
Efficient Neural Network Training via
Forward and Backward Propagation Sparsification

Xiao Zhou∗1, Weizhong Zhang∗1, Zonghao Chen2, Shizhe Diao1, Tong Zhang†1
1 Hong Kong University of Science and Technology, 2 Tsinghua University

xzhoubi@connect.ust.hk, zhangweizhongzju@gmail.com
czh17@mails.tsinghua.edu.cn, sdiaoaa@ust.hk, tongzhang@tongzhang-ml.org

Abstract

Sparse training is a natural idea to accelerate the training speed of deep neural net-
works and save the memory usage, especially since large modern neural networks
are significantly over-parameterized. However, most of the existing methods cannot
achieve this goal in practice because the chain rule based gradient (w.r.t. structure
parameters) estimators adopted by previous methods require dense computation
at least in the backward propagation step. This paper solves this problem by
proposing an efficient sparse training method with completely sparse forward and
backward passes. We first formulate the training process as a continuous minimiza-
tion problem under global sparsity constraint. We then separate the optimization
process into two steps, corresponding to weight update and structure parameter
update. For the former step, we use the conventional chain rule, which can be
sparse via exploiting the sparse structure. For the latter step, instead of using the
chain rule based gradient estimators as in existing methods, we propose a variance
reduced policy gradient estimator, which only requires two forward passes without
backward propagation, thus achieving completely sparse training. We prove that
the variance of our gradient estimator is bounded. Extensive experimental results
on real-world datasets demonstrate that compared to previous methods, our algo-
rithm is much more effective in accelerating the training process, up to an order of
magnitude faster.

1 Introduction

In the last decade, deep neural networks (DNNs) [35, 11, 38] have proved their outstanding per-
formance in various fields such as computer vision and natural language processing. However,
training such large-sized networks is still very challenging, requiring huge computational power and
storage. This hinders us from exploring larger networks, which are likely to have better performance.
Moreover, it is a widely-recognized property that modern neural networks are significantly over-
parameterized, which means that a fully trained network can always be sparsified dramatically by
network pruning techniques [9, 8, 25, 46, 20] into a small sub-network with negligible degradation
in accuracy. After pruning, the inference efficiency can be greatly improved. Therefore, a natural
question is can we exploit this sparsity to improve the training efficiency?

The emerging technique called sparse network training [10] is closely related with our question,
which can obtain sparse networks by training from scratch. We can divide existing methods into
two categories, i.e., parametric and non-parametric, based on whether they explicitly parameterize
network structures with trainable variables (termed structure parameters). Empirical results [24,
34, 44, 23] demonstrate that the sparse networks they obtain have comparable accuracy with those
∗Equal contribution
†Jointly with Google Research

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

obtained from network pruning. However, most of them narrowly aim at finding a sparse subnetwork
instead of simultaneously sparsifying the computation of training by exploiting the sparse structure.
As a consequence, it is hard for them to effectively accelerate the training process in practice on
general platforms, e.g., Tensorflow [1] and Pytorch [31]. Detailed reasons are discussed below:

• Non-parametric methods find the sparse network by repeating a two-stage procedure that
alternates between weight optimization and pruning [10, 6], or by adding a proper sparsity-
inducing regularizer on the weights to the objective [22, 41]. The two-stage methods prune
the networks in weight space and usually require retraining the obtained subnetwork from
scratch every time when new weights are pruned, which makes training process even more
time-consuming. Moreover, the computation of regularized methods is dense since the
gradients of a zero-valued weights/filters are still nonzero.

• All the parametric approaches estimate the gradients based on chain rule. The gradient
w.r.t. the structure parameters can be nonzero even when the corresponding channel/weight
is pruned. Thus, to calculate the gradient via backward propagation, the error has to be
propagated through all the neurons/channels. This means that the computation of backward
propagation has to be dense. Concrete analysis can be found in Section 3.

We notice that some existing methods [4, 28] can achieve training speedup by careful implementation.
For example, the dense to sparse algorithm [28] removes some channels if the corresponding weights
are quite small for a long time. However, these methods always need to work with a large model at the
beginning epochs and consume huge memory and heavy computation in the early stage. Therefore,
even with such careful implementations, the speedups they can achieve are still limited.

In this paper, we propose an efficient channel-level parametric sparse neural network training method,
which is comprised of completely sparse (See Remark 1) forward and backward propagation. We
adopt channel-level sparsity since such sparsity can be efficiently implemented on the current training
platforms to save the computational cost. In our method, we first parameterize the network structure
by associating each filter with a binary mask modeled as an independent Bernoulli random variable,
which can be continuously parameterized by the probability. Next, inspired by the recent work [47],
we globally control the network size during the whole training process by controlling the sum of
the Bernoulli distribution parameters. Thus, we can formulate the sparse network training problem
into a constrained minimization problem on both the weights and structure parameters (i.e., the
probability). The main novelty and contribution of this paper lies in our efficient training method
called completely sparse neural network training for solving the minimization problem. Specifically,
to fully exploit the sparse structure, we separate training iteration into two parts, i.e., weight update
and structure parameter update. For weight update, the conventional backward propagation is used to
calculate the gradient, which can be sparsified completely because the gradients of the filters with
zero valued masks are also zero. For structure parameter update, we develop a new variance reduced
policy gradient estimator (VR-PGE). Unlike the conventional chain rule based gradient estimators
(e.g., straight through[2]), VR-PGE estimates the gradient via two forward propagations, which is
completely sparse because of the sparse subnetwork. Finally, extensive empirical results demonstrate
that our method can significantly accelerate the training process of neural networks.

