
Domain Adaptation with Invariant Representation
Learning: What Transformations to Learn?

Petar Stojanov1,4∗ , Zijian Li2∗, Mingming Gong3,
Ruichu Cai2, Jaime G. Carbonell1, Kun Zhang1

1 Carnegie Mellon University
2 School of Computer Science, Guangdong University of Technology

3 School of Mathematics and Statistics, University of Melbourne
4 Broad Institute of MIT and Harvard

Abstract

Unsupervised domain adaptation, as a prevalent transfer learning setting, spans
many real-world applications. With the increasing representational power and
applicability of neural networks, state-of-the-art domain adaptation methods make
use of deep architectures to map the input features X to a latent representation
Z that has the same marginal distribution across domains. This has been shown
to be insufficient for generating optimal representation for classification, and
to find conditionally invariant representations, usually strong assumptions are
needed. We provide reasoning why when the supports of the source and target
data from overlap, any map of X that is fixed across domains may not be suitable
for domain adaptation via invariant features. Furthermore, we develop an efficient
technique in which the optimal map from X to Z also takes domain-specific
information as input, in addition to the features X . By using the property of
minimal changes of causal mechanisms across domains, our model also takes into
account the domain-specific information to ensure that the latent representation Z
does not discard valuable information about Y . We demonstrate the efficacy of our
method via synthetic and real-world data experiments. The code is available at:
https://github.com/DMIRLAB-Group/DSAN.

1 Introduction
Unsupervised domain adaptation (UDA) is a common setting for supervised learning, in which the
labeled training and unlabeled test data come from different distributions. More formally, given
features X ∈ Rd and labels Y ∈ R, we observe labeled source and unlabeled target domain instances,
represented by (xS ,yS) = (xS

k , y
S)mS

k=1 and xT
k = (xT )mT

k=1 respectively, where PS(X,Y ) ̸=
P T (X,Y ), and mS and mT are the number of observations in the source and target domains,
respectively. The main challenge of domain adaptation is to use the given source domain observations
for learning a predictor that will perform well in the target domain. To do so, the procedure needs to
make use of some similarities between the two domains. One way to formalize this is by making
assumptions about how the joint distribution joint P (X,Y ) changes across domains. For example,
in the well-studied setting of covariate shift [31, 44, 20, 35, 2, 8], the marginal distribution P (X)
changes while the conditional distribution P (Y |X) (i.e. the optimal predictor) is shared across
domains.

However, in many real-world applications, P (Y |X) can also change, and this requires making use
of further assumptions. One such assumption is that the factorization P (X,Y ) = P (Y )P (X|Y )
allows for addressing the changes in P (Y ) and P (X|Y ) independently in a situation where their

∗These authors contributed equally to this work.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



respective changes are simple and easier to capture [48, 30]. In this particular setting, the problem is
generally broken down into: (1) Target shift: P (Y ) changes across domains while P (X|Y ) stay
the same [34, 21, 29, 48] (2) Conditional shift: P (X|Y ) changes across domains but P (Y ) stays
the same [48, 26, 24]. (3) Conditional-target shift: Both P (X|Y ) and P (Y ) change independently
across domains - the most general setting under this generating process assumption [48, 6]. Then,
assumptions about the changes of the factors of the joint distrubution can be made so that the problem
is solvable, such as location-scale transformation [48, 26], or that the changing parameters lie on a
low-dimensional manifold [33], and algorithms can be designed to enforce these constraints and
make use of them for prediction in the target domain.

Another fruitful view of the problem is through the lens of representation learning, due to
wide-spread applicability of neural architectures for many real-world problems. In particular, state of
the art deep learning techniques harness the high representational capacity of neural networks to
transform the input data into a latent feature representation which is predictive of the target variable Y
in the source domain, and has the same distribution across domains. Formally, this means learning a
function (encoder) ϕ : X → Z from the input space to a latent space Z , such that PS(Z) = PT (Z).
At the same time, a function h : Z → Y can be learnt to minimize the risk in the labeled source
domain [1]. The hope is then, that the overall function g := h ◦ ϕ will have low prediction risk in the
target domain. However, the above-described theoretical and methodological framework does not
guarantee that the learnt representation Z will have any relevant information for predicting Y in
the target domain. Namely, one can easily have a situation in which the learnt representation Z is
marginally invariant (PS(Z) = PT (Z)), but not conditionally invariant (PS(Z|Y ) ̸= PT (Z|Y )),
as discussed in [53]. This means that the learnt function g := h ◦ ϕ can have very good prediction
performance in the source domain, but generalize very poorly to the target domain.

