
Program Synthesis Guided Reinforcement Learning
for Partially Observed Environments

Yichen David Yang∗
MIT EECS & CSAIL

Jeevana Priya Inala
Microsoft Research

Osbert Bastani
University of Pennsylvania

Yewen Pu
Autodesk Research

Armando Solar-Lezama
MIT EECS & CSAIL

Martin Rinard
MIT EECS & CSAIL

Abstract

A key challenge for reinforcement learning is solving long-horizon planning prob-
lems. Recent work has leveraged programs to guide reinforcement learning in
these settings. However, these approaches impose a high manual burden on the
user since they must provide a guiding program for every new task. Partially ob-
served environments further complicate the programming task because the program
must implement a strategy that correctly, and ideally optimally, handles every
possible configuration of the hidden regions of the environment. We propose a
new approach, model predictive program synthesis (MPPS), that uses program
synthesis to automatically generate the guiding programs. It trains a generative
model to predict the unobserved portions of the world, and then synthesizes a
program based on samples from this model in a way that is robust to its uncer-
tainty. In our experiments, we show that our approach significantly outperforms
non-program-guided approaches on a set of challenging benchmarks, including
a 2D Minecraft-inspired environment where the agent must complete a complex
sequence of subtasks to achieve its goal, and achieves a similar performance as
using handcrafted programs to guide the agent. Our results demonstrate that our
approach can obtain the benefits of program-guided reinforcement learning without
requiring the user to provide a new guiding program for every new task.

1 Introduction

Reinforcement learning is a prominent technique for solving challenging planning and control
problems [50, 4]. Despite significant recent progress, solving long-horizon problems remains a
significant challenge due to the combinatorial explosion of possible strategies. One promising
approach to addressing these issues is to leverage programs to guide the behavior of the agents [3, 62,
39]. The approaches in this paradigm typically involve three key elements:

• Domain-specific language (DSL): For a given domain, the user defines a set of components
c that correspond to intermediate subgoals that are useful for that domain (e.g., “get wood”
or “build bridge”), but leaves out how exactly to achieve these subgoals.

• Task-specific program: For every new task in the domain, the user provides a sequence of
components (i.e. a program written in the DSL) that, if followed, enable the agent to achieve
its goal in the task (e.g., [“get wood”; “build bridge”; “get gem”]).

• Low-level neural policy: For a given domain, the reinforcement learning algorithm learns
an option [63] that implements each component (i.e., achieves the subgoal specified by that
component). Typically a neural policy is learned as each option.
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Given a new task in a domain, the user provides a program in the DSL that describes a high-level
strategy to solve that task. The agent then executes the program by deploying the sequence of learned
options that correspond to the components in that program.

A key drawback of this approach is programming overhead: for every new task (a task consists of
an instantiation of an environment and a goal), the user must analyze the environment, design a
strategy to achieve the goal, and encode the strategy into a program, with a poorly written program
producing a suboptimal agent. Furthermore, partially observed environments significantly complicate
the programming task because the program must implement a strategy that correctly, and ideally
optimally, handles every possible configuration of the hidden regions of the environment.

To address this challenge, we propose a new approach, model predictive program synthesis (MPPS),
that automatically synthesizes the guiding programs for program guided reinforcement learning.

MPPS works with a conditional generative model of the environment and a high level specification of
the goal of the task to automatically synthesize a program that achieves the goal, with the synthesized
program robust to uncertainty in the model. Because the automatically generated agent, and not the
user, reasons about how to solve each new task, MPPS significantly reduces user burden. Given a
goal specification φ, the agent uses the following three steps to choose its actions:

• Hallucinator: First, inspired by world-models [29], the agent keeps track of a conditional
generative model g over possible realizations of the unobserved portions of the environment.

• Synthesizer: Next, the agent synthesizes a program p that achieves φ assuming the hallu-
cinator g is accurate. Since world predictions are stochastic in nature, it samples multiple
predicted worlds and computes the program that maximizes the probability of success.

• Executor: Finally, the agent executes the options corresponding to the components in the
program p = [c1; ...; ck] for a fixed number of steps N .

