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Abstract
Large-scale vision and language representation learning has shown promising
improvements on various vision-language tasks. Most existing methods employ a
transformer-based multimodal encoder to jointly model visual tokens (region-based
image features) and word tokens. Because the visual tokens and word tokens
are unaligned, it is challenging for the multimodal encoder to learn image-text
interactions. In this paper, we introduce a contrastive loss to ALign the image and
text representations BEfore Fusing (ALBEF) them through cross-modal attention,
which enables more grounded vision and language representation learning. Unlike
most existing methods, our method does not require bounding box annotations nor
high-resolution images. To improve learning from noisy web data, we propose
momentum distillation, a self-training method which learns from pseudo-targets
produced by a momentum model. We provide a theoretical analysis of ALBEF from
a mutual information maximization perspective, showing that different training
tasks can be interpreted as different ways to generate views for an image-text
pair. ALBEF achieves state-of-the-art performance on multiple downstream vision-
language tasks. On image-text retrieval, ALBEF outperforms methods that are
pre-trained on orders of magnitude larger datasets. On VQA and NLVR2, ALBEF
achieves absolute improvements of 2.37% and 3.84% compared to the state-of-
the-art, while enjoying faster inference speed. Code and models are available at
https://github.com/salesforce/ALBEF.

1 Introduction
Vision-and-Language Pre-training (VLP) aims to learn multimodal representations from large-scale
image-text pairs that can improve downstream Vision-and-Language (V+L) tasks. Most existing VLP
methods (e.g. LXMERT [1], UNITER [2], OSCAR [3]) rely on pre-trained object detectors to extract
region-based image features, and employ a multimodal encoder to fuse the image features with word
tokens. The multimodal encoder is trained to solve tasks that require joint understanding of image
and text, such as masked language modeling (MLM) and image-text matching (ITM).

While effective, this VLP framework suffers from several key limitations: (1) The image features and
the word token embeddings reside in their own spaces, which makes it challenging for the multimodal
encoder to learn to model their interactions; (2) The object detector is both annotation-expensive
and compute-expensive, because it requires bounding box annotations during pre-training, and high-
resolution (e.g. 600⇥1000) images during inference; (3) The widely used image-text datasets [4, 5]
are collected from the web and are inherently noisy, and existing pre-training objectives such as
MLM may overfit to the noisy text and degrade the model’s generalization performance.

We propose ALign BEfore Fuse (ALBEF), a new VLP framework to address these limitations. We
first encode the image and text independently with a detector-free image encoder and a text encoder.
Then we use a multimodal encoder to fuse the image features with the text features through cross-
modal attention. We introduce an intermediate image-text contrastive (ITC) loss on representations
from the unimodal encoders, which serves three purposes: (1) it aligns the image features and the
text features, making it easier for the multimodal encoder to perform cross-modal learning; (2) it
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improves the unimodal encoders to better understand the semantic meaning of images and texts; (3)
it learns a common low-dimensional space to embed images and texts, which enables the image-text
matching objective to find more informative samples through our contrastive hard negative mining.

To improve learning under noisy supervision, we propose Momentum Distillation (MoD), a simple
method which enables the model to leverage a larger uncurated web dataset. During training, we
keep a momentum version of the model by taking the moving-average of its parameters, and use the
momentum model to generate pseudo-targets as additional supervision. With MoD, the model is not
penalized for producing other reasonable outputs that are different from the web annotation. We show
that MoD not only improves pre-training, but also downstream tasks with clean annotations.

We provide theoretical justifications on ALBEF from the perspective of mutual information maximiza-
tion. Specifically, we show that ITC and MLM maximize a lower bound on the mutual information
between different views of an image-text pair, where the views are generated by taking partial
information from each pair. From this perspective, our momentum distillation can be interpreted as
generating new views with semantically similar samples. Therefore, ALBEF learns vision-language
representations that are invariant to semantic-preserving transformations.

We demonstrate the effectiveness of ALBEF on various downstream V+L tasks including image-text
retrieval, visual question answering, visual reasoning, visual entailment, and weakly-supervised visual
grounding. ALBEF achieves substantial improvements over existing state-of-the-art methods. On
image-text retrieval, it outperforms methods that are pre-trained on orders of magnitude larger datasets
(CLIP [6] and ALIGN [7]). On VQA and NLVR2, it achieves absolute improvements of 2.37% and
3.84% compared to the state-of-the-art method VILLA [8], while enjoying much faster inference
speed. We also provide quantitative and qualitative analysis on ALBEF using Grad-CAM [9], which
reveals its ability to perform accurate object, attribute and relationship grounding implicitly.