Figure 1: The underlying data-
generating process under condi-
tional shift, of the observed vari-
ables Y and X , and the latent vari-
able Z. θX represents the chang-
ing parameters of P (X|Y ) across
domains.

In many methods, the same encoding function ϕ(X) across
domains is used to learn invariant latent representations. This
enjoys computational benefits and makes the learning proce-
dure relatively simple, and the vast majority of approaches
([12, 22, 25, 23, 17] among many) employ this technique. However,
in certain situations, the same encoding function across domains
cannot learn a marginally invariant representation that is optimal
for classification in the target domain. There are certain studies
([37, 38, 4]) which implement domain-specific encoders ϕS and ϕT .
Unfortunately, such methods suffer from the following drawbacks:
(1) the exact motivation behind having separate encoders for each
domain is not clear; (2) including two separate encoders may be
inefficient because it greatly increases the number of parameters
that we need to learn; (3) in the field of UDA based on invariant
representation learning, there is still no principled way to guarantee that the learned marginally
invariant representation Z has sufficient structural (semantic) information, and has the potential to be
conditionally invariant.

In this paper we assume the setting of conditional shift, and we make use of the data-generating
process to: (i) justify the use of two separate encoding functions in order to infer the latent
representation, (ii) implement the two encoding functions more efficiently, and (iii) constrain the
latent representation Z to have meaningful structure which is useful for prediction in the target
domain. In Section 2, we first motivate the use of two separate encoders to infer Z, via rigorous
treatment and an illustrative example. Subsequently, in Chapter 3, we introduce an efficient way to
implement two separate functions for inferring Z. In Chapter 3 we shall also introduce a principled
way to ensure that the latent representation Z contains useful information for prediction, and finally,
in Chapter 4 we provide empirical evaluation.

1.1 Related Work
As previously mentioned, there is a vast body of work exploring approaches to make use of latent
invariant representations for the purposes of unsupervised domain adaptation, using both deep
learning and more traditional techniques. Namely, invariant representations were considered as a
linear projection in [26], where theoretical guarantees were established regarding the conditional
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Figure 2: Two different scenarios in which a single encoder ϕ(X) is not sufficient to learn Z.

invariance of the latent representation and the identifiability of the joint distribution in the target
domain. Furthermore, this framework was generalized to nonlinear maps to invariant latent
representations, parameterized by neural network termed DANN [12]. In this framework, the
constraint that PS(Z) = PT (Z) can be enforced in various ways, including adversarial training,
Maximum Mean Discrepancy [22], Wassertstein Distance [9] and Margin Disparity Discrepancy [51].
However, none of these studies have considered using two separate encoders for the two domains.

Subsequently, this reasoning has been considered in combination with image translation
(CYCADA) [19]. Another assumption frequently made in recent studies is that the input features
X have a clustering structure in which each cluster has a different label Y . Therefore, further
directions were pursued by incorporating additional information contained in the unlabeled target
domain data, such as pseudo-labels provided by the classifier which is initially trained on the
labeled source domain data [23, 41] (termed CDAN and SLPP, respectively). In addition, one can
also make use of this assumption to enforce that the prediction function g does not pass through
high-density regions in input space, as performed by the DIRT-T algorithm [32]. The method by [37]
makes use of two separate transformation functions, but does not regularize their output to preserve
semantic information in any way. In addition to these, approaches, the DSN algorithm [4] takes into
models the changing parameters of P (X,Y ) in the latent representation and enforces that they are
different from the invariant representation Z. The only method that we are aware of which takes
domain-specific information into account is the study by [38], in which domain information is given
and continuous, and therefore contains a lot more information than the discrete domain index that is
typically considered. In [17], a spherical architecture is used for ϕ, however there is only one encoder
for both domains. The study by [27] performs bridging between the source and the target domains
using data-augmentation, but this is a technique specific to image data.

In addition to domain adaptation methodologies in the setting where the is only one la-
beled source domain, there have been several efforts to tackle the problem of multiple-source
unsupervised domain adaptation. Namely, the method by [3] tackles the problem by using modified
kernel SVMs to operate on both input features X and marginal distributions PX . Furthermore, the
method by [46] assumes that the target domain is a linear mixture of the source domains, and infers
the linear coefficients and makes use of them for prediction in the target domain. Furthermore, in
[47], data-generating process information is discovered from the multiple-domain data, and made use
for recovering the changing parameters in the target domain in order to construct a predictor for it.

