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Abstract

Our world is open-ended, non-stationary, and constantly evolving; thus what we
talk about and how we talk about it change over time. This inherent dynamic nature
of language contrasts with the current static language modelling paradigm, which
trains and evaluates models on utterances from overlapping time periods. Despite
impressive recent progress, we demonstrate that Transformer-XL language models
perform worse in the realistic setup of predicting future utterances from beyond
their training period, and that model performance becomes increasingly worse with
time. We find that, while increasing model size alone—a key driver behind recent
progress—does not solve this problem, having models that continually update their
knowledge with new information can indeed mitigate this performance degradation
over time. Hence, given the compilation of ever-larger language modelling datasets,
combined with the growing list of language-model-based NLP applications that
require up-to-date factual knowledge about the world, we argue that now is the
right time to rethink the static way in which we currently train and evaluate our
language models, and develop adaptive language models that can remain up-to-date
with respect to our ever-changing and non-stationary world. We publicly release
our dynamic, streaming language modelling benchmarks for WMT and ARXIV to
facilitate language model evaluation that takes temporal dynamics into account.1

1 Introduction

In recent years, substantial efforts in neural language modelling have focused on finding better neural
architectures, building increasingly larger models, and compiling ever-larger amounts of training
data, which have been shown to endow language models with the ability to perform well on a wide
variety of downstream tasks with minimal fine-tuning (Vaswani et al., 2017; Radford et al., 2019;
Brown et al., 2020). While this approach has led to impressive progress, it nevertheless relies on a
static experimental paradigm. Concretely, the prevailing practice is to curate a large pretraining web
crawl—randomly partitioned into a training set and a validation set in a time-agnostic fashion—and
then evaluate on tasks and benchmarks that mostly overlap in time with the pretraining data.2

∗Equal contribution. ♠ Project initiation. 4 Paper writing. ♦ Project technical infrastructure. ♥ Model
design and experiments. ♣ Project support and advice.

1We release our dynamic (streaming) language modelling benchmark for WMT and ARXIV at https:
//github.com/deepmind/deepmind-research/tree/master/pitfalls_static_language_models.

2In the case of GPT-3 (Brown et al., 2020), such tasks include LAMBADA (Paperno et al., 2016), TriviaQA
(Joshi et al., 2017b), and WMT translation datasets, among others. These tasks were introduced between 2014
and 2017, which overlap in time with the GPT-3 CommonCrawl dataset that covered the period of 2016-2019.
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In this work, we argue that such practices carry two potential risks. First, they do not assess a
language model’s ability to generalize well to future data from beyond their training period—an
important ability we henceforth refer to as temporal generalization. In our dynamic and non-stationary
world, temporal generalization is a key necessity: Many practical machine learning systems that use
language model (LM) pretraining, such as machine translation and dialogue systems, are deployed on
utterances that users will say in the future, whilst being trained on utterances that users have already
said in the past. Furthermore, temporal generalization is also crucial to perform well on realistic
use cases of language models in the real world. Examples include flagging fake news about recent
events that happen outside of the training period (Thorne and Vlachos, 2018; Zellers et al., 2019;
Augenstein et al., 2019), forecasting stock prices from the latest news articles (Ding et al., 2015), and
answering knowledge-intensive questions like “How many people have been infected by COVID-19?”
and “Has the USA ever had a female Vice President?”, whose answers have evolved with time.

Second, the temporal overlap between the training and evaluation data increases the risk of “test data
contamination”, where parts of the evaluation task are unwittingly included in the pretraining data.
Indeed, many language modelling evaluations treat the data as independent and identically distributed
(i.i.d) at either the sentence (Chelba et al., 2013) or document level (Brown et al., 2020; Gao et al.,
2021). Nevertheless, language modelling data are not i.i.d. (neither at the word, sentence, or document
level); rather it is a time series, and thus models trained on the prefix of a sample from the series
should be evaluated on the continuation of that series. While previous research (Levenberg et al.,
2010) has highlighted the importance of temporal splits for fairer and more realistic evaluations—and
has led to research (Osborne et al., 2014; Yogatama et al., 2014) that addresses language modelling
from this streaming perspective (§7)—using temporal splits (or splits beyond random ones) is still
the exception rather than the rule, as evidenced by many contemporary LM (Brown et al., 2020; Gao
et al., 2021) and downstream tasks (Lewis et al., 2020a) that are affected by test data contamination.3

Here we begin with our first question: To what extent does the current static language modelling
practice overestimate performance, compared to the more realistic setup that evaluates LMs on future
utterances? To this end, we introduce our dynamic, streaming language modelling benchmarks (§2),
and find that Transformer-XLs (Dai et al., 2019) perform up to 16% worse when predicting articles
that are published up to 2 years after the end of the training period. Moreover, model performance
becomes increasingly worse with time (§3). Given this finding, we ask: What kinds of predictions is
the model struggling with in the dynamic evaluation setup?—-which we answer in §3.1.