2 Related Work
2.1 Vision-Language Representation Learning
Most existing work on vision-language representation learning fall into two categories. The first
category focuses on modelling the interactions between image and text features with transformer-
based multimodal encoders [10, 11, 12, 13, 1, 14, 15, 2, 3, 16, 8, 17, 18]. Methods in this category
achieve superior performance on downstream V+L tasks that require complex reasoning over image
and text (e.g. NLVR2 [19], VQA [20]), but most of them require high-resolution input images and
pre-trained object detectors. A recent method [21] improves inference speed by removing the object
detector, but results in lower performance. The second category focuses on learning separate unimodal
encoders for image and text [22, 23, 6, 7]. The recent CLIP [6] and ALIGN [7] perform pre-training
on massive noisy web data using a contrastive loss, one of the most effective loss for representation
learning [24, 25, 26, 27]. They achieve remarkable performance on image-text retrieval tasks, but
lack the ability to model more complex interactions between image and text for other V+L tasks [21].

ALBEF unifies the two categories, leading to strong unimodal and multimodal representations with
superior performance on both retrieval and reasoning tasks. Furthermore, ALBEF does not require
object detectors, a major computation bottleneck for many existing methods [1, 2, 3, 8, 17].

2.2 Knowledge Distillation
Knowledge distillation [28] aims to improve a student model’s performance by distilling knowledge
from a teacher model, usually through matching the student’s prediction with the teacher’s. While
most methods focus on distilling knowledge from a pre-trained teacher model [28, 29, 30, 31, 32],
online distillation [33, 34] simultaneously trains multiple models and use their ensemble as the
teacher. Our momentum distillation can be interpreted as a form of online self-distillation, where a
temporal ensemble of the student model is used as the teacher. Similar ideas have been explored in
semi-supervised learning [35], label noise learning [36], and very recently in contrastive learning [37].
Different from existing studies, we theoretically and experimentally show that momentum distillation
is a generic learning algorithm that can improve the model’s performance on many V+L tasks.

3 ALBEF Pre-training
In this section, we first introduce the model architecture (Section 3.1). Then we delineate the pre-
training objectives (Section 3.2), followed by the proposed momentum distillation (Section 3.3).
Lastly we describe the pre-training datasets (Section 3.4) and implementation details (Section 3.5).
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Figure 1: Illustration of ALBEF. It consists of an image encoder, a text encoder, and a multimodal encoder.
We propose an image-text contrastive loss to align the unimodal representations of an image-text pair before
fusion. An image-text matching loss (using in-batch hard negatives mined through contrastive similarity) and a
masked-language-modeling loss are applied to learn multimodal interactions between image and text. In order to
improve learning with noisy data, we generate pseudo-targets using the momentum model (a moving-average
version of the base model) as additional supervision during training.

3.1 Model Architecture

As illustrated in Figure 1, ALBEF contains an image encoder, a text encoder, and a multimodal
encoder. We use a 12-layer visual transformer ViT-B/16 [38] as the image encoder, and initialize it
with weights pre-trained on ImageNet-1k from [31]. An input image I is encoded into a sequence of
embeddings: {vcls,v1, ...,vN}, where vcls is the embedding of the [CLS] token. We use a 6-layer
transformer [39] for both the text encoder and the multimodal encoder. The text encoder is initialized
using the first 6 layers of the BERTbase [40] model, and the multimodal encoder is initialized using
the last 6 layers of the BERTbase. The text encoder transforms an input text T into a sequence of
embeddings {wcls,w1, ...,wN}, which is fed to the multimodal encoder. The image features are
fused with the text features through cross attention at each layer of the multimodal encoder.

3.2 Pre-training Objectives

We pre-train ALBEF with three objectives: image-text contrastive learning (ITC) on the unimodal
encoders, masked language modeling (MLM) and image-text matching (ITM) on the multimodal
encoder. We improve ITM with online contrastive hard negative mining.

Image-Text Contrastive Learning aims to learn better unimodal representations before fusion. It
learns a similarity function s = gv(vcls)

>gw(wcls), such that parallel image-text pairs have higher
similarity scores. gv and gw are linear transformations that map the [CLS] embeddings to normalized
lower-dimensional (256-d) representations. Inspired by MoCo [24], we maintain two queues to
store the most recent M image-text representations from the momentum unimodal encoders. The
normalized features from the momentum encoders are denoted as g0v(v0

cls) and g0w(w
0
cls). We define

s(I, T ) = gv(vcls)
>g0w(w

0
cls) and s(T, I) = gw(wcls)

>g0v(v
0
cls).