While the above-mentioned methods use various approaches to improve the quality of the
learnt invariant latent representation and show competitive performance, there is no guarantee
that these approaches are general enough to encompass all scenarios. Namely, the challenge that
existing methods face is two-fold: (1) there is no principled way to ensure that marginal invariance
(PS(Z) = PT (Z)) preserves conditional invariance (PS(Z|Y ) = PT (Z|Y )), (2) there are cases
(especially in lower-dimensional datasets) where the encoding function ϕ needs domain-specific
information, in addition to the features X . The aim of this paper is to address these two issues. In
this paper, we introduce the first invariant representation learning method that makes use of the
data-generating process to justify and efficiently use domain-specific information in the encoder ϕ,
and to properly constrain it to ensure that Z contains relevant label-specific information.
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2 What Does it Take to Learn a Useful Invariant Representation?

To gain insights into what information is necessary for learning an intermediate representation Z
via ϕ, let us consider the data-generating process depicted on Figure 1. In this graphical model,
the label Y is generated first from its prior distribution P (Y ). Then, the invariant representation
Z is generated from Y via the generating mechanism P (Z|Y ) and X is subsequently generated
from P (X|Z; θX), where θX are the changing parameters of P (X|Y ) across domains. We consider
θX as a parameter vector with a constant value for each point within a domain, and we generally
assume that θX contains little information, i.e. the change across domains in P (X|Y ) is minimal.
This generating process, in part or in whole, can be exploited in many classification applications.
For example, in object classification in images, Y is the label (the object the picture was taken of),
X is the observed pixels, and Z can correspond to latent features with semantic relevance, such as
some function of the edges and contours on the image. In this case, θX can correspond to different
resolution, illumination conditions, or other environment-specific changes that are not relevant
for predicting the class Y . In this graphical representation, we see that generally speaking, Z is
conditionally dependent from θX given X , although they may be marginally independent. This
implies that in order to recover Z, given that X is considered, the information of θX should also be
considered in the transformation, because it is in the Markov Blanket of Z (the Markov Blanket
of a variable of interest consists of all other variables that are either its parents, its children, or the
parents of its children in the probabilistic graphical model. The Markov Blanket represents all of the
information needed to predict the variable of interest).

To gain intuition why considering the Markov Blanket is important, consider the following
scenario, depicted in Figure 2a. In this setting, we are given the source domain with Uniform
distribution, and the target domain with Gaussian distribution. Here, we have a region A ⊂ X
(highlighted in red), in which both of the domains’ distributions have support, so there is support
overlap. However, each domain has a different density in this region. The following proposition
claims that in this situation, we cannot infer an invariant representation Z from X with a single
encoder ϕ:

Proposition 1: Let A ⊂ X be a region in input space such that PS(X ∈ A) > 0 and
P T (X ∈ A) > 0, and PS(X ∈ A) ̸= P T (X ∈ A). Furthermore, let ϕ : X → Z be
an encoder s.t. A = {a : ϕ(a) ∈ B} for some B ⊂ Z . Then, there is no function ϕ s.t.
PS(ϕ(X) ∈ B) = P T (ϕ(X) ∈ B).

All omitted proofs can be found in the supplementary materials. This proposition implies
that if the supports of the marginal distributions of the source and target domains overlap, and if
the distributions are different in the specific region of the support overlap (set A), then we cannot
use a fixed transformation to transform the data in that region to an invariant representation in Z space.

There is an additional case in which a single encoder ϕ is not sufficient to learn an optimal
latent representation Z. The scenario is illustrated on Figure 2b. In this case, even though both
domains have the same distribution P (X) in the region of support overlap between the source and the
target domain (labeled in red), the value of Y is opposite between the two domains. The following
proposition demonstrates that in this setting, a single encoding function ϕ is inherently sub-optimal:

Proposition 2: Let the true labeling functions in the source and target domain be fS , fT : X → Y ,
respectively. Let A ⊂ X be a region s.t. fS(a) ̸= fT (a),∀a ∈ A. Let g : X → Y be a composition
of a representation learner ϕ : X → Z and a classifier h : Z → Y . If ϕ is the same function across
domains, then for a 0-1 loss, the risk over the region A: ϵA(g) = ϵAS (g) + ϵAT (g) ≥ 1, where ϵAS (g)
and ϵAT (g) are the source and target domain risks respectively.