If φ is not satisfied after N steps, then the above process is repeated. Since the hallucinator now has
more information (because the agent has explored more of the environment), the agent now has a
better chance of achieving its goal. Importantly, the agent is implicitly encouraged to explore since it
must do so to discover whether the current program can successfully achieve the goal φ.

We instantiate our approach in the context of a 2D Minecraft-inspired environment [3, 57, 62],
which we call “craft,” and a “box-world” environment [76]. We demonstrate that our approach
significantly outperforms non-program-guided approaches, while achieving a similar performance as
using handcrafted programs to guide the agent. In addition, we demonstrate that the policy we learn
can be transferred to a continuous variant of the craft environment, where the agent is replaced by
a MuJoCo [66] Ant. Thus, our approach can obtain the benefits of program-guided reinforcement
learning without requiring the user to provide a new guiding program for every new task.2

Related work. In general, program guidance makes reinforcement learning more tractable in at least
two ways: (i) it provides intermediate rewards and (ii) it reduces the size of the search space of the
policy by decomposing the policy into separate components. Previous research in program guided
reinforcement learning demonstrates the benefits of this approach to guide reinforcement learning in
the craft environment [62]. This previous research requires the user to provide both a DSL for the
domain and a program for every new task. Furthermore, their approach requires that the user includes
conditional statements in the program to handle partial observability, which imposes an even greater
burden on the user. In contrast, we only require the user to provide a specification encoding the goal
for each new task, and automatically handle partial observability.

There has been work enabling users to write specifications in a high-level language based on temporal
logic [39], with these specifications then translated into shaped rewards to guide learning. Further-
more, recent work has shown that even if the subgoal encoded by each component is omitted, the
program (i.e., a sequence of symbols) can still aid learning [3]. Unlike our approach, this previous
work requires the user to provide the guiding programs and does not handle partial observability.

More broadly, our work fits into the literature on combining high-level planning with reinforcement
learning. In particular, there is a long literature on planning with options [63] (also known as
skills [33]), including work on inferring options [61]. Most of these approaches focus on MDPs with
discrete state and action spaces and fully observed environments. Recent work [1, 41, 40, 32, 79, 74,

2The code is available at: https://github.com/yycdavid/program-synthesis-guided-RL
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Figure 1: (a) The initial state of an example task for the craft environment. Bright regions are
observed and dark ones are unobserved. This particular map has two zones separated by a stone
boundary (blue line). The first zone contains the agent, 2 irons, and 2 woods; the second contains 1
grass and 1 gem (the goal). The agent represents the high-level structure of the map (e.g., resources
in each zone) using state features. The ground truth features are in the top-right; we only show the
counts of gems, irons, and woods in each zone and the zone containing the agent. The two thought
bubbles below are features hallucinated by the agent based on the observed parts of the map. In both,
the zone that the agent is in contains a gem, so the synthesized program is “get gem” (b) The state
after the agent took 20 steps (green arrows), failed to obtain the gem, and is now re-synthesizing the
program. Having explored more of the map, it predicts that the gem is in a different zone, indicated
by its two hallucinations. As a result, it synthesizes a program that includes building and using an
axe to break the stone, which leads to successful completion of the task.

77, 6, 64, 49] addresses the challenge of handling continuous state and action spaces by combining
high-level planning with reinforcement learning to handle low-level control, but does not handle the
challenge of partial observations, whereas our work tackles both challenges.

Classical STRIPS planning [24] cannot handle uncertainty in the realization of the environment.
Replanning [60] can be used to handle small changes to an initially known environment, but cannot
handle environments that are initially completely unknown. There has been work on hierarchical
planning in POMDPs [11, 67], but this research does not incorporate predicate abstractions (i.e., state
features) that can be used, for example, to handle continuous state and action spaces. Given multiple
possible environments, generalized planning [27, 36, 59, 34] can be used to compute a plan that is
valid for all of them. However, in our setting, oftentimes no such plan exists. We instead synthesize
a plan that is valid in a maximal number of hallucinated environments. There is also prior work
on planning in partially observable environments [9, 18]. Unlike our approach, these approaches
assume that the effective state space is small, which enables them to compile the problem into a
concrete POMDP which can be efficiently solved using POMDP algorithms. We leverage program
synthesis [58] with the world models approach [29] to address these issues; generally speaking, our
solver-aided plan synthesis approach is more flexible than existing planning algorithms that target
narrower problem settings.