The main contributions of this paper can be summarized as follows:

• We develop an efficient sparse neural network training algorithm with the following three
appealing features:

– In our algorithm, the computation in both forward and backward propagations is
completely sparse, i.e., they do not need to go through any pruned channels, making
the computational complexity significantly lower than that in standard training.

– During the whole training procedure, our algorithm works on small sub-networks with
the target sparsity instead of follows a dense-to-sparse scheme.

– Our algorithm can be implemented easily on widely-used platforms, e.g., Pytorch and
Tensorflow, to achieve practical speedup.

• We develop a variance reduced policy gradient estimator VR-PGE specifically for sparse
neural network training, and prove that its variance is bounded.

• Experimental results demonstrate that our methods can achieve significant speed-up in
training sparse neural networks. This implies that our method can enable us to explore
larger-sized neural networks in the future.

2

Remark 1. We call a sparse training algorithm completely sparse if both its forward and backward
propagation do not need to go through any pruned channels. For such algorithms, the computational
cost in forward and backward propagation cost can be roughly reduced to ρ2 ∗ 100%, with ρ being
the ratio of remaining unpruned channels.

2 Related Work

In this section, we briefly review the studies on neural network pruning, which refers to the algorithms
that prune DNNs after fully trained, and the recent works on sparse neural network training.

2.1 Neural Network Pruning

Network Pruning [10] is a promising technique for reducing the model size and inference time of
DNNs. The key idea of existing methods [10, 8, 46, 20, 27, 13, 48, 40, 43, 32, 16] is to develop
effective criteria (e.g, weight magnitude) to identify and remove the massive unimportant weights
contained in networks after training. To achieve practical speedup on general devices, some of them
prune networks in a structured manner, i.e., remove the weights in a certain group (e.g., filter) together,
while others prune the weights individually. It has been reported in the literature [8, 25, 46, 20] that
they can improve inference efficiency and reduce memory usage of DNNs by orders of magnitudes
with minor loss in accuracy, which enables the deployment of DNNs on low-power devices.

We notice that although some pruning methods can be easily extended to train sparse networks, they
cannot accelerate or could even slow down the training process. One reason is they are developed in
the scenario that a fully trained dense network is given, and cannot work well on the models learned
in the early stage of training. Another reason is after each pruning iteration, one has to fine tune or
even retrain the network for lots of epoch to compensate the caused accuracy degradation.

2.2 Sparse Neural Network Training

The research on sparse neural network training has emerged in the recent years. Different from the
pruning methods, they can find sparse networks without pre-training a dense one. Existing works
can be divided into four categories based on their granularity in pruning and whether the network
structures are explicitly parameterized. To the best of our knowledge, no significant training speedups
achieved in practice are reported in the literature. Table 1 summarizes some representative works.

Table 1: Some representative works in sparse neural network training.

granularity non-parametric parametric

weight-level [5, 6, 48, 22, 18, 29, 39, 30, 4] [42, 37, 26, 47, 18]

channel-level [41, 12] [19, 24, 44, 26, 16]

Weight-level non-parametric methods, e.g., [6, 10, 48, 29, 30], always adopt a two-stage training
procedure that alternates between weight optimization and pruning. They differ in the schedules of
tuning the prune ratio over training and layers. [10] prunes the weights with the magnitude below a
certain threshold and [48, 6] gradually increase the pruning rate during training. [30, 5] automatically
reallocate parameters across layers during training via controlling the global sparsity.

Channel-level non-parametric methods [12, 41] are proposed to achieve a practical acceleration in
inference. [41] is a structured sparse learning method, which adds a group Lasso regularization into
the objective function of DNNs with each group comprised of the weights in a filter. [12] proposes
a soft filter pruning method. It zeroizes instead of hard pruning the filters with small `2 norm,
after which these filters are treated the same with other filters in training. It is obvious that these
methods cannot achieve significant speedup in training since they need to calculate the full gradient in
backward propagation although the forward propagation could be sparsified if implemented carefully.

Parametric methods multiply each weight/channel with a binary [47, 44, 37, 42] or continuous
[24, 26, 19, 18] mask, which can be either deterministic [24, 42] or stochastic [47, 44, 26, 37, 19, 18].
The mask is always parameterized via a continuous trainable variable, i.e., structure parameter. The

3

𝑥3

ො𝑥3 = 𝑤:,3
𝑇 𝑥𝑖𝑛𝑚3

𝑥𝑖𝑛,1 𝑥𝑖𝑛,2 𝑥𝑖𝑛,3

𝑥2

ො𝑥2

𝑥1

ො𝑥1 𝒘:,2, 𝑚2 ≠ 0𝒘:,1, 𝑚1 ≠ 0

ො𝑦

𝒘:,3, 𝑚3 = 0

Figure 1: A fully connected network. w is the weight matrix of 1st layer, mi is the mask of i-th
neuron; ŷ, x̂in and x̂i are the output, input and preactivation. The 3rd neuron (in grey) is pruned.

sparsity is achieved by adding sparsity-inducing regularizers on the masks. The novelties of these
methods lie in estimating the gradients w.r.t structure parameters in training. To be precise,

• Deterministic Binary Mask. [42] parameterizes its deterministic binary mask as a simple
step function and estimates the gradients via sigmoid straight through estimator (STE) [2].