In this scenario, no matter what criterion one uses to find the representation for downstream
classification using h, as long as the two domains use the same transformation ϕ for the representation,
the points in A cannot be correctly classified in the target domain, if they are correctly classfied in the
source domain. This is because the final classifer of the data, g = h ◦ ϕ, is fixed across domains. As
a consequence, any point a ∈ A will be mapped to the same class label, no matter which domain
it is in. These two scenarios generally occur in low-dimensional datasets, such as scientific and
healthcare applications. In very high-dimensional structured data such as images and text, there will
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be some domain-specific dimensions which will have very different values in the source and the
target domain (such as brightness in images in daytime vs. nighttime). This will result in no overlap
between the supports of the source and target domain distributions, and thus the domain-specific
dimensions will act as domain specific information. In this case using ϕ which is only a function of
X is sufficient. However, even in this scenario, we need to find a principled way to constrain the
encoder such that Z contains relevant label-specific information for the prediction in the target domain.

The observations from the perspective of the causal mechanism of generating X from Z
and θX provide hints how to tackle the problem of UDA using invariant latent representations in a
general way. First of all, we observe that θX needs to be an input to the encoder ϕ, in addition to X.
Secondly, in this causal mechanism, we can safely assume that the influence of θX on the relationship
between X and Z (and therefore the relationship between X and Y ) is minimal. This allows us to:
(1) model latent variable θX as a function of the domain index and provide it is an input to ϕ(X, θX),
instead of learning two separate encoders ϕS and ϕT ; (2) mimic the causal mechanism of generating
X, given by X = ϕ̃(Z, θX), via a decoder ϕ̃ : Z ×Θ → X , in which we constrain the influence of
θX to be minimal. The hope is then that such a decoder would act as a regularizer on the encoder ϕ,
forcing it to preserve important semantic information when inferring Z. In this paper, we design a
method based on this reasoning in order to address the problem of UDA in a principled manner.

3 Proposed Method: Domain-Specific Adversarial Training

Motivated by the above discussion, we aim to design a domain-adversarial network which can make
use of the domain-specific parameters θX . Let θX ∈ {θSX , θTX}, which are its possible values in the
source and target domains. The model for the proposed method DSAN (Domain-Specific Adversarial
Network) is depicted in Figure 3.

We first consider the domain index of the data: j ∈ {S, T } (which indicates whether a
data-point comes from the source or target domain), and parameterize the estimated latent
domain-specific parameters θ̂(j)X as a function of the domain index of the i-the data-point ji (0 for
source, 1 for target domain). We make use of θ̂(j)X and data encoder ϕ to obtain z

(j)
i = ϕ(x

(j)
i , θ̂

(j)
X ),

where x
(j)
i and z

(j)
i represent the the i-th input point and latent representation point respectively,

from the j-th domain. We can then use the latent representation z
(j)
i to obtain a softmax probability

for the predicted label label ỹ(j)i = h(z
(j)
i ), and this predictor can be trained in the source domain.

To enforce the condition PS(Z) = P T (Z), we also have an adversarial predictor which predicts the
domain index, given by j̃ = ha(z

(j)
i ). In order to constrain the influence of domain-specific changes

θX , our model also needs to make use of (or mimic) the data-generating process depicted on Figure
1, in particular the process of generating X from Z and θX . This can be achieved via a decoder ϕ̃
which reconstructs the features X in both the source and the target domain, from Z and θX , given by
x̃
(j)
i = ϕ̃(z

(j)
i , θ̂

(j)
X ). As described so far, our model consists of the following loss functions:

Lreconst. =
1

mS +mT

mS+mT∑
i=1

||xi − x̃||22, Lclassif. = − 1

mS

C∑
c=1

mS∑
i=1

yiclog(ỹic),

Linv. = −
mS+mT∑

i=1

{ji log j̃i + (1− ji) log(1− j̃i)}, Lcent. = −
mT∑
i=1

h(zTi )
T log(h(zTi ))

Here, Lreconst., Lclassif., and Linv. are the reconstruction, classification and adversarial loss respec-
tively. Lcent. is the conditional cross-entropy of the predictions in the target domain, and intuitively,
it serves to enforce that the decision boundary does not cross data-dense regions [32]. The current
loss functions do not involve a constraint on the encoding transformation ϕ which would prevent
it from discarding valuable information about Y . We now describe how we can make use of the
data-generating process and the assumption of minimal change across domains to enforce such a
constraint.