Finally, there has broadly been recent interest in using program synthesis to learn programmatic
policies that are more interpretable [71, 72, 38], verifiable [8, 70, 2], and generalizable [37]. In
contrast, we are not directly synthesizing the policy, but a program to guide the policy. Appendix C
discusses additional related work in a broader context.

2 Motivating Example

Figure 1a shows a 2D Minecraft-inspired crafting game. In this grid world, the agent can navigate
and collect resources (e.g., wood), build tools (e.g., a bridge) at workshops using collected resources,
and use the tools to traverse obstacles (e.g., use a bridge to cross water). The agent can only observe
the 5× 5 grid around its current position; since the environment is static, any previously observed
cells remain visible. A single task consists of a randomly generated map (i.e., the environment) and
goal (i.e., obtain a certain resource or build a certain tool). We consider the meta-learning setting [25]:
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we have a set of training tasks for learning the policy, and our goal is to have a policy that works well
on new tasks occurring in the future.

DSL. A premise of our approach is a user-provided DSL consisting of components useful for the
domain. Figure 2a shows the DSL for the craft environment. For each component, the user also
specifies what the component is expected to achieve as a logical predicate. To deal with high-
dimensional state spaces, the logical predicates are expressed over features α(s) of the state—e.g.,
the logical predicate for “get wood” is

∀i, j . (z− = i ∧ z+ = j)⇒ (b−i,j = connected) ∧ (ρ+j,wood = ρ−j,wood − 1) ∧ (ι+wood = ι−wood + 1).

This predicate is over two sets of features: (i) features α(s−), denoted by a −, of the initial state
s− (i.e., where execution of the component starts), and (ii) features α(s+), denoted by a +, of the
final state s+ (i.e., where the subgoal is achieved and execution of the component terminates). The
first feature is the categorical feature z that indicates the zone containing the agent. In particular, we
divide the map into zones that are regions separated by obstacles such as water and stone—e.g., the
map in Figure 1a has two zones: (i) the region containing the agent, and (ii) the region blocked off by
stones. Now, the feature bi,j indicates whether zones i and j are connected, ρi,r denotes the count of
resource r in zone i, and ιr denotes the count of resource r in the agent’s inventory.

Thus, this formula says that (i) the agent goes from zone i to j, (ii) i and j are connected, (iii)
the count of wood in the agent’s inventory increases by one, and (iv) the count of wood in zone j
decreases by one. Appendix A.1 describes the full set of components we use.

Approach. Before solving any new tasks, for each component c, we use reinforcement learning
to train an option c̃ that attempts to achieve the subgoal encoded by c. Given a new task, the user
specifies the goal of the task as a logical predicate φ. Encoding the goal is typically simple; for
example, the goal of the task in Figure 1a is getting gem, which is encoded as φ := ιgem ≥ 1. Then
the agent attempts to solve the task as follows.

First, based on the observations so far, the agent uses a hallucinator g to predict multiple potential
worlds, each of which represents a possible realization of the full map. Rather than predicting
concrete states, it suffices to predict the state features. For instance, Figure 1a shows two samples of
the world predicted by g; here, the only values it predicts are the number of zones in the map, the
type of the boundary between the zones, and the counts of the resources and workshops in each zone.
In this example, the first predicted world contains two zones, and the second contains one zone. Note
that in both predicted worlds, there is a gem located in same zone as the agent.

Next, the agent synthesizes a program p that achieves the goal φ in a maximal number of predicted
worlds. The synthesized program in Figure 1a is a single component “get gem,” which refers to
searching the current zone (or zones already connected with the current zone) for a gem. Note that
this program achieves the goal for the predicted worlds shown in Figure 1a.

Finally, the agent executes the program p = [c1; ...; ck] for a fixed number N of steps. In particular, it
executes the policy πτ of option c̃τ = (πτ , βτ ) corresponding to cτ until the termination condition
βτ holds, upon which it switches to executing πτ+1. In our example, there is only one component
“get gem,” so it executes the policy for this component until the agent finds a gem.