• Deterministic Continuous Mask. [24] uses the linear coefficients of batch normalization
(BN) as a continuous mask and enforces most of them to 0 by penalizing the objective with
`1 norm of the coefficients. [18] defines the mask as a soft threshold function with learnable
threshold. These methods can estimate the gradients via standard backward propagation.

• Stochastic Binary Mask. [44, 37] model the mask as a bernoulli random variable and
the gradients w.r.t. the parameters of bernoulli distributions are estimated via STE. [47]
estimates the gradients via Gumbel-Softmax trick [15], which is more accurate than STE.

• Stochastic Continuous Mask. [26, 19] parameterize the mask as a continuous function
g(c, ε), which is differentiable w.r.t. c, and ε is a parameter free noise, e.g., Gaussian noise
N (0, 1). In this way, the gradients can be calcuated via conventional backward propagation.

Therefore, we can see that all of these parametric methods estimate the gradients of the structure
parameters based on the chain rule in backward propagation. This makes the training iteration cannot
be sparsified by exploiting the sparse network structure. For the details, please refer to Section 3.

3 Why Existing Parameteric Methods Cannot Achieve Practical Speedup?

In this section, we reformulate existing parametric channel-level methods into a unified framework to
explain why they cannot accelerate the training process in practice.

Notice that convolutional layer can be viewed as a generalized fully connected layer, i.e., viewing the
channels as neurons and convolution of two matrices as a generalized multiplication (see [7]). Hence,
for simplicity, we consider the fully connected network in Figure 1. Moreover, since the channels
in CNNs are corresponding to the neurons in fully connected networks, we consider neuron-level
instead of weight-level sparse training in our example.

As discussed in Section 2, existing methods parameterize the 4 kinds of mask in the following ways:

(i): mi = φ(si); (ii): mi = ψ(si); (iii): mi = g(si, ε), ε ∼ N (0, 1); (iv): m ∼ Bern(pi(s)),

where the function φ(si) is binary, e.g., step function; ψ(si) is a continuous function; g(si, ε) is
differentiable w.r.t. si. All existing methods estimate the gradient of the loss `(ŷ, y) w.r.t. si based
on chain rule, which can be formulated into a unified form below.

Specifically, we take the pruned neuron x3 in Figure 1 as an example, the gradient is calculated as

∇s3`(ŷ, y) =
∂`(ŷ, y)

∂x̂3︸ ︷︷ ︸
a

(
w>:,3xin

)︸ ︷︷ ︸
forward

∂m3

∂s3
. (1)

Existing parametric methods developed different ways to estimate ∂m3

∂s3
. Actually, for cases (ii) and

(iii), the gradients are well-defined and thus can be calculated directly. STE is used to estimate the
gradient in case (i) [42]. For cases (iv), [44, 37, 47] adopt STE and Gumbel-Softmax.

4

In Eqn.(1), the term (a) is always nonzero especially when x̂3 is followed by BN. Hence, we can see
that even for the pruned neuron x3, the gradient ∂m3

∂s3
can be nonzero in all four cases. This means the

backward propagation has to go though all the neurons/channels, leading to dense computation.

At last, we can know from Eqn.(1) that forward propagation in existing methods cannot be completely
sparse. Although w>:,3xin can be computed sparsely as in general models xin could be a sparse
tensor of a layer with some channels being pruned, we need to calculate it for each neuron via forward
propagation to calculate RHS of Eqn.(1). Thus, even if carefully implemented, the computational
cost of forward propagation can only be reduced to ρ ∗ 100% instead of ρ2 ∗ 100% as in inference.

That’s why we argue that existing methods need dense computation at least in backward propagation.
So they cannot speed up the training process effectively in practice.
Remark 2. The authors of GrowEfficient [44] confirmed that actually they also calculated the
gradient of qc w.r.t, sc in their Eqn.(6) via STE even if qc = 0. Thus need dense backward propagation.

4 Channel-level Completely Sparse Neural Network Training

Below, we present our sparse neural network training framework and the efficient training algorithm.

4.1 Framework of Channel-level Sparse Training

Given a convolutional network f(x;w), let {Fc : c ∈ C} be the set of filters with C being the set of
indices of all the channels. To parameterize the network structure, we associate each Fc with a binary
mask mc, which is an independent Bernoulli random variable. Thus, each channel is computed as

xout, c = xin ∗ (Fcmc) ,

with ∗ being the convolution operation. Inspired by [47], to avoid the problems, e.g., gradient
vanishing, we parameterize mc directly on the probability sc, i.e., mc equals to 1 and 0 with the
probabilities sc and 1 − sc, respectively. Thus, we can control the channel size by the sum of sc.
Following [47], we can formulate channel-level sparse network training into the following framework:

min
w,s

Ep(m|s) L(w,m) :=
1

N

N∑
i=1

` (f (xi;w,m) ,yi) (2)

s.t. w ∈ Rn, s ∈ S := {s ∈ [0, 1]|C| : 1>s ≤ K},

where {(xi,yi)}Ni=1 is the training dataset, w is the weights of the original network, f (·; ·, ·) is
the pruned network, and `(·, ·) is the loss function, e.g, cross entropy loss. K = ρ|C| controls the
remaining channel size with ρ being the remaining ratio of the channels.