3.1 Enforcing Minimal Change by Mutual Information Minimization
Before we delve into the details of how to enforce minimality of the influence of θX on the generating
process of X from Y , we need to find a way to measure it. One way to formally do so is the joint
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mutual information I(θX ; (X,Y )). Conveniently, this term is related to a distributional divergence
measure that can be minimized, as stated by the following lemma:

Lemma 1: Let X,Y ∼ P (X,Y ; θX), and let θX be a discrete random variable with possible values
θSX and θTX in the source and target domains respectively, with a uniform prior P (θX = θSX) = 0.5,
P (θX = θTX) = 0.5. Then, I(θX ; (X,Y )) = JSD(PX,Y ;θX=θS

X
||PX,Y ;θX=θT

X
), where JSD is the

Jensen-Shannon Divergence, and PX,Y ;θX=θS
X

and PX,Y ;θX=θT
X

are the source and target domain
joint distributions respectively.

Therefore, to measure the influence of θX on the generating process as mimicked by our
decoder, we need to measure the JSD between the joint distributions as implied by the reconstructed
data, given by JSD(PX,Y ;θX=θ̂S

X
||PX,Y ;θX=θ̂T

X
) (note that here we are using inferred domain-specific

variables θ̂SX and θ̂TX ). In theory, given enough data and expressiveness of the decoder, we can
assume that we can learn to reconstruct the data perfectly. However, due to lack of labeled data in
the target domain, we can only reconstruct the unlabeled features in the target domain, and have no
access to PX,Y ;θX=θ̂T

X
.

To cope with this, we can use the inferred domain-specific variable θ̂TX to translate the
source domain data to the target domain via the decoder: x̃S

trans. = ϕ̃(zS , θ̂TX). This translated
data from the source to the target domain is labeled and can serve as an approximation of the joint
distribution in the target domain, which we can use to constrain the JSD. A very intuitive way
to minimize the JSD of the joint distributions of the source domain reconstructed and translated
data, is to first define new random variables V := [X̃S , Y S ]T and Vtrans. := [X̃S

trans., Y
S ]T as

concatenations of the features and the label. Then, the JSD can be minimized by ensuring that the
distributions of this joint feature-label vector is the same between the source reconstructed and
translated data: P (V ) = P (Vtrans.). This can be achieved in several different ways, on of which is
training an adversarial classifier on V and Vtrans.. However, since Y is usually a scalar variable with
a specific semantic meaning and often has a simple parametric form, concatenating it to X would
discard this prior knowledge, rendering this approach statistically inefficient.

Fortunately, the following theorem, adopted from [15], gives an upper bound of the JSD
which is easy to minimize, and which makes use of the specific parametric form of Y in the case of
classification:

Theorem 1 [15]: Let PY X|θX=θS and PY X|θX=θT denote the source and target domain
distributions respectively. Let Qhc

Y |X denote the conditional distribution of Y given X specified by
the auxiliary classifier hc. We have:

JSD(PXY ;θX=θS
X
||PXY ;θX=θT

X
) ≤ 2c1

√
JSD(PX|θX=θS

X
||PX|θX=θT

X
)

+ c2

√
KL(PY |X,θX=θS

X
||Qhc

Y |X) + c2

√
KL(PY |X,θX=θT

X
||Qhc

Y |X)

,

where c1 and c2 are upper bounds of 1
2

∫
|PY |X(y|x)|µ(x, y) and 1

2

∫
|QX(x)|µ(x) respec-

tively (µ is a σ-finite measure). Here, JSD(PX|θX=θ̂S
X
||PX|θX=θ̂T

X
) is equal to the JSD between the

source and target domain marginal distributions of X and is fixed, we can ignore this term when we
minimize the upper bound using our algorithm. Therefore, to minimize the two KL divergences on
the right-hand side:

KL(PY |X,θ̂X=θS
X
||Qhc

Y |X) and KL(PY |X,θX=θ̂T
X
||Qhc

Y |X),

it suffices to train a joint auxiliary classifier hc on the reconstructed source domain data x̃S and the
translated data x̃T

trans., whose task is to learn to predict the source domain label. Therefore, we
introduce a cross-entropy loss Ltrans.

inv. for the auxiliary classifier, whose two terms can be used to
minimize the two KL divergences respectively:

Ltrans
inv. = −

C∑
j=1

mS∑
i=1

yij log(ỹ
c
ij)−

C∑
j=1

mS∑
i=1

yij log(ỹ
c
ij,trans.), where ỹci = hc(x̃

S
i ),
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and ỹci,trans. = hc(x̃
S
i,trans.) are the softmax predictions of the reconstruction and the translation

of the source domain respectively, using predictor hc. Therefore, the total loss function can be
formulated in the following manner:

Ltotal = λαLreconst. + λδLclassif. − λγLinv. + λτLtrans.
inv. + λκLcent.,

and can be minimized by alternating optimization:

min
ϕ,ϕ̃,h,hc

Ltotal

min
ha

λγLinv..