In this case, the agent fails to achieve its goal φ since there is no gem in its current zone. Thus,
it repeats the above process. Since it now has more observations, g more accurately predicts the
world—e.g., Figure 1b shows the intermediate step when the agent re-plans. Note that it now correctly
predicts that the only gem is in the second zone. Thus, the newly synthesized program is

p =[get wood; use workbench; get iron; use factory;︸ ︷︷ ︸
for building axe

use axe; get gem].

That is, it builds an axe to break the stone so it can get to the zone containing the gem. Finally, the
agent executes this new program, which successfully finds the gem.

3 Problem Formulation

POMDP. We consider a partially observed Markov decision process (POMDP) with states S ⊆ Rn,
actionsA ⊆ Rm, observationsO ⊆ Rq , initial state distribution P0, observation function h : S → O,

4



C := get R | use T | use W
R := wood | iron | grass | gold | gem
T := bridge | axe | ladder
W := factory | workbench | toolshed
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Figure 2: (a) DSL of components for the craft environment; the three kinds of components are get
resource (R), use tool (T ), and use workshop (W ). (b) Architecture of our agent (the blue box).

and transition function f : S × A → S. Given initial state s0 ∼ P0, policy π : O → A, and time
horizon T ∈ N, the generated trajectory is (s0, a0, s1, a1, . . . , sT , aT ), where ot = h(st), at = π(ot),
and st+1 = f(st, at). We assume the state includes the unobserved parts of the environment—e.g., in
the craft environment, it represents both the entire map and the agent’s current position and inventory.

We consider a meta-learning setting, where we have a set of sampled training tasks (world configura-
tions and goal) and a set of test tasks. Our goal is to learn a policy using the training set that achieves
good performance on the test set.

User-provided components. We consider programs p = [c1; ...; ck] composed of components
cτ ∈ C. We assume the user provides the set of components C that are useful for the domain.
Importantly, these components only need to be provided once for a domain; they are shared across all
tasks in this domain. Each component is specified as a logical predicate that encodes the intended
behavior of that component. More precisely, c is a logical predicate over s− and s+, where s−
denotes the initial state before executing c and s+ denotes the final state after executing c. For
instance, the component

c ≡ (s− = s0 ⇒ s+ = s1) ∧ (s− = s2 ⇒ s+ = s3)

says that if the POMDP is currently in state s0, then c should transition it to s1, and if it is currently
in state s2, then c should transition it to s3. Rather than defining c over the concrete states, we can
define it over features α(s−) and α(s+) of the states in order to handle high-dimensional state spaces.

User-provided goal specification. The goal of each task is specified with a logical predicate φ over
the final state; as with components, φ may be specified over features α(s) instead of concrete states.
Our objective is to design an agent that can achieve any given specification φ (i.e., act in the POMDP
to reach a state that satisfies φ) as quickly as possible.

4 Model Predictive Program Synthesis

We describe here the architecture of our agent, depicted in Figure 2b. It is composed of three parts:
the hallucinator g, which predicts possible worlds; the synthesizer, which generates a program p that
maximizes the probability of success according to worlds sampled from g; and the executor, which
follows p to act in the POMDP. These parts are run once every N steps to generate a program p to
execute for the subsequent N steps, until the user-provided specification φ is achieved.

Hallucinator. First, the hallucinator is a conditional generative model trained to predict the unob-
served parts of the environment given the observations. To be precise, the hallucinator g encodes a
distribution g(s | o), which is trained to approximate the actual distribution P (s | o). Then, at each
iteration (i.e., once every N steps), our agent samples m worlds ŝ1, ..., ŝm ∼ g(· | o). Our technique
can work with any type of conditional generative model as the hallucinator; in our experiments, we
use a conditional variational auto-encoder (CVAE) [56].