Discussion. We’d like to point out that although our framework is inspired by [47], our main
contribution is the efficient solver comprised of completely sparse forward/backward propagation
for Problem (2). Moreover, our framework can prune the weights in fully connected layers together,
since we can associate each weight with an independent mask.

4.2 Completely Sparse Training with Variance Reduced Policy Gradient

Now we present our completely sparse training method, which can solve Problem (2) via completely
sparse forward and backward propagation. The key idea is to separate the training iteration into filter
update and structure parameter update so that the sparsity can be fully exploited.

4.2.1 Filter Update via Completely Sparse Computation

It is easy to see that the computation of the gradient w.r.t. the filters can be sparsified completely. To
prove this point, we just need to clarify the following two things:

• We do not need to update the filters corresponding to the pruned channels. Consider a
pruned channel c, i.e., mc = 0, then due to the chain rule, we can have

∂` (f (xi;w,m))

∂Fc
=
∂` (f (xi;w,m))

∂xout,c

∂xout,c
∂Fc

≡ 0,

5

the last equation holds since xout,c ≡ 0. This indicates that the gradient w.r.t the pruned
filter Fc is always 0, and thus Fc does not need to be updated.

• The error cannot pass the pruned channels via backward propagation. Consider a pruned
channel c, we denote its output before masking as x̂out,c = xin ∗ Fc, then the error
propagating through this channel can be computed as

∂` (f (xi;w,m))

∂x̂out,c
=
∂` (f (xi;w,m))

∂xout,c

∂xout,c
x̂out,c

≡ 0.

This demonstrates that to calculate the gradient w.r.t. the unpruned filters, the backward
propagation does not need to go through any pruned channels.

Therefore, the filters can be updated via completely sparse backward propagation.

4.2.2 Structure Parameter Update via Variance Reduced Policy Gradient

We notice that policy gradient estimator (PGE) can estimate the gradient via forward propagation,
avoiding the pathology of chain rule based estimators as dicussed in Section 3. For abbreviation, we
denote L(w,m) as L(m) since w can be viewed as a constant here. The objective can be written as

Φ(s) = Ep(m|s) L(m),

which can be optimized using gradient descent:

s← s− η∇Φ(s).

with learning rate η. One can obtain a stochastic unbiased estimate of the gradient∇Φ(s) using PGE:

∇Φ(s) = Ep(m|s) L(m)∇s ln p(m|s), (PGE)

leading to Policy Gradient method, which may be regarded as a stochastic gradient descent algorithm:

s← s− ηL(m)∇s ln p(m|s). (3)

In Eqn.(3), L(m) can be computed via completely sparse forward propagation and the computational
cost of ∇s ln p(m|s) = m−s

s(1−s) is negligible, therefore PGE is computationally efficient.

However, in accordance with the empirical results reported in [33, 15], we found that standard PGE
suffers from high variance and does not work in practice. Below we will develop a Variance Reduced
Policy Gradient Estimator (VR-PGE) starting from theoretically analyzing the variance of PGE.

Firstly, we know that this variance of PGE is

Ep(m|s) L2(m)‖∇s ln p(m|s)‖22 − ‖∇Φ(s)‖22,

which can be large because L(m) is large.

Mean Field theory [36] indicates that, while L(m) can be large, the term L(m)− L(m′) is small
when m and m′ are two independent masks sampled from a same distributionp(m|s) (see the
appendix for the details). This means that we may consider the following variance reduced precondi-
tioned policy gradient estimator:

Em′∼p(m′|s)Em∼p(m|s) (L(m)− L(m′))Hα(s)∇s ln p(m|s), (VR-PGE)

where Hα(s) is a specific diagonal preconditioning matrix

Hα(s) = diag (s ◦ (1− s))
α
, (4)

with α ∈ (0, 1) and ◦ being the element-wise product. It plays a role as adaptive step size and it is
shown that this term can reduce the variance of the stochastic PGE term∇s ln p(m|s). The details
can be found in the appendix. Thus Φ(s) can be optimized via:

s← s− η (L (m)− L (m′))Hα(s)∇s ln p(m|s). (5)

In our experiments, we set α to be 1
2 for our estimator VR-PGE. The theorem below demonstrates

that VR-PGE can have bounded variance.