Figure 3: A diagram of the proposed autoencoder framework. Here, the domain index is mapped
to θX . Subsequently, the input data x and θX are mapped via ϕ to a latent representation z, which
in turn is reconstructed x̃ using the decoder ϕ̃, and θX as additional input. In addition, the penalty
Linv. is enforced to ensure invariance between ZS and ZT . The hidden representation is also used
to predict ỹ in the source domain. Finally, Ltrans−y

inv. enforces the minimal change of P (X|Y ) across
domains. The pink and orange lines depict the flow of the source and target data and domain-specific
information respectively.

This alternating minimization problem can be solved using Gradient-Reversal Layers (GRL), as
shown in [13]. Linv. can also be expressed in terms of Maximum Mean Discrepancy (MMD) [16].
Our model is now equipped with a way to ensure that when reconstructing the data, θX cannot play a
major role in the decoder ϕ̃. Since θX correspond to minimal changes of the conditional distribution
P (X|Y ), this forces Z to retain Y -specific structure, and in turn implicitly regularizes the encoder ϕ,
resulting in a conditionally invariant representation. In the following section, we will empirically
demonstrate this property of the constraint.

4 Empirical Evaluation
In order to provide intuition about the proposed method’s advantages in the challenging scenarios
described above, we first designed a simple but informative 2D simulated example for domain
adaptation using mixtures of Gaussian distributions. This simulated dataset is presented on Figure
4(a), and is representative of the example discussed in Figure 2, since there is a significant region of
overlap between the two domains, in which the points have opposite labels across domains (details
about the dataset can be found in the supplementary materials). In this experiment, we compared our
method DSAN, with the following baselines: (1) DSAN-unreg., which is our proposed method but
without regularizing the transformation ϕ using the mutual information minimization in our loss; (2)
DSN, the method proposed in [4], which makes use of domain-specific private encodings, but which
are only used for reconstruction of the data, and not for inferring the shared invariant representation
Z; (3) DANN, the classical domain-adversarial method proposed by [13]. We used a 2D hidden
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representation Z (more details about implementation and tuning can be found in the supplement).

The results are presented in Figure 4b, demonstrating that our approach greatly outperforms the
baselines. To visualize how our algorithm is able to solve this challenging example with much
greater success, we also present the 2D invariant representations in the source and target domains on
Figure 6. At the top, we have the hidden representations Z of DSAN-unreg., and on the bottom the
ones yielded by our method DSAN (run on a separate random initialization). On the left side we
present Z in the source domain, labeled by the true values, in the middle we show this representation
in the target domain labeled with the prediction of the algorithm, and on the right-hand side we
present Z in the target domain labeled with the true labels. From this figure, one can appreciate
that the unregularized version of our approach yields a representation Z which discards a lot of
information about Y , as can be seen in parts 5b and 5c. On the other hand, parts 5e and 5f show
that our algorithm with the mutual information minimization constraint can successfully preserve
label-specific information in the invariant representation.

4.1 Real Data Experiments
To evaluate our method on real datasets, we consider three datasets and respective tasks from various
domains of applications: cross-domain Wi-Fi localization, Amazon product reviews and image
classification. For detailed descriptions of the experimental design, hyperparameter tuning and neural
network architectures, as well as ablation studies, we refer the interested reader to the supplementary
materials. We performed evaluation on the following datasets: Wi-Fi localization: introduced in
[49], is a dataset in which wireless signal data was collected in a hallway area discretized as a grid. In
each grid, data was recorded from 67 access points (dimensions). The task is to predict the location
from the signals (which has been converted to a classification problem with 19 classes). There are
three domains in this dataset (with 1140 points each), collected in three different time points. This is
a low-dimensional dataset, in which we verified via manual inspection that both scenarios of support
overlap described in Section 2 hold; Amazon Review: Amazon Review is another benchmark for
multi-domain sentiment analysis. It contains positive and negative reviews of four kinds of products:
Kitchen appliance (K), DVDs (D), Electronics (E), and Books (B). ImageCLEF: A standard UDA
benchmark dataset for image classification, consisting of three domains: Caltech-256(C), ImageNet
ILSVRC(I), and Pascal VOC2012(P), consisting of 12 classes. Baselines: We compare DSAN with
classical approaches like TCA [28] and GFK [14], as well as with some deep transfer learning models.
Three recently proposed methods, DSR [5], DIRT-T [32], MDD [51], BSP [7], MSTN [42] and RSDA
[17] are included. For both the real-world and simulated experiments, we ran and tuned the baseline
methods ourselves (all baselines for Wi-Fi and simulated, and MDD and DIRT-T for Amazon dataset).