When using state features, we can have g directly predict the features; this approach works since the
synthesizer only needs to know the values of the features to generate a program (see below).
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Synthesizer. The synthesizer computes a program that maximizes the probability of satisfying φ:

p∗ = argmax
p

EP (s|o)1[p solves φ for s] ≈ argmax
p

1

m

m∑
j=1

1[p solves φ for ŝj ], (1)

where the ŝj are samples from g. The objective (1) can be expressed as a MaxSAT problem [48]. In
particular, suppose for now that we are searching over programs p = [c1; ...; ck] of fixed length k.
Then, consider the constrained optimization problem

argmax
ξ1,...,ξk

1

m

m∑
j=1

∃s−1 , s
+
1 , ..., s

−
k , s

+
k . ψj , (2)

where ξτ and sδτ (for τ ∈ {1, ..., k} and δ ∈ {−,+}) are the optimization variables. Here, ξ1, ..., ξk
encodes the program p = [c1; ...; ck], and ψj encodes the constraints that p solves φ for world
ŝj—i.e.,

ψj ≡ ψj,start ∧

[
k∧
τ=1

ψj,τ

]
∧

[
k−1∧
τ=1

ψ′j,τ

]
∧ ψj,end,

where (i) ψj,start ≡ (s−1 = ŝj) encodes that the initial state is ŝj , (ii) ψj,τ ≡
(
(ξτ = c)⇒ c(s−τ , s

+
τ )
)

encodes that if the the τ th component of p is cτ = c, then the transition from s−τ to s+τ on step
τ satisfies c(s−τ , s

+
τ ), (iii) ψ′j,τ ≡ (s+τ = s−τ+1) encodes that the final state of the τ th step equals

the initial state the (τ + 1)th step, and (iv) ψj,end ≡ φ(s+j ) encodes that the final state of the last
component should satisfy the user-provided goal φ. We use a MaxSAT solver to solve (2) [16]. Given
a solution ξ1 = c1, ..., ξk = ck, the synthesizer returns the corresponding program p = [c1; ...; ck].

We incrementally search for longer and longer programs, starting from k = 1 and incrementing
k until either we find a program that achieves at least a minimum objective value, or we reach a
maximum program length kmax, at which point we use the best program found so far.

Executor. For each user-provided component c ∈ C, we use reinforcement learning to learn an
option c̃ = (π, β) that executes the component, where π : O → A is a policy and β : O → {0, 1} is
a termination condition. The executor runs the synthesized program p = [c1; ...; ck] by deploying
each corresponding option c̃τ = (πτ , βτ ) in sequence, starting from τ = 1. In particular, it uses
action at = πτ (ot) at each time step t, where ot is the observation on that step, until βτ (ot) = 1, at
which point it increments τ ← τ + 1. It continues until either it has completed running the program
(βk(ot) = 1), or after N steps. In the former case, by construction, the goal φ has been achieved, so
the agent terminates. In the latter case, the agent iteratively reruns the hallucinator and the synthesizer
based on the current observation to get a new program. At this point, the hallucinator likely has
additional information about the environment, so the new program has a greater chance of success.

5 Learning Algorithm

Next, we describe our algorithm for learning the parameters of models used by our agent. In particular,
there are two parts that need to be learned: (i) the parameters of the hallucinator g and (ii) the options
c̃ based on the user-provided components c.

Hallucinator. The goal is to train the hallucinator g(s | o) to approximate the actual distribution
P (s | o) of the state s given the observation o. We obtain samples (ot, st) from the training tasks using
rollouts from a random agent and train gθ(s | o) using supervised learning. In our experiments, we
take gθ to be a CVAE and train it using the evidence lower bound (ELBo) on the log likelihood [46].

Executor. Our framework uses reinforcement learning to learn options c̃ that implement the user-
provided components c; these options can be shared across multiple tasks. We use neural module
networks [3] as the model for the executor policy; but in general our approach can also work with
other types of models. In particular, we take c̃ = (π, β), where π : O → A is a neural module and
β : O → {0, 1} checks when to terminate execution. First, β is constructed directly from c—i.e., it
returns whether c is satisfied based on the current observation o. Next, we train π on the training tasks,
which consist of randomly generated initial states s and goal specifications φ. Just for training, we
use the ground truth program p synthesized based on the fully observed environment; this approach
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(a) (b) (c) (d)