6

Algorithm 1 Completely Sparse Neural Network Training
Input: target remaining ratio ρ, a dense network w, the step size η, and parameter α in (4) .
1: Initialize w, let s = ρ1.
2: for training epoch t = 1, 2 . . . T do
3: for each training iteration do
4: Sample mini batch of data B = {(x1,y1) , . . . , (xB ,yB)}.
5: Sample m(i) from p(m|s), i = 1, 2.
6: Update s and w

s← projS(z) with z = s− η
(
LB(w,m(1))− LB(w,m(2))

)
Hα(s)m(1)−s

s(1−s) ,

w ← w − η∇wLB
(
w,m(1)

)
7: end for
8: end for
9: return A pruned network w ◦m by sampling a mask m from the distribution p(m|s).

Theorem 1. Suppose m and m′ are two independent masks sampled from the Bernoulli distribution
p(m|s), then for any α ∈ [12 , 1) and s ∈ (0, 1)|C|, the variance is bounded for

(L(m)− L(m′))Hα(s)∇s ln p(m|s)

Finally, we provide a complete view of our sparse training algorithm in Algorithm 1, which is
essentially a projected stochastic gradient descent equipped with our efficient gradient estimators
above. The projection operator in Algorithm 1 can be computed efficiently using Theorem 1 of [47].

Discussion. In our algorithm, benefited from our constraint on s, the channel size of the neural
network during training can be strictly controlled. This is in contrast with GrowEfficient [44], which
ultilizes regularizer term to control the model size and has situations where model size largely drift
away from desired. This will have larger demand for the GPU memory storage and have more risk
that memory usage may explode, especially when we utilize sparse learning to explore larger models.
Moreover, our forward and backward propagations are completely sparse, i.e., they do not need to
go through any pruned channels. Therefore, the computational cost of each training iteration can be
roughly reduced to ρ2 ∗ 100% of the dense network.

5 Experiments

In this section, we conduct a series of experiments to demonstrate the outstanding performance
of our method. We divide the experiments into five parts. In part one, we compare our method
with several state-of-the-art methods on CIFAR-10 [17] using VGG-16 [35], ResNet-20 [11] and
WideResNet-28-10 [45] to directly showcase the superiority of our method. In part two, we directly
compare with state-of-the-art method GrowEfficient [44] especially on extremely sparse regions,
and on two high capacity networks VGG-19 [35] and ResNet-32 [11] on CIFAR-10/100 [17]. In
part three, we conduct experiments on a large-scale dataset ImageNet [3] with ResNet-50 [11] and
MobileNetV1 [14] and compare with GrowEfficient [44] across a wide sparsity region. In part four,
we present the train-computational time as a supplementary to the conceptual train-cost savings
to justify the applicability of sparse training method into practice. In part five, we present further
analysis on epoch-wise train-cost dynamics and experimental justification of variance reduction of
VR-PGE. Due to the space limitation, we postpone the experimental configurations, calculation
schemes on train-cost savings and train-computational time and additional experiments into appendix.

5.1 VGG-16, ResNet-20 and WideResNet-28-10 on CIFAR-10

Table 2 presents Top-1 validation accuracy, parameters, FLOPs and train-cost savings comparisons
with channel pruning methods L1-Pruning [20], SoftNet [12], ThiNet [27], Provable [21] and sparse
training method GrowEfficient [44]. SoftNet can train from scratch but requires completely dense
computation. Other pruning methods all require pretraining of dense model and multiple rounds of
pruning and finetuning, which makes them slower than vanilla dense model training. Therefore the
train-cost savings of these methods are below 1× and thus shown as ("-") in Table 2.

7

Table 2: Comparison with the channel pruning methods L1-Pruning [20], SoftNet [12], ThiNet [27],
Provable [21] and one channel sparse training method GrowEfficient [44] on CIFAR-10.

Model Method Val Acc(%) Params(%) FLOPs(%) Train-Cost Savings(×)

VGG-16

Original 92.9 100 100 1×
L1-Pruning 91.8 19.9 19.9 -

SoftNet 92.1 36.0 36.1 -
ThiNet 90.8 36.0 36.1 -

Provable 92.4 5.7 15.0 -
GrowEfficient 92.5 5.0 13.6 1.22×

Ours 92.5 4.4 8.7 8.69×

ResNet-20

Original 91.3 100 100 1×
L1-Pruning 90.9 55.6 55.4 -

SoftNet 90.8 53.6 50.6 -
ThiNet 89.2 67.1 67.3 -

Provable 90.8 37.3 54.5 -
GrowEfficient 90.91 35.8 50.2 1.13×

Ours 90.93 35.1 36.1 2.09×

WRN-28-10

Original 96.2 100 100 1×
L1-Pruning 95.2 20.8 49.5 -

GrowEfficient 95.3 9.3 28.3 1.17×
Ours 95.6 8.4 7.9 9.39×

0 10 20 30
82

84

86

88

90

92

94

Ac
cu

ra
cy

 (%
)

ResNet-32 on CIFAR-10

0 10 20 30
FLOPs (%)

0

10

20

30

Tr
ai

n-
co

st
 S

av
in

gs
 (x

)

0 10 20 30

88

89

90

91

92

93

VGG-19 on CIFAR-10

0 10 20 30
FLOPs (%)

0

10

20

30

40

0 10 20 30
40

45

50

55

60

65

70
ResNet-32 on CIFAR-100

0 10 20 30
FLOPs (%)

0

10

20

30

40

50

60

0 10 20 30

40

50

60

70

VGG-19 on CIFAR-100

0 10 20 30
FLOPs (%)

0

10

20

30

40

50

GrowEfficient Ours

Figure 2: Comparison of Top-1 Validation Accuracy and Train-cost Savings on CIFAR-10/100.