Beyond LM perplexity evaluation, we further ask: How exactly does this temporal performance
degradation of Transformer LMs manifest in different types of question-answering (QA) tasks? We
answer this through two different QA tasks, including one around recent events happening outside
of the LM training period (§5). Lastly, given the challenges presented by temporal generalization
for LMs: What, then, is the remedy? This question is important because keeping LMs up-to-date by
retraining with new data is expensive in compute and carbon costs (Strubell et al., 2019; Patterson
et al., 2021), and risks the model getting outdated in-between long retraining cycles.4 We find that
increasing model size alone—a key driver behind recent LM progress (Kaplan et al., 2020)—is
not a solution for the temporal generalization problem (§4): Larger models suffer from the same
performance degradation with time, and a smaller model trained on more recent data can outperform
a 60% larger model that lacks access to more recent data. We then explore a simple yet effective way
of keeping our models up-to-date by continually updating the model’s parameters through dynamic
evaluation (Mikolov et al., 2010; Krause et al., 2019), which performs a few steps of gradient descent
on streams of new data (§6), and outline other promising approaches in this direction (§7). We
conclude with the following recommendations for future LM research:

• We should evaluate LMs on their generalization ability to future data, which circumvents test data
contamination, rewards models that generalize beyond the surface patterns of their pretraining data,
and better reflects how large LMs are used in practical systems. We thus argue for the broader
inclusion of timestamp information in pretraining data and downstream tasks to make this possible.

• Stale LMs that are deployed far outside of their training period perform substantially worse on
downstream tasks that require up-to-date factual knowledge, although a broader set of experiments
are needed to pinpoint what kinds of tasks are most affected. Our findings also highlight the need

3Brown et al. (2020) used n-gram filtering and deduplication to remove overlaps between the training and
test sets. This can potentially induce a correlation between the training and evaluation sets that LMs can exploit.

4These risks are exacerbated by the trend of ever-larger LMs, where retraining incurs even higher costs.
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Dataset Domain Time period
#Words per Doc

(Average)
Training Size

(in GB)

Prop. of CONTROL’s
Training Data

from the Test Period
WMT News 2007 - 2019 551 22.65 6.3%

CUSTOMNEWS News 1969 - 2019 491 395.59 34.8%
ARXIV Scientific text 1986 - 2019 172 0.72 14.5%

Table 1: Statistics and time periods of the datasets used in this study.

for more tasks, benchmarks, and metrics that evaluate how well and how rapidly LMs are able to
integrate new information, which are important ingredients to encourage progress in this direction.

• All in all, above and beyond impressive scaling efforts towards ever-larger models (Brown et al.,
2020; Fedus et al., 2021), we argue for the development of adaptive language models that can
remain up-to-date with respect to our open-ended and non-stationary world.

2 Time-stratified language modelling

We begin by introducing our time-stratification experimental setup, which examines how well
Transformer LMs perform when evaluted on future utterances from beyond their training period.

2.1 Datasets

We identify news and scientific articles as two sources of dynamic streaming data with a naturally
changing distribution over time—lending themselves well to evaluating how well language models
generalize over time. For the scientific domain, we use the publicly available arXiv abstracts
(ARXIV).5 For news, we use the publicly available WMT News Crawl (WMT).5 We ensure that any
trends we observe also generalize well to models trained on larger datasets—which reliably improve
language modelling and downstream task performance (Liu et al., 2019)—by compiling a larger
news corpus that we term CUSTOMNEWS. This dataset consists of crawled English news sources
from 1969-2019, and covers various topics including politics, finance, and sport. We apply minimal
preprocessing through: (i) Removal of non-English documents, (ii) deduplication using the MinHash
algorithm, and (iii) tokenization using Moses.5 Table 1 summarizes key statistics of our datasets.

2.2 Experiment: A model up to 2 years stale

Evaluation period and test set. For each dataset, we pick the last two years (i.e. 2018 and 2019)
as our evaluation period, and sub-sample a test set of 24k test documents (1k per test month).
TIME-STRATIFIED setup. In this setup, we evaluate LMs trained on the past based on their ability
to predict future articles that are published after the time period of their training data; this split is
constructed using the time stamp of each article. Here we use all documents from the beginning of
each dataset’s time period up until September 2017 as training data, and use the last three months of
2017 as our validation period; we denote this as the TIME-STRATIFIED setup. We then evaluate the
model on the 2018-2019 test set above, which evaluates the model’s ability to generalize across time
by predicting articles up to two years after the end of their training period—a realistic time frame
during which we expect large-scale language models to be used without retraining on recent data.
CONTROL setup. We assess whether time stratification poses a challenge for current LMs by
comparing it with the following CONTROL setup. In this setup, the training set includes documents
that come from the same 2018-2019 period as the evaluation set (naturally excluding the test docu-
ments themselves). This CONTROL setup thus resembles the prevailing (static) language modelling
experimental practices, which train and evaluate LMs on text data from overlapping time periods.