Figure 3: (a) The box-world environment. The grey pixel denotes the agent. The goal is to get the
white key. The unobserved parts of the map is marked with “x”. The key currently held by the agent
is shown in the top-left corner. In this map, the number of boxes in the path to the goal is 4, and it
contains 1 distractor branch. (b) The ant-craft environment. The policy needs to control the ant to
perform the crafting tasks. (c,d) Comparison of behaviors between the optimistic approach (left) and
our MPPS approach (right), in a task where the goal is to get gold. (c) The state when the optimistic
approach first synthesizes the correct program instead of the (incorrect) one “get gold”. It only does
so after observing all the squares in its current zone. (d) The initial state of our MPPS strategy. It
directly synthesizes the correct program, since the hallucinator knows the gold is most likely in the
other zone based on the observations. Thus, the agent completes the task much more quickly.

avoids the need to run the synthesizer repeatedly during training. Given p, we sample a rollout
{(o1, a1, r1), ..., (oT , aT , rT )} by running the current options cτ = (πτ , βτ ) according to the order
specified by p (where πτ is randomly initialized). We give the agent a reward r̃ at each step when it
achieves the subgoal of the component cτ , as well as a final reward when it achieves the final goal φ.
Then, we use actor-critic reinforcement learning [47] to update π. Finally, we use curriculum learning
to speed up training—i.e., we train using tasks that can be solved with shorter programs first [3].

6 Experiments

We empirically show that our approach significantly outperforms prior approaches that do not leverage
programs, and furthermore achieves similar performance as an oracle given the ground truth program.

6.1 Benchmarks

2D-craft. We consider a 2D Minecraft-inspired game [3] (Figure 1a). A map is a 10× 10 grid, where
each grid cell is either empty or contains a resource (e.g., wood), obstacle (e.g., water), or workshop.
Each task consists of a randomly sampled map, initial position, and goal (one of 10 possibilities,
either getting a resource or building a tool), which typically require the agent to achieve several
intermediate subgoals. In contrast to prior work, our agent does not initially observe the entire map;
instead, they can only observe cells within two units. Since the environment is static, any previously
observed cells remain visible. The actions are discrete: moving in one of the four directions, picking
up a resource, using a workshop, or using a tool. The maximum episode length is T = 100.

Box-world. Next, we consider box-world [76], which requires abstract reasoning. It is a 12 × 12
grid world with locks and boxes (Figure 3a). The agent is given a key to get started, and its goal is to
unlock a white box. Each lock locks a box in the adjacent cell containing a key. Lock and boxes are
colored; the key needed to open a lock is in the box of the same color. The actions are to move in
one of the four directions; the agent opens a lock and obtains the key simply by walking over it. We
assume that the agent can unlock multiple locks with each key. The agent can only observe grid cells
within a distance of 3 (as well as the previously observed cells). Each task consists of a randomly
sampled map and initial position, where the number of boxes in the path to the goal is randomly
chosen between 1 to 4, and the number of “distractor branches” (i.e., boxes that the agent can open
but does not help them reach the goal) is also randomly chosen between 1 to 4.

More details about the environments are described in Appendix B.1
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Figure 4: (a,b) Training curves for the 2D-craft environment. (c,d) Training curves for the box-world
environment. (a,c) The average reward on the test set over the course of training; the agent gets a
reward of 1 if it successfully finishes the task within the time horizon, and 0 otherwise. (b,d) The
average number of steps taken to complete the tasks in the test set. We run all the training with 5
different random seeds, and report the mean and standard error of each metric. We show our approach
(“Ours”), program guided agent (“Oracle”), end-to-end neural policy (“End-to-end”), world models
(“WM”), and relational reinforcement learning (“Relational”). For our approach, we include the
episodes used for training the hallucinator in the starting parts of the training curve; since the number
of episodes used for hallucinator training is substantially smaller than the number of episodes for
executor training, the parts for hallucinator training are hardly noticeable.

Table 1: Average rewards and average completion times on the test set for each approach at the end
of training. We report the mean and standard error (in parentheses) over 5 random seeds for training.