GrowEfficient [44] is a recently proposed state-of-the-art channel-level sparse training method
showing train-cost savings compared with dense training. As described in Section 3, GrowEfficient
features completely dense backward and partially sparse forward pass, making its train-cost saving
limited by 3

2 . By contrast, the train-cost savings of our method is not limited by any constraint. The
details of how train-cost savings are computed can be found in appendix.

Table 2 shows that our method generally exhibits better performance in terms of validation accuracy,
parameters and particularly FLOPs. In terms of train-cost savings, our method shows at least 1.85×
speed-up against GrowEfficient [44] and up to 9.39× speed-up against dense training.

5.2 Wider Range of Sparsity on CIFAR-10/100 on VGG-19 and ResNet-32

In this section, we explore sparser regions of training efficiency to present a broader comparision
with state-of-the-art channel sparse training method GrowEfficient [44].

We plot eight figures demonstrating the relationships between the Top-1 validation accuracy, FLOPs
and train-cost savings. We find that our method generally achieves higher accuracy under same FLOPs

8

Table 3: Comparison with the channel pruning methods L1-Pruning [20], SoftNet [12], Provable [21]
and one channel sparse training method GrowEfficient [44] on ImageNet-1K.

Model Method Val Acc(%) Params(%) FLOPs(%) Train-Cost Savings(×)

ResNet-50

Original 77.0 100 100 1×
L1-Pruning 74.7 85.2 77.5 -

SoftNet 74.6 - 58.2 -
Provable 75.2 65.9 70.0 -

GrowEfficient 75.2 61.2 50.3 1.10×
Ours 76.0 48.2 46.8 1.60×
Ours 73.5 27.0 24.7 3.02×
Ours 69.3 10.8 10.1 7.36×

20 30 40
FLOPs (%)

0

20

40

60

Ac
cu

ra
cy

 (%
)

MobileNetV1

20 30 40
FLOPs (%)

1.5

2.0

2.5

3.0

3.5

Tr
ai

n-
co

st
 S

av
in

gs
 (x

)

MobileNetV1

0 50 100 150
Epoch

0.2

0.4

0.6

0.8

Tr
ai

n-
co

st
(%

)

Epoch-wise Train-cost

1 3 5 7 9 11 13 15
Layer Index

10−3

10−2

10−1

100

101

102

Gr
ad

ie
nt

 V
ar

ia
nc

e

Variance Comparison

GrowEfficient Ours PGE VR-PGE

Figure 3: Top-1 Validation Accuracy and Train-cost Savings on MobileNetV1 on ImageNet. Epoch-
wise Train-cost and Variance Comparison on VGG-19 on CIFAR-10.

settings. To be noted, the train-cost savings of our method is drastically higher than GrowEfficient
[44], reaching up to 58.8× when sparisty approches 1.56% on ResNet-32 on CIFAR-100, while the
speed-up of GrowEfficient is limited by 3

2 .

5.3 ResNet-50 and MobileNetV1 on ImageNet-1K

In this section, we present the performance boost obtained by our method on ResNet-50 and Mo-
bileNetV1 on ImageNet-1K [3]. Our method searches a model with 76.0% Top-1 accuracy, 48.2%
parameters and 46.8% FLOPs beating all compared state-of-the-art methods. The train-cost saving
comes up to 1.60× and is not prominent due to the accuracy constraint to match up with compared
methods. Therefore we give a harder limit to the channel size and present sparser results on the same
Table 3, reaching up to 7.36× speed-up while still preserving 69.3% Top-1 accuracy. For the already
compact model MobileNetV1, we plot two figures in Figure 3 comparing with GrowEfficient [44].
We find that our method is much stabler in sparse regions and obtains much higher train-cost savings.

5.4 Actual Training Computational Time Testing

In this section, we provide actual training computational time on VGG-19 and CIFAR-10. The GPU
in test is RTX 2080 Ti and the deep learning framework is Pytorch [31]. The intent of this section is
to justify the feasibility of our method in reducing actual computational time cost, rather than staying
in conceptual training FLOPs reduction. The computational time cost is measured by wall clock
time, focusing on forward and backward propagation. We present training computational time in
Table 4 with varying sparsity as in Figure 2. It shows that the computational time savings increases
steadily with the sparisty. We also notice the gap between the savings in FLOPS and computational
time. The gap comes from the difference between FLOPs and actual forward/backward time. More
specifically, forward/backward time is slowed down by data-loading processes and generally affected
by hardware latency and throughput, network architecture, etc. At extremely sparse regions, the pure
computational time of sparse networks only occupies little of the forward/backward time and the cost
of data management and hardware latency dominates the wall-clock time. Despite this gap, it can
be expected that our train-cost savings can be better translated into real speed-up in exploring large

9

models where the pure computational time dominates the forward/backward time, which promises a
bright future for making training infeasibly large models into practice.