The classification accuracies on the Amazon-Review Dataset for unsupervised domain adaptation
are shown in Table 2, which shows that our algorithm model outperforms the baselines in the vast
majority of source-target directions. We also perform a Wilcoxon signed-rank test on the experiment
result of different random seed, and the p-value is 0.0216. The performance of our method on the
Wi-Fi localization dataset is shown on Table 1. In this experiment, we sub-sampled 950 points in each
domain to create 10 replicate experiments, and we present the accuracies and standard deviations
across all replicates. From the results, one can appreciate that our method outperforms all baselines,
for the majority of the pairs. We calculated a Wilcoxon p value p = 0.002 across all replicate
experiments combined. The performance of our method on the ImageCLEF dataset is presented on
Table 3, in which one can appreciate that we achieve state-of-the-art performance on most transfer
directions. For this experiment, certain baselines such as MDD and RSDA use a pre-trained ResNet
neural network architecture as the transformation function ϕ. For the proposed method, we instead
used features obtained from a pre-trained ResNet architecture, and we incorporated them into the
autoencoder neural network described in the previous section (more details on the architecture
and hyperparameters can be found in the supplementary information). While we currently obtain
state-of-the-art performance on this dataset, we believe that adapting our method to make use of
ResNet fine-tuning will further increase the performance.

5 Conclusion

In this paper, we have demonstrated that the existing paradigm of representation learning for domain
adaptation using a fixed encoder ϕ of the data, can be sub-optimal when the same points can
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(a) Scatter plot of simulated data

Model Accuracy
DANN 58.2±4.3
DSN 58.8±5.2

DSAN-unreg. 79.4±2.2
DSAN 87±1.0

(b) Results on the simulated data.

Figure 4

Table 1: Accuracy (%) on Wi-Fi localization dataset for unsupervised domain adaptation

Models t1 → t2 t1 → t3 t2 → t1 t2 → t3 t3 → t1 t3 → t2 Average

DANN [12] 31.30±1.3 33.15±1.9 38.03±2.0 32.41±2.3 28.54±0.8 31.12±1.6 32.59
DSN [4] 31.25±1.5 34.23±2.4 34.32±2.8 29.47±0.7 27.0±1.6 31.8±1.3 31.35
DSR [5] 34.20±1.3 34.62±4.8 30.61±3.5 34.72±1.1 33.13±0.5 31.61±0.9 31.13

MDD [51] 30.92±2.1 34.42±1.8 30.01±1.5 27.58±1.8 33.25±1.0 27.34±2.3 30.59
DIRT-T [32] 36.38±1.2 33.66±2.7 37.12±3.4 31.85±2.87 33.98±1.42 28.48±2.68 33.58

BSP [7] 35.5±1.3 32.16±2.1 31.15±1.4 31.06±1.9 32.91±1.1 33.83±2.2 32.72
DSAN-U 31.16±1.1 29.01±1.7 32.76±0.9 32.18±1.1 31.02±1.7 33.62±1.8 31.45

DSAN 40.45±1.6 37.35±2.3 38.22±2.4 39.94±2.1 36.47±3.5 34.18±2.9 37.77

have different labels across domains. We have introduced a method which takes domain-specific
information in order to provide the data encoder with the necessary flexibility and appropriate
constraints, in order to retain valuable information about Y in the latent representation Z. We note
that in many real-world applications with high-dimensional datasets, the supports of the source and
target domains may not overlap. In this case, domain-specific information is contained in the features
X and can be automatically used by the encoder ϕ(X). However, ϕ(X) would then have the same
problem with excessive flexibility and can still suffer from finding trivial representations of Z that
discard information about Y . Therefore, our principle for constraining domain-specific encoders
would still be beneficial in this scenario. For future work, a promising direction is combining this
framework motivated by the data-generating process with more powerful encoders, such as the
spherical neural network proposed by [17].
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Table 2: Accuracy (%) on Amazon Review dataset for unsupervised domain adaptation