Crucially, we control such that the two training sets are of the exact same size, i.e., they differ only
in the time periods of their training data, rather than in their absolute training set sizes. Here we
construct the CONTROL training data by taking the most recent documents starting from the end of the
evaluation period (excluding the test documents and including the same number of training documents
per test month), and keep adding documents from previous time periods until we reach the same
training size as the TIME-STRATIFIED setup. In Table 1, we report the proportion of documents in the

5ArXiv: https://arxiv.org/help/oa/index; WMT News: http://data.statmt.org/
news-crawl; and SacreMoses: https://github.com/alvations/sacremoses.
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CONTROL setup’s training data that come from the same 2018-2019 time period as the evaluation
set, which is higher for ARXIV and CUSTOMNEWS due to their recent exponential growth of new
documents. We sample a similarly-sized validation set as the TIME-STRATIFIED setup, which in this
case comes from the 2018-2019 evaluation period (again excluding the test documents). Importantly,
both the TIME-STRATIFIED and CONTROL models are evaluated on the exact same test set from the
2018-2019 period, which facilitates a fair perplexity comparison between the two setups.
Relative perplexity comparison. We want to measure temporal degradation, i.e. do Transformer
LMs perform increasingly worse when predicting test documents further into the future? However,
any absolute perplexity degradation of the TIME-STRATIFIED model over time (e.g., perplexity for
Jan. 2018 vs Dec. 2018) is an unreliable measure: Some months have longer documents, which
lead to higher perplexity. We thus measure temporal degradation through relative perplexity changes
between the TIME-STRATIFIED and CONTROL models for the same test month (e.g. Dec. 2018).

2.3 Model

We perform our experiments on autoregressive, left-to-right LMs. We use a Transformer-XL (Dai
et al., 2019) with 18 layers and 1,024 hidden units, resulting in 287M parameters—roughly 15%
smaller than GPT-2MEDIUM and BERTLARGE; we later explore larger models in §4. We set the
Transformer sequence length to 1,024, and set the memory cache length to 384 during training and
1,600 during test. We use a vocabulary of 50,259 subwords, obtained via SentencePiece (Kudo and
Richardson, 2018) trained on a random subset (up to 15GB) of the training data of each respective
experiment, i.e., CONTROL and TIME-STRATIFIED. Training and validation are done on subword
tokens, but to facilitate our later analysis (§3.1), all test perplexities are computed over actual test
word tokens,6 whose negative log probabilities are obtained by summing those of their subwords.

3 Language Modelling Experiments & Analysis

Setup WMT
CUSTOM

NEWS ARXIV
CONTROL 21.11 18.38 21.38
TIME-STRATIFIED 22.45 21.33 23.07
∆, absolute +1.34 +2.95 +1.69
∆, relative (%) 6.34 16.04 7.90

Table 2: Perplexity of Transformer-XL when
trained with the two different setups, and evaluated
on the same test set from the 2018-2019 period.

To what extent does the static CON-
TROL setup overestimate model per-
formance, compared to the more re-
alistic TIME-STRATIFIED setup that
evaluates LMs on future utterances?
Figure 2 presents the results of our first exper-
iment. Although we train both models: (i)
On the exact same dataset sizes, and (ii) us-
ing the same model architectures, a stale TIME-
STRATIFIED model performs worse than the
CONTROL model, which has seen training data from the test period—with up to 16% perplex-
ity difference. We attribute the higher relative degradation on CUSTOMNEWS and ARXIV to their
recent exponential growth of new documents, resulting in a higher proportion of documents from the
test period in the data (Table 1), hence presenting a more difficult temporal generalization problem.

Figure 1: Relative ppl. increase of TIME-
STRATIFIED over CONTROL, across test months.

Do Transformer LMs perform increasingly
worse when predicting future utterances fur-
ther away from their training period? To
this end, Fig. 1 plots the relative perplexity in-
crease of the TIME-STRATIFIED over the CON-
TROL model. As evidenced by the upward slope
on all datasets, the model deteriorates more
as we ask it to predict data further away from
the training period, affirming that the model in-
deed becomes increasingly outdated with time.
How general are these findings? We find that
the same patterns not only generalize across
datasets, as we have just shown, but are also
found: (i) For test years other than 2018-2019
(Appendix A.1), (ii) beyond the two-year tem-

6An example is detokenizing “__contact”, “less” into “contactless”, where “__” denotes a token boundary.
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poral gap between the end of the training and test periods (Appendix A.2), and (iii) across other
languages (German WMT, Appendix A.3).