Table 4: Train-computational Time on VGG-19 with CIFAR-10. The computational time saving is
not as prominent as train-cost savings while still achieving nearly an order of reduction, preserving
87.97% accuracy.

Model Val Acc(%) Params(%) FLOPs(%) Train-Cost
Savings(×)

Train-Computational
Time(min)

VGG-19

93.84 100.00 100.00 1.00× 21.85 (1.00×)
93.46 23.71 28.57 2.64× 14.04 (1.55×)
93.11 12.75 19.33 3.89× 10.43 (2.09×)
92.23 6.69 10.27 7.30× 6.83 (3.20×)
90.82 3.06 4.94 15.28× 4.86 (4.50×)
87.97 0.80 1.70 44.68× 2.95 (7.41×)

5.5 Further Analysis

[Epoch-wise Train-cost Dynamics of Sparse Training Process] We plot the train-cost dynamics
in Figure 3. The vertical label is the ratio of train-cost to dense training, the inverse of train-cost
savings. This demonstrates huge difference between our method and GrowEfficient [44]. The model
searched by our method exhibits 92.73% Top-1 accuracy, 16.68% parameters, 14.28% FLOPs with
5.28× train-cost savings, while the model searched by GrowEfficient exhibits 92.47% Top-1 accuracy,
18.08% parameters, 22.74% FLOPs with 1.21× train-cost savings.

[Experimental Verification of Variance Reduction of VR-PGE against PGE] We plot the mean
of variance of gradients of channels from different layers. The model checkpoint and input data are
selected randomly. The gradients are calculated in two approaches, VR-PGE and PGE. From the
rightmost graph of Figure 3, we find that the VR-PGE reduces variance significantly, up to 3 orders
of magnitude.

6 Conclusion

This paper proposes an efficient sparse neural network training method with completely sparse forward
and backward passes. A novel gradient estimator named VR-PGE is developed for updating structure
parameters, which estimates the gradient via two sparse forward propagation. We theoretically proved
that VR-PGE has bounded variance. In this way, we can separate the weight and structure update
in training and making the whole training process completely sparse. Emprical results demonstrate
that the proposed method can significantly accelerate the training process of DNNs in practice. This
enables us to explore larger-sized neural networks in the future.

Acknowledgments and Disclosure of Funding

This work is supported by GRF 16201320.

10

References
[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard,

et al. Tensorflow: A system for large-scale machine learning. In 12th {USENIX} symposium on operating
systems design and implementation ({OSDI} 16), pages 265–283, 2016.

[2] Y. Bengio, N. Léonard, and A. Courville. Estimating or propagating gradients through stochastic neurons
for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

[3] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and pattern recognition, pages 248–255. Ieee,
2009.

[4] T. Dettmers and L. Zettlemoyer. Sparse networks from scratch: Faster training without losing performance.
arXiv preprint arXiv:1907.04840, 2019.

[5] U. Evci, T. Gale, J. Menick, P. S. Castro, and E. Elsen. Rigging the lottery: Making all tickets winners. In
International Conference on Machine Learning, pages 2943–2952. PMLR, 2020.

[6] J. Frankle, G. K. Dziugaite, D. M. Roy, and M. Carbin. Stabilizing the lottery ticket hypothesis. arXiv
preprint arXiv:1903.01611, 2019.

[7] Y. Gu, W. Zhang, C. Fang, J. D. Lee, and T. Zhang. How to characterize the landscape of overparameterized
convolutional neural networks. In Advances in Neural Information Processing Systems, volume 33, pages
3797–3807, 2020.

[8] Y. Guo, A. Yao, and Y. Chen. Dynamic network surgery for efficient dnns. In Advances in neural
information processing systems, pages 1379–1387, 2016.

[9] S. Han, H. Mao, and W. J. Dally. Deep compression: Compressing deep neural networks with pruning,
trained quantization and huffman coding. International Conference on Learning Representations, 2016.

[10] S. Han, J. Pool, J. Tran, and W. Dally. Learning both weights and connections for efficient neural network.
In Advances in neural information processing systems, pages 1135–1143, 2015.

[11] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

[12] Y. He, G. Kang, X. Dong, Y. Fu, and Y. Yang. Soft filter pruning for accelerating deep convolutional neural
networks. In IJCAI International Joint Conference on Artificial Intelligence, 2018.

[13] Y. He, X. Zhang, and J. Sun. Channel pruning for accelerating very deep neural networks. In Proceedings
of the IEEE International Conference on Computer Vision, pages 1389–1397, 2017.

[14] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam.
Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint
arXiv:1704.04861, 2017.

[15] E. Jang, S. Gu, and B. Poole. Categorical reparameterization with gumbel-softmax. International
Conference on Learning Representations, 2017.

[16] M. Kang and B. Han. Operation-aware soft channel pruning using differentiable masks. In International
Conference on Machine Learning, pages 5122–5131. PMLR, 2020.

[17] A. Krizhevsky. Learning multiple layers of features from tiny images. Master’s thesis, University of Tront,
2009.

[18] A. Kusupati, V. Ramanujan, R. Somani, M. Wortsman, P. Jain, S. Kakade, and A. Farhadi. Soft threshold
weight reparameterization for learnable sparsity. In Proceedings of the International Conference on
Machine Learning, July 2020.