Methods B→D B→E B→K D→B D→E D→K E→D E→B E→K K→B K→D K→E Avg

NN 49.6 49.8 50.3 53.3 51.0 53.1 50.8 50.9 51.2 52.2 51.2 52.3 51.3
TCA [28] 63.6 60.9 64.2 63.3 64.2 69.1 59.5 62.1 74.8 64.1 65.4 74.5 65.5
GFK [14] 66.4 65.5 69.2 66.3 63.7 67.7 62.4 63.4 73.8 65.5 65.0 73.0 66.8
SA [11] 67.0 70.8 72.2 67.5 67.1 69.4 61.4 64.9 70.4 64.4 64.6 68.2 67.3

BDA [39] 64.2 62.1 65.4 62.4 66.3 68.9 59.6 61.6 74.7 62.7 64.3 74.0 65.5
CORAL [36] 71.6 65.1 67.3 70.1 65.6 67.1 67.1 66.2 77.6 68.2 68.9 75.4 69.1

JGSA [45] 66.6 75.0 72.1 55.5 67.3 65.6 51.6 50.8 55.0 58.3 56.4 51.7 60.5
DANN [12] 78.4 73.3 77.9 72.3 75.4 78.3 71.3 73.8 85.4 70.9 74.0 84.3 64.9
MDD [51] 77.1 74.4 77.0 74.7 74.1 76.3 72.4 70.2 83.3 69.3 73.2 82.8 75.4

DIRT-T [32] 78.6 76.1 75.5 76.8 75.2 79.1 69.6 71.0 84.2 69.2 73.3 79.5 75.7
EasyTL [40] 79.8 79.7 80.9 79.9 80.8 82.0 75.0 75.3 84.9 76.5 76.3 82.5 79.5

BSP [7] 79.33 73.86 75.86 75.67 74.77 77.2 72.81 71.3 84.02 70.92 73.59 84.29 76.14
RSDA [17] 80.1 77.8 84.4 76.6 79.4 82.3 73.6 71.1 86.6 71.8 74.7 84.4 77.9
DSAN-U 81.0 78.6 78.9 78.4 79.4 83.3 76.2 74.5 87.4 73.1 77.0 83.0 78.9

DSAN 82.7 80.8 82.6 79.5 81.4 85.3 76.7 75.1 88.0 73.8 77.3 85.0 80.7

Table 3: Accuracy (%) on ImageCLEF dataset for unsupervised domain adaptation (∗ reproduced by
[17])

Models I → P P → I I → C C → I C → P P → C Average

DResNet-50 [18] 74.8± 0.3 83.9± 0.1 91.5 ± 0.3 78.0 ± 0.2 65.5 ±0.3 91.2 ± 0.3 80.7
iCAN [50] 79.5 89.7 94.7 89.9 78.5 92.0 87.4
CDAN [23] 77.7 ± 0.3 90.7±0.2 97.±0.3 91.3±0.3 74.2±0.2 94.3±0.3 87.7

SymNets [52] 80.2±0.3 93.6±0.2 97.0±0.3 93.4±0.3 78.7±0.3 96.4±0.1 89.9
SAFN+ENT [43] 79.3±0.1 93.3±0.4 96.3±0.4 91.7±0.0 77.6±0.1 95.3±0.1 88.9

CAT [10] 77.2±0.2 91.6±0.3 95.5±0.3 91.3±0.3 75.3±0.6 93.6±0.5 87.3
DANN [12] 75.0±0.6 86.0±0.3 96.2±0.4 87.0±0.5 74.3±0.5 91.5±0.6 85.0

DANN+S [17] 78.3±0.5 91.0±0.4 96.8±0.2 91.8±0.6 77.7±0.5 95.2±0.5± 88.5
RSDA-DANN [17] 79.2±0.4 93.0±0.2 98.3±0.4 93.6±0.4 78.5±0.3 98.2±0.2 90.1
RSDA-MSTN [17] 79.8±0.2 94.5±0.5 98.0±0.4 94.2±0.4 79.2±0.3 97.3±0.3 90.5

MSTN∗ [42] 77.3±0.3 91.3±0.4 96.8±0.2 91.2±0.5 77.7±0.2 95.0±0.5 88.2
DSAN-U 79.2±0.2 94.1±0.1 96.2±0.2 93.5±0.5 77.4±0.8 90.0±0.3 88.3

DSAN 80.3±0.5 95.2±0.3 97.5±0.2 94.7±0.5 79.6±0.6 96.7±0.2 90.7

(a) (b) (c)

(d) (e) (f)

Figure 5:
Z in the simulations. First three scatter-plots show it without regularization: (a) Z of the source

domain labeled with true labels, (b) Z of the target domain labeled with the predictions (c) Z of the
target domain with the true labels. (d), (e), and (f) show the same, but with regularization.
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