3.1 Analysis

Having established that model performance degrades with time, we now turn to investigate the
following question: What exactly are the kinds of predictions that the model is struggling with?
Part-of-speech (POS) tag breakdown. We present the relative perplexity increase of the TIME-
STRATIFIED over the CONTROL model, broken down by POS tag and across time (Fig. 2, solid
lines). First, we see that performance on common nouns (orange line), the most frequent POS
tag, degrades with time; in fact, performance degradation on common nouns drives the overall
degradation trend (brown line). Moreover, the TIME-STRATIFIED model’s performance degrades most
rapidly when making temporal generalizations about proper nouns (blue line) and numbers (purple
line). Qualitative analysis indicates that the model performs badly on named entities in politics,
whose position changed during our 2018-2019 evaluation period (e.g., “Bolsonaro”, “Pompeo”,
“Khashoggi”). This degradation is consequential because proper nouns—and by extension named
entities—closely relate to up-to-date factual world knowledge; in §5 we explore how exactly this
degradation affects different downstream tasks. Interestingly, we also found the model struggling
with concepts associated with cultural and sociological changes on which public perception and
discourse have evolved over time, such as “MeToo” and “BlackLivesMatter” (Bender et al., 2021).

Figure 2: WMT relative ppl. increase of the TIME-
STRATIFIED over the CONTROL models, broken
down by part-of-speech (POS) tags (solid lines)
and topics (dotted lines).

Perplexity and topics. We analyze how the
speed of the TIME-STRATIFIED model’s perplex-
ity degradation relates to different topics. We
first cluster the documents using Latent Dirich-
let Allocation (Blei et al., 2003, LDA), which
represents each document as a mixture of top-
ics and each topic as a distribution over words;
we then aggregate the perplexity of words in
the test documents by topic. We observe that
model performance on topics around politics
and sports change more rapidly with time than
topics around lifestyle, as shown in (Fig. 2,
shown in the three dotted lines).
Perplexity and temporal frequency shifts
In practice, adaptation is a key necessity to max-
imize the potential of LMs in our dynamic and
non-stationary world. This includes the ability
to integrate information about new words and
concepts that never occurred in the past, and
also words whose context or meaning had sub-
stantially changed across time. This need is well-reflected in our datasets: About 27% of word types
(i.e. unique words) on CUSTOMNEWS each month had never occurred in the training period, such
as “Brexiteers” and “MeToo”. We refer to these as EMERGING NEW WORDS, and argue that these
concepts are important because they reflect precisely the dynamic nature of our non-stationary world.
Perhaps the most notable recent EMERGING NEW WORDS is “COVID-19”, which had zero unigram
probability prior to late-2019, and yet constitutes an important use case of the NLP systems today.

Concretely, we define EMERGING NEW WORDS as those that occur frequently on the test set (at
least 50 times), but either: (i) were previously unseen on the training set, or (ii) occurred much less
frequently on the training set than on the test set, as indicated by an at least 5 times lower unigram
probability. This procedure yields a reasonably-sized set of 287 EMERGING NEW WORDS and
87,636 mentions in our 2018-2019 test documents. Many of these words indeed reflect strong
temporal dynamics: e.g. “Ardern” (who became the New Zealand PM in late-2017) and “Novichok”
(which is what Sergey and Yulia Skripal were poisoned with in 2018). Fig. 3 shows that the TIME-
STRATIFIED model performs substantially worse for EMERGING NEW WORDS—an almost 5x worse
perplexity (110 vs 22) than the overall one (Figure 2).
Perplexity of first and second occurrences of EMERGING NEW WORDS. We now ask: How well
can Transformer LMs rapidly adapt to new information and EMERGING NEW WORDS? Concretely,
LMs that perform well in our non-stationary world should be able to predict subsequent occurrences
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of EMERGING NEW WORDS (e.g. “COVID-19”), which exhibit strong temporal dynamics, much
better than the first occurrences of these words, because these words appear frequently on the test set
prefix—even though these EMERGING NEW WORDS do not appear as frequently on the training set.
In Fig. 3, we show the perplexity obtained by the TIME-STRATIFIED model under two conditions:
For the first and second occurrences of EMERGING NEW WORDS in a test document.

Occur-
rence

Setup TIME-
STRATIFIED

TIME-
STRATIFIED

+
dynamic eval

All words 22.45 22.17
All EMERGING NEW WORDS 109.73 66.26

1st 694.95 357.40

2nd
1st in

memory 75.95 44.21
1st NOT

in memory 2,719.25 1,430.34

Table 3: Perplexity of TIME-STRATIFIED model
on EMERGING NEW WORDS on WMT, broken
down by whether the word is encountered for the
1st or the 2nd time in the test document, and for
the latter, whether the 1st occurrence was in the
TXL context. The last column shows results with
dynamic evaluation (§6).