[19] C. Lemaire, A. Achkar, and P.-M. Jodoin. Structured pruning of neural networks with budget-aware
regularization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 9108–9116, 2019.

[20] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf. Pruning filters for efficient convnets. International
Conference on Learning Representations, 2017.

[21] L. Liebenwein, C. Baykal, H. Lang, D. Feldman, and D. Rus. Provable filter pruning for efficient neural
networks. In International Conference on Learning Representations, 2019.

11

[22] B. Liu, M. Wang, H. Foroosh, M. Tappen, and M. Pensky. Sparse convolutional neural networks. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 806–814, 2015.

[23] S. Liu, T. Chen, X. Chen, Z. Atashgahi, L. Yin, H. Kou, L. Shen, M. Pechenizkiy, Z. Wang, and
D. C. Mocanu. Sparse training via boosting pruning plasticity with neuroregeneration. arXiv preprint
arXiv:2106.10404, 2021.

[24] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang. Learning efficient convolutional networks through
network slimming. In Proceedings of the IEEE International Conference on Computer Vision, pages
2736–2744, 2017.

[25] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell. Rethinking the value of network pruning. In
International Conference on Learning Representations, 2018.

[26] C. Louizos, M. Welling, and D. P. Kingma. Learning sparse neural networks through l_0 regularization. In
International Conference on Learning Representations, 2018.

[27] J.-H. Luo, J. Wu, and W. Lin. Thinet: A filter level pruning method for deep neural network compression.
In Proceedings of the IEEE international conference on computer vision, pages 5058–5066, 2017.

[28] S. Lym, E. Choukse, S. Zangeneh, W. Wen, S. Sanghavi, and M. Erez. Prunetrain: fast neural network
training by dynamic sparse model reconfiguration. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, pages 1–13, 2019.

[29] D. C. Mocanu, E. Mocanu, P. Stone, P. H. Nguyen, M. Gibescu, and A. Liotta. Scalable training of artificial
neural networks with adaptive sparse connectivity inspired by network science. Nature communications,
9(1):1–12, 2018.

[30] H. Mostafa and X. Wang. Parameter efficient training of deep convolutional neural networks by dynamic
sparse reparameterization. In International Conference on Machine Learning, pages 4646–4655. PMLR,
2019.

[31] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, et al. Pytorch: An imperative style, high-performance deep learning library. Advances in neural
information processing systems, 32:8026–8037, 2019.

[32] A. Renda, J. Frankle, and M. Carbin. Comparing rewinding and fine-tuning in neural network pruning. In
International Conference on Learning Representations, 2019.

[33] D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approximate inference in
deep generative models. In International conference on machine learning, pages 1278–1286. PMLR, 2014.

[34] P. Savarese, H. Silva, and M. Maire. Winning the lottery with continuous sparsification. Advances in
Neural Information Processing Systems, 33, 2020.

[35] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition.
International Conference on Learning Representations, 2015.

[36] M. Song, A. Montanari, and P. Nguyen. A mean field view of the landscape of two-layers neural networks.
Proceedings of the National Academy of Sciences, 115:E7665–E7671, 2018.

[37] S. Srinivas, A. Subramanya, and R. Venkatesh Babu. Training sparse neural networks. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pages 138–145, 2017.

[38] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser, and I. Polosukhin.
Attention is all you need. In Advances in Neural Information Processing Systems, 2017.

[39] C. Wang, G. Zhang, and R. Grosse. Picking winning tickets before training by preserving gradient flow. In
International Conference on Learning Representations, 2019.

[40] Z. Wang, J. Wohlwend, and T. Lei. Structured pruning of large language models. In Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 6151–6162,
2020.

[41] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li. Learning structured sparsity in deep neural networks. In
Advances in neural information processing systems, pages 2074–2082, 2016.

[42] X. Xiao, Z. Wang, and S. Rajasekaran. Autoprune: Automatic network pruning by regularizing auxiliary
parameters. In Advances in Neural Information Processing Systems, pages 13681–13691, 2019.

12

[43] M. Ye, C. Gong, L. Nie, D. Zhou, A. Klivans, and Q. Liu. Good subnetworks provably exist: Pruning via
greedy forward selection. In International Conference on Machine Learning, pages 10820–10830. PMLR,
2020.

[44] X. Yuan, P. H. P. Savarese, and M. Maire. Growing efficient deep networks by structured continuous
sparsification. In International Conference on Learning Representations, 2020.

[45] S. Zagoruyko and N. Komodakis. Wide residual networks. In British Machine Vision Conference 2016.
British Machine Vision Association, 2016.

[46] W. Zeng and R. Urtasun. MLPrune: Multi-layer pruning for automated neural network compression, 2019.

[47] X. Zhou, W. Zhang, H. Xu, and T. Zhang. Effective sparsification of neural networks with global sparsity
constraint. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 3599–3608, 2021.

[48] M. Zhu and S. Gupta. To prune, or not to prune: exploring the efficacy of pruning for model compression.
arXiv preprint arXiv:1710.01878, 2017.

13

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [No] This is

a sparse training algorithm aiming to speed up deep neural network training process,
with no potential negative societal impacts.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [No]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14