2D-craft Box-world Ant-craft
Reward Finish step Reward Finish step Reward Finish step

End-to-end 0.22 (0.01) 82.3 (1.3) 0.85 (0.02) 44.7 (0.6) 0.12 (0.03) 93.1 (2.2)
World models [29] 0.23 (0.01) 81.2 (0.7) 0.80 (0.02) 47.2 (0.9) 0.13 (0.01) 91.3 (1.2)

Relational [76] - - 0.77 (0.02) 51.3 (1.6) - -

Ours 0.70 (0.03) 56.4 (2.0) 0.90 (0.00) 38.6 (0.4) 0.40 (0.01) 79.2 (1.7)
Oracle 0.76 (0.02) 50.4 (1.1) 0.97 (0.01) 30.8 (0.5) 0.43 (0.02) 77.2 (1.6)

6.2 Baselines

End-to-end. A set of DNN policies that solves the tasks end-to-end. It uses one DNN policy per type
of goal, i.e. one network will be used to solve all tasks with the goal of “get gem”, another network
for tasks with the goal of “build bridge”. This baseline is trained using the same actor-critic algorithm
and curriculum learning strategy as described in Section 5.

World models [29]. This approach handles partial observability by using a generative model to
predict the future. It trains a VAE model that encodes the current observation ot into a latent vector
zt, and trains a recurrent model to predict zt+1 based on z1, ..., zt. Then, it trains a policy using the
latent vectors from the VAE model and the recurrent model as inputs.

Relational reinforcement learning [76]. For box-world, we also compare with this approach, which
uses a relational module based on the multi-head attention mechanism [69] for the policy network to
facilitate relational reasoning.

Oracle. Finally, we compare to an oracle, which is our approach but given the ground truth program
(i.e., guaranteed to achieve φ). This can be seen as the program-guided agent approach [62]. This
baseline is an oracle since it strictly requires more information as input from the user.

6.3 Implementation Details

2D-craft. For our approach, we use a CVAE hallucinator, with MLP (with 200 hidden units)
encoder/decoder, trained on 20K (s, o) pairs collected by a random agent. We use the Z3 [16]
solver to solve the MaxSAT problems. We use m = 3 hallucinated environments, N = 20 steps
before replanning in our main experiments, and N = 5 in the example behaviors we show for better
demonstrations. We use the same actor (resp., critic) network architecture for the policies across all
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Figure 5: Example behavior of our policy in a task with the goal of getting gem. (a) The start state.
The agent initially hallucinates that there is a gem in the same zone, thus starts with a simple program
“get gem”. (b) After several steps, the agent observes a wood and a factory. Hallucinating based on
these new observations, the agent synthesizes a new program that builds a bridge to cross some water
and get gem. This is a reasonable guess since wood, iron and factory are part of the recipe to build a
bridge, therefore the presence of them hints that the solution might be via building a bridge. (c) After
the agent finishes the “get wood” component, it observes that there are stones in the map, for which
bridge cannot be used. Hallucinating based on these new observations, the agent synthesizes a new
program that builds an axe to cross the stone. This is a correct program for this task. (d) The final
state. The agent executes the program and successfully gets the gem.

Table 2: Comparison to optimistic synthesis
and random hallucination strategies on the
2D-craft environment.

Avg. reward Avg. finish step

Ours 0.70 (0.03) 56.4 (2.0)
Optimistic 0.42 (0.02) 70.2 (1.2)
Random 0.48 (0.02) 72.6 (0.9)
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Figure 6: Effect of varying the number of
samples m on our approach, evaluated on the
box-world over 5 random seeds. Mean and
variance of (a) the average reward, (b) the
average finishing time on the test tasks.

approaches—i.e., an MLP with 128 (resp., 32) hidden units. We train the policies of each approach
on 400K episodes over randomly sampled training tasks, and evaluate on a test set of 50 tasks. 3

Box-world. Following [76], we use a one-layer CNN with 32 kernels of size 3× 3 to preprocess the
map across all approaches. For our approach, we have a component for each color where the subgoal
is to get the key of that color; see Appendix A.2 for details. For the hallucinator, we use the same
architecture as in the craft environment but with 300 hidden units, and trained with 100K (s, o) pairs.
For the synthesizer, we use m = 3 and N = 10. We train the policies for each approach on 200K
episodes, and evaluate on a test set containing 40 tasks.

