P'MP

The 6 dynamics

The Lagrangian is now given by
L=172 (M) + VMV, +1V/ MV +10'10

cm

2
=192 (M) +40"(N,GN, +N GN +1)0

The generalized momenta for the 6 coordinates are
2L=[I+N,GN,+N GN 10
and their time derivatives
4(&L)=[I+N,GN, +N GN 10-2[N GT, +N GT,10’

Where 6% = ©4 is the vector of squared velocities.

The partial derivative with respect to the Os is identically zero: 5 L=0.



The dissipation function is given by
F=1k(v'Lv, +50"L0)+1k,v Ly,

And since
%V,’ :%(Nﬁx +Ny'\7y) = NXPTNX +N’VPTN‘v
%v, = %(TXVX +Ty'\7y) = NXPTTX +NyPTTy

the generalized forces are
ZF=k(NP'N,_ + N‘VPTNy)LVn + 80+ k(N P'T, + NyPTTy)LVt

So that finally the dynamics are given by solving
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for 0.