Although the model has a high ppl. the first time
it generates EMERGING NEW WORDS in the doc-
ument (ppl. of ∼694.95), it has a much lower
ppl. for generating the same words for the sec-
ond time, but only if the first word is available in
the Transformer context. In such case, the model
can simply copy the same word from the context;
this finding reaffirms the strong copying ability
of the attention block (Bahdanau et al., 2015;
Vinyals et al., 2015). This means that the abil-
ity of Transformers to condition on long-range
context is already a useful feature for temporal
generalization, even when we are not explicitly
updating the model parameters with new data.
However, we observe no such effect when the
first occurrence falls outside of the Transformer
memory (ppl. of >2,700), highlighting the need
to scale Transformers to even longer sequences (Child et al., 2019; Correia et al., 2019; Kitaev et al.,
2020; Beltagy et al., 2020, inter alia) to improve temporal generalization.

Importance. Our analyses provide a targeted evaluation of temporal generalization in LMs, which
enable us to benchmark progress precisely on things that matter the most for temporal generalization
(e.g. evaluating LMs on named entities, fast-changing topics, and adaptation speed to EMERGING
NEW WORDS, rather than relying on overall ppl. as a sole metric for measuring LM progress).

4 The effect of outdated models persists even when increasing model sizes

Figure 3: Relative perplexity increase of the TIME-
STRATIFIED models with 287M (dotted line) and
448M parameters (solid line), respectively, over
the CONTROL model with 287M parameters, for
WMT and CUSTOMNEWS (§4).

Recently, increasing model size has led to sub-
stantial improvements in perplexity, downstream
tasks, and few-shot learning ability (Kaplan
et al., 2020; Brown et al., 2020). But can in-
creasing model size also improve temporal gen-
eralization? To this end, we train a bigger TIME-
STRATIFIED model with 448M parameters—a
60% increase over the previous 287M model
and 30% larger than GPT-2MEDIUM.

Similar to Section 3, we report the respec-
tive perplexity increase of the newly trained
TIME-STRATIFIED448M model over the CON-
TROL287M model (solid lines). We reproduce
the relative perplexity increase of the smaller
TIME-STRATIFIED287M model over the CON-
TROL287M one (Fig. 2) as the dotted lines.

If increasing the model size was able to delay
temporal degradation, we would expect to see
the solid lines produced by the bigger models
to have reduced (i.e., flatter) slopes compared to the dotted lines produced by the smaller models.
While larger TIME-STRATIFIED models, as expected, achieve lower absolute perplexities (5.5%
improvement), model size has no significant effect on the slope of these lines (p > 0.05, assessed
using a t-test on the slopes found by fitting a linear regression). On both datasets, by the end of the
test period (i.e. late-2019), a smaller but more up-to-date CONTROL287M model outperforms a 60%
larger but two-year out-of-date TIME-STRATIFIED448M model. Hence, building models that perform

6



well in this setup requires solutions that more directly tackle the specific challenges we emphasized
through our findings so far, and update the model’s knowledge with new information.

5 Time-stratified question answering

So far we have evaluated the LMs intrinsically, through perplexity, which is important because
language modelling is a foundational task that affects many NLP applications through language
model pretraining. However, we still do not know how this perplexity deterioration affects practical
applications of LMs, i.e., how do out-of-date LMs affect different types of downstream tasks?

Figure 4: Synthetic questions about political fig-
ures: Model performance as we shift the end of
the training set chronologically away from the year
about which we ask questions (i.e, 2019). The
error bars indicate two standard errors of mean.

Closed-book question answering (QA).
Closed-book QA is a popular testbed for evalu-
ating pretrained LMs that have to compress and
encode knowledge found in a big corpus. But
given the relative lack of existing time-stamped,
news QA datasets that evaluate LMs’ ability
to answer questions about events that happen
outside of their training period in a closed-book
fashion, we construct a dataset of synthetic
questions the government officials using the
following template: “Who is the [government
role] of [country/state] in [month/year]?” In
total, we construct a test set of 438 questions
about 22 different government roles from 11
countries (see Appendix C for examples). We
pretrain the TXL model (as described in Section
2.3) using the WMT dataset up to the years
2012, 2013,. . . , 2019, respectively. We then
fine-tune all these models to answer questions
about government officials for 2011 to get
the model accustomed to the task format, and
evaluate on synthetic questions related to the year 2019. Fig. 4 shows the substantial accuracy
deterioration as we shift the end of the pretraining data away from 2019, the year for which we ask
questions. This finding demonstrates how the fine-tuned LMs’ lack of more recent factual knowledge
affects their performance on this task. Note that the slight drop in accuracy in 2019 compared to
2018 is due to dataset noise. Anecdotally, we observe that the 2019 model mixes up the names of
Russian and American presidents, which often co-occurred in the same context in 2019.
Reading comprehension. Nevertheless, we do not expect all downstream tasks to be equally
affected by outdated LMs. To illustrate this point, we perform a reading comprehension experiment
using NewsQA (Trischler et al., 2017), where the evidence documents are presented together with
the questions into the prefix of the model. Hence, the model has all necessary information to answer
the questions, and thus outdated LMs will likely present less of a challenge in this type of tasks. We
obtain a TIME-STRATIFIED NewsQA by recovering the articles’ timestamps.7. We test on questions
from 2009, for a of total 10000 questions (see Appendix C for question-answer examples). We
evaluate how well LMs trained on CUSTOMNEWS until the end of 2008 performs in comparison to
LMs trained until the end of 2009: Both models perform identically at 0.47 F1. Hence, time-stratified
evaluations for reading comprehension, where the answers are extractive and can be copied from the
passage, pose less of a challenge for outdated LMs, unlike knowledge-intensive, closed-book QA.