6.4 Results

Table 1 (left two columns) shows the performance of each approach at the end of training. Figure 4
shows the training curves. Our approach significantly outperforms the non-program-guided baselines,
both in terms of fraction of tasks solved and in time taken to solve them; it also converges faster,
demonstrating that program guidance makes learning significantly more tractable. Our approach also
performs comparably to the oracle, delivering comparable performance with significantly less user
burden. Figure 5 shows the behavior of our policy in an example task in the 2D-craft environment;
see Appendix E for more examples.

Effect of the learned hallucinator. The hallucinator is a key in our approach to handle partial
observations. Here we study the benefit of the learned hallucinator to our approach. First, we test
a naive strategy for handling partial observations: the agent first randomly explores the map until
the current zone is fully observed, then it synthesizes a program and follows it. This strategy only

3In our experiments, we train the hallucinator and the executor separately; but in general, one can also
interleave the training of the two.

9



achieves an average reward of 0.024(±0.004) in 2D-craft, showing that our benchmarks require
effective techniques for handling partial observations. We compare to two ablations without a learned
hallucinator: (i) an optimistic synthesizer that synthesizes the shortest possible program making
best-case assumptions about the unobserved parts of the map, and (ii) a random hallucinator that
randomly samples completions of the world (See Appendix B.3 for more details). Table 2 shows
the results on the 2D-craft environment. As can be seen, our approach significantly outperforms
both alternatives. Figure 3c & 3d shows the difference in behavior between our approach and the
optimistic strategy; by using a learned hallucinator, our approach is able to leverage the current
observations effectively and synthesize a correct program sooner.

Effect of the number of hallucinator samples. We vary the number of hallucinator samples m on
box-world. Figure 6 shows the results on the test set over 5 random seeds. As can be seen, varying m
does not significantly affect the mean performance, but increasing m significantly reduces variance.
Thus, increasing m makes the policy more robust to the uncertainty in the hallucinator. This fact
shows the benefit of using multiple samples and MaxSAT synthesis.

Transfer to MuJoCo Ant. To demonstrate that our approach can be adapted to handle continuous
control tasks, we consider a variant of 2D-craft where the agent is replaced by a MuJoCo ant [53]
(Figure 3b). We consider a simplified setup where we only model the movements of the ant; the ant
automatically picks up resources in the grid cell it currently occupies. We focus on transfer learning
from 2D-craft. In particular, we pretrain a goal-reaching policy for the ant using soft actor-critic [30]:
given a random goal position, this policy moves the ant to that position. The actions output by
each approach are translated into a goal position used as input to this goal-reaching policy. We
initialize each policy with the corresponding model for 2D-craft and fine-tune it on ant-craft for 40K
episodes. Table 1 (rightmost column) shows the results. Our approach significantly outperforms the
non-program-guided baselines, both in terms of fraction of tasks solved and time taken to solve them.
This demonstrates that our approach is also effective on tasks involving continuous control under a
transfer learning setup.

7 Conclusion

We propose an approach that automatically synthesizes programs to guide reinforcement learning
for complex long-horizon tasks. Our model predictive program synthesis (MPPS) approach handles
partially observed environments by leveraging an approach inspired by world models, where it
learns a generative model over the remainder of the world conditioned on the observations, and then
synthesizes a guiding program that accounts for the uncertainty in this model. Our experiments
demonstrate that MPPS significantly outperforms non-program-guided approaches, while performing
comparably to an oracle given a ground truth guiding program. Our results highlight that MPPS can
deliver the benefits of program-guided reinforcement learning without requiring the user to provide a
guiding program for every new task.

One limitation of our approach is that, as with existing program guided approaches, the user must
provide a set of components for each domain. This process only needs to be completed once for each
domain since the components can be reused across tasks; nevertheless, automatically inferring these
components is an important direction for future work. Finally, we do not foresee any negative societal
impacts or ethical concerns for our work (outside of generic risks in improving robotics capabilities).
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