6 Keeping models up-to-date: Online learning through dynamic evaluation

One way to mitigate LMs’ degradation over time is to continually update the models’ knowledge
with new information as new documents arrive into the stream. One of the ways to do this is through
dynamic evaluation (Mikolov et al., 2010; Graves, 2013; Krause et al., 2019)—a form of online
learning that continually updates the parameters of a pretrained model by performing gradient descent
on the new data. While most prior work used dynamic evaluation to perform updates within a
document, hence adapting to local topical shifts, here we use it to adapt to the temporal dynamics

7https://cs.nyu.edu/ kcho/DMQA/
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that occur within a stream of chronologically ordered documents, hence adapting to temporal trends
across documents. Appendix B has more details on dynamic evaluation and our empirical settings.

Figure 5: Relative perplexity increase with (solid
lines) and without (dotted lines) dynamic evalua-
tion, for the TIME-STRATIFIED model.

We plot the results in Fig. 5: Dotted lines
reflect the perplexity increase when com-
paring the CONTROL model to the TIME-
STRATIFIED model, i.e., the same graph as
in Fig. 1, whereas solid lines reflect the per-
plexity increase achieved when comparing
the same CONTROL model with the TIME-
STRATIFIED model augmented with dynamic
evaluation (TIME-STRATIFIEDdyn). In all
datasets, dynamic evaluation reduces the speed
of the model becoming outdated, as evidenced
by the reduced upward slope, with a significant
effect for ARXIV and WMT (p < 0.05, as-
sessed using a t-test on the slopes found by fit-
ting a linear regression). The improvements
are more pronounced for ARXIV, where a more
granular analysis over weeks reveals that the
model needs only about one week worth of data
to overtake the CONTROL model. Moreover, we
see much larger improvements for predicting
EMERGING NEW WORDS, which exhibit strong temporal dynamics (§3.1, see Fig. 3): We observe a
39.62% ppl. reduction from 109.73 to 66.2 for EMERGING NEW WORDS, compared to the overall ppl.
reduction (a 1.25% reduction from 22.45 to 22.17 for WMT; Fig. 4).

Parameters
that get updated WMT

CUSTOM
NEWS ARXIV

All parameters 22.17 20.72 20.98
Bias-only 22.16 20.96 21.24
Embeddings-only 22.32 21.21 22.27
no dynamic eval. 22.45 21.33 23.07

Table 4: Perplexity of TIME-STRATIFIED model
when updating some of the parameters.

When aiming to keep models up-to-date (es-
pecially for larger models), lightweight yet ef-
fective approaches are preferable because they
allow the model to rapidly digest new infor-
mation with minimal time, computation, and
carbon costs. We thus experiment with updat-
ing only the embedding layer (i.e., 52M param-
eters), capturing lexical semantic changes, as
well as updating only the bias terms at all layers
(i.e., 198K parameters), as recently introduced
by Ben-Zaken et al. (2021). Fig. 4 presents the results: In line with the findings of Ben-Zaken et al.
(2021), updating only the bias terms performs nearly as well as updating the full model.

Beyond dynamic evaluation We remark that dynamic evaluation alone, while effective, does not
fully solve temporal generalization, as evidenced by the prevailing (albeit gentler) upward slopes
on WMT and CUSTOMNEWS. We expect that larger gains can be achieved by fully embracing
continual learning in LMs—striking a balance between quickly adapting to new data and achieving
positive forward transfer (Lopez-Paz and Ranzato, 2017), while avoiding catastrophic forgetting
(Mccloskey and Cohen, 1989; Kirkpatrick et al., 2017). Indeed, as we show in Figure 9, while
dynamic evaluation is able to improve generalization to future data, it causes catastrophic forgetting
of the past data. Furthermore, recent semi-parametric models (Guu et al., 2020; Lewis et al., 2020b;
Karpukhin et al., 2020; Khandelwal et al., 2020; Yogatama et al., 2021) lend themselves well to
continual learning, where new knowledge can be stored in an external memory, which can be updated
without retraining the whole model. A related approach is to disentangle the acquisition of up-to-date
knowledge from the language learning itself, and enable direct editing of that knowledge within the
model (Sinitsin et al., 2020; Zhu et al., 2020; De Cao et al., 2021).

7 Related Work

Concept drift. Detecting changes in data streams, also known as concept drift, has a long history
in machine learning (Widmer and Kubat, 1996; Kifer et al., 2004; Baena-Garcıa et al., 2006; Dries
and Rückert, 2009; Lu et al., 2019). In NLP, most recent work in this area models lexical change by
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training word embeddings (Hamilton et al., 2016; Szymanski, 2017; Yin et al., 2018) and deep neural
networks (Rosenfeld and Erk, 2018; Bjerva et al., 2019) on data of different time spans.
Out-of-Distribution (OoD) generalization. OoD generalization is well-studied in NLP (Blitzer
et al., 2006; Daumé III, 2007; Axelrod et al., 2011), and has recently been addressed for neural LMs
and transfer learning (Fried et al., 2019; Oren et al., 2019; Gururangan et al., 2020), where pretrained
LMs lead to substantial improvements and increased robustness (Hendrycks et al., 2020). While most
prior work has focused on distributional shifts in terms of topic and domain (Kruszewski et al., 2020),
distributional shifts in terms of time also constitute an important and realistic challenge that NLP
systems of today (including those based on large LM pretraining) must be able to perform well at.
Continual learning & streaming LMs. Our work is closely related to continual and lifelong
learning, which aim to design models that continually accumulate new knowledge without forgetting
relevant information about the past (Mccloskey and Cohen, 1989; Thrun and Mitchell, 1995; French,
1999; Mitchell et al., 2015; Rusu et al., 2016; Kirkpatrick et al., 2017; Al-Shedivat et al., 2018;
Hadsell et al., 2020). The distribution of words and context in natural language changes rapidly with
time, and hence constitutes an important test bed for developing continual learning systems. More
specific to the LM literature, prior work proposed ways of designing LMs that efficiently adapt their
knowledge to continuous streams of new information (Jelinek et al., 1991; Wang et al., 2008; Goyal
et al., 2009; Osborne et al., 2014; Yogatama et al., 2014, inter alia)—often known as streaming LMs,
albeit mostly in the context of n-gram LMs. While we show that Transformer LMs achieve much
better perplexity than previous n-gram models (the Transformer LM ppl. in §3 are substantially better
than those in prior streaming n-gram LM literature), we show that Transformer LMs similarly suffer
from the temporal degradation problem. Given the different nature of our LMs today (i.e. deep neural
models rather than n-gram LMs), we argue that now is the right time to make progress on this open
research question, with notable progress in other NLP tasks (d’Autume et al., 2019; Sun et al., 2020).
Temporal splits in NLP. Prior work has used temporal splits (i.e. training on text from the past and
evaluating on future text) for NLP tasks like machine translation (Levenberg et al., 2010), sentiment
analysis (Lukes and Søgaard, 2018), named entity recognition (Fromreide et al., 2014; Rijhwani
and Preotiuc-Pietro, 2020), and others (Dunn et al., 2017; Bjerva et al., 2020; Søgaard et al., 2021).
Nevertheless, the vast majority of NLP benchmarks today still do not perform temporal splits, and
hence do not measure how well models can generalize to future data. Furthermore, this work has two
key distinctions from prior work. First, we focus on language modelling—a foundational task that is
used for many NLP systems today through LM pretraining—and propose a benchmark to measure
progress in this direction. Second, we go one step further than prior work and perform a thorough
analysis to pinpoint what kinds of predictions the model is struggling with. Such analysis can then be
used to better measure progress in dynamic language modelling, where improvements are not always
easily discernible from overall ppl. alone (e.g. performance on EMERGING NEW WORDS; §3.1).

8 Conclusion

We evaluated the extent to which our current language models can generalize well in the realistic
setup of predicting future utterances outside their training period. We found that current practices that
train and evaluate models on data from overlapping time period overestimate model generalization
to future utterances, and that Transformer LMs become increasingly outdated with time. We found
that increasing model size alone—a key driver behind recent LM success—is not a solution for this
problem, and that this degradation affects downstream tasks that require up-to-date factual knowledge.
Generality to other domains. The importance of temporal generalization extends beyond language
modelling and NLP. Many other commercial machine learning systems like speech processing and
video understanding also involve non-stationary data, and are similarly trained on data that were
collected in the past, but deployed on new data from the future. Since many of these tasks also use
Transformers (Girdhar et al., 2019; Gulati et al., 2020, inter alia), we expect our findings to generalize
to these domains, although a more complete investigation to this end is left to future work.
Limitations While we explored how the LM performance degradation with time affects two types
of question-answering tasks, a broader variety of tasks is needed to obtain a more holistic picture on
how temporal generalization manifests in downstream tasks. An open research question is thus how
we can create and maintain benchmarks that are not static (Nie et al., 2020; Potts et al., 2020) and
further promote research on continual and life-long learning.
Is this all obvious? Our findings should not come us a surprise: That the world around us changes
with time—and thus what and how we talk about it also evolve accordingly—is hardly controversial.
But for the most part, these temporal dynamics are still not currently reflected in the way that we train
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and evaluate our neural LMs. Our aim here is to highlight how such static evaluations overestimate
models’ performance, especially around predictions that relate to factual knowledge, which constitute
an important use case of NLP systems today. With the compilation of ever-larger web crawls for LM
pretraining (Gao et al., 2021), now is the right time to rethink how our splits are constructed (Søgaard
et al., 2021), construct temporal splits that evaluate models on their ability to generalize to future data,
and include timestamp information in both pretraining datasets and downstream tasks to facilitate
this kind of more realistic LM evaluation. This strategy will not only allow us to assess models’
performance on a realistic type of out-of-sample data, but also circumvent test data contamination
affecting both LM and downstream task evaluations more broadly, e.g., in widely used QA datasets
like Natural Questions (Kwiatkowski et al., 2019) and TriviaQA (Joshi et al., 2017a), which have
been shown to contain alarmingly high proportions of overlapping training and test data (Lewis et al.,
2020c). Our dynamic, streaming LM benchmarks—alongside the evaluation metrics that evaluate
LMs on things that matter the most for temporal generalization (e.g. named entities, EMERGING NEW
WORDS)—will be released to encourage more research in this area, and reward the development of
adaptive language models that can remain up-to-date with respect to our non-stationary world.

9 Broader Societal Impact Discussion

Lastly, we remark on two aspects of the broader societal impact pertaining to the importance of
continually-updating language models. First, we argue that having NLP models—the vast majority of
which are built on top of pretrained language models—that can remain up-to-date with our current
social trends and public perception is relevant for mitigating potential harms and biases caused by
NLP models. For instance, recently there has been renewed public support and interest for social
justice movements in 2020, such as the #BlackLivesMatter movement (Cohn and Quealy, 2020).
Hence, without explicit mechanisms to update the models’ knowledge, language models that were
trained before this time period can potentially miss out on shifting language used to describe such
movements—where such movements are now more widely supported by the general public—and
potentially produce outdated, biased language that is no longer frequently used at present. On the
other hand, we should also be careful not to let the model update its knowledge with material that can
add or amplify to the bias and prejudice of the model (Chang et al., 2019; Bender et al., 2021).

Second, our findings highlight the risk of the “brute-force” approach of keeping models up-to-date by
periodically retraining the model from scratch, for instance by combining the old and new data. Given
the increasing size of NLP models, training large models from scratch each time incurs increasingly
more expensive computational and environmental costs (Strubell et al., 2019; Patterson et al., 2021).
Hence, our findings emphasise the need for more efficient and lightweight approaches of keeping
models up-to-date, whilst mitigating catastrophic forgetting at the same time. Our work provides a
benchmark to measure progress in this space, and we strongly encourage future work that uses our
benchmark to also report the computational costs of their approach for keeping language models
up-to-date. Lastly, we remark that the ethical considerations and risks of working with large language
models also apply to our work (Bender et al., 2021).
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3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main exper-

imental results (either in the supplemental material or as a URL)? [Yes] All dataset
details and preprocessing steps are described in Section 2.1. While we do not re-
lease the code, the experiment can be repeated with publicly available Transformer
implementations. The dataset splits are released publicly.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] The dataset and splits are described in Section 2.1, and are released
publicly. The hyper-parameters and model details are described in Section 2.3.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] We have conducted significance testing and also tested
the robustness of our findings by replicating our experiments in different configura-
tions (e.g., with larger model sizes, in different languages, in different datasets, and in
different yearly splits of our datasets).

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] To train and evaluate the models,
including hyperparameter optimization, we used approximately 186,000 TPU hours. In
each experiment, we used 32 TPUs for training and 1 TPU for evaluation.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We build our data

using existing datasets, which we cite in footnote 4.
(b) Did you mention the license of the assets? [N/A] We release dataset splits as lists of

identifiers pointing to original datasets. The licenses of the original datasets apply.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

We are providing the URL to the publicly released resources.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A] We build all our datasets through publicly available datasets.
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [No] We work with publicly available datasets that
have been used in prior work. An analysis of whether, and to what extent, personally
identifiable information can be extracted from these publicly available datasets are
beyond the scope of this work.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A] This work does not include any crowd-sourcing or research with
human subjects.

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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