For each image and text, we calculate the softmax-normalized image-to-text and text-to-image
similarity as:

pi2tm (I) =
exp(s(I, Tm)/⌧)

PM
m=1 exp(s(I, Tm)/⌧)

, pt2im (T ) =
exp(s(T, Im)/⌧)

PM
m=1 exp(s(T, Im)/⌧)

(1)

where ⌧ is a learnable temperature parameter. Let yi2t
(I) and yt2i

(T ) denote the ground-truth
one-hot similarity, where negative pairs have a probability of 0 and the positive pair has a probability
of 1. The image-text contrastive loss is defined as the cross-entropy H between p and y:

Litc =
1

2
E(I,T )⇠D

⇥
H(yi2t

(I),pi2t
(I)) + H(yt2i

(T ),pt2i
(T ))

⇤
(2)
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GT: standing
Top-5 pseudo-targets:
1. walks 
2. walking 
3. runs 
4. running 
5. goes

GT: wild
Top-5 pseudo-targets:
1. zoo 
2. pool 
3. water 
4. pond 
5. wild

“a man [MASK] along a road in front of 
nature in summer”

“polar bear in the [MASK]” “a [MASK] waterfall in the deep woods”

GT: remote
Top-5 pseudo-targets:
1. small 
2. beautiful 
3. little 
4. secret 
5. secluded

GT: breakdown of the car on the road 
Top-5 pseudo-targets:
1. young woman get out of the car near the road 
2. a woman inspects her damaged car under a tree 
3. a woman looking into a car after locking her keys 

inside 
4. young woman with a broken car calling for help 
5. breakdown of the car on the road

GT: the harbor a small village
Top-5 pseudo-targets:
1. the harbour with boats and houses 
2. replica of the sailing ship in the harbour 
3. ships in the harbor of the town 
4. the harbor a small village 
5. boats lined up alongside the geographical 

feature category in the village

Figure 2: Examples of the pseudo-targets for MLM (1st row) and ITC (2nd row). The pseudo-targets can capture
visual concepts that are not described by the ground-truth text (e.g. “beautiful waterfall”, “young woman”).

Masked Language Modeling utilizes both the image and the contextual text to predict the masked
words. We randomly mask out the input tokens with a probability of 15% and replace them with the
special token [MASK]1. Let T̂ denote a masked text, and pmsk

(I, T̂ ) denote the model’s predicted
probability for a masked token. MLM minimizes a cross-entropy loss:

Lmlm = E(I,T̂ )⇠DH(ymsk,pmsk
(I, T̂ )) (3)

where ymsk is a one-hot vocabulary distribution where the ground-truth token has a probability of 1.

Image-Text Matching predicts whether a pair of image and text is positive (matched) or negative
(not matched). We use the multimodal encoder’s output embedding of the [CLS] token as the joint
representation of the image-text pair, and append a fully-connected (FC) layer followed by softmax
to predict a two-class probability pitm. The ITM loss is:

Litm = E(I,T )⇠DH(yitm,pitm
(I, T )) (4)

where yitm is a 2-dimensional one-hot vector representing the ground-truth label.

We propose a strategy to sample hard negatives for the ITM task with zero computational overhead.
A negative image-text pair is hard if they share similar semantics but differ in fine-grained details.
We use the contrastive similarity from Equation 1 to find in-batch hard negatives. For each image in a
mini-batch, we sample one negative text from the same batch following the contrastive similarity
distribution, where texts that are more similar to the image have a higher chance to be sampled.
Likewise, we also sample one hard negative image for each text.

The full pre-training objective of ALBEF is:
L = Litc + Lmlm + Litm (5)

3.3 Momentum Distillation

The image-text pairs used for pre-training are mostly collected from the web and they tend to be
noisy. Positive pairs are usually weakly-correlated: the text may contain words that are unrelated
to the image, or the image may contain entities that are not described in the text. For ITC learning,
negative texts for an image may also match the image’s content. For MLM, there may exist other
words different from the annotation that describes the image equally well (or better). However, the
one-hot labels for ITC and MLM penalize all negative predictions regardless of their correctness.

To address this, we propose to learn from pseudo-targets generated by the momentum model. The
momentum model is a continuously-evolving teacher which consists of exponential-moving-average
versions of the unimodal and multimodal encoders. During training, we train the base model
such that its predictions match the ones from the momentum model. Specifically, for ITC, we
first compute the image-text similarity using features from the momentum unimodal encoders as
s0(I, T ) = g0v(v

0
cls)

>g0w(w
0
cls) and s0(T, I) = g0w(wcls)

>g0v(v
0
cls). Then we compute soft pseudo-

targets qi2t and qt2i by replacing s with s0 in Equation 1. The ITCMoD loss is defined as:

Lmod
itc = (1� ↵)Litc +

↵

2
E(I,T )⇠D

⇥
KL(qi2t

(I) k pi2t
(I)) + KL(qt2i

(T ) k pt2i
(T ))

⇤
(6)

1following BERT, the replacements are 10% random tokens, 10% unchanged, and 80% [MASK]
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Similarly, for MLM, let qmsk
(I, T̂ ) denote the momentum model’s prediction probability for the

masked token, the MLMMoD loss is:
Lmod
mlm = (1� ↵)Lmlm + ↵E(I,T̂ )⇠DKL(qmsk

(I, T̂ ) k pmsk
(I, T̂ )) (7)

In Figure 2, we show examples of the top-5 candidates from the pseudo-targets, which effectively
capture relevant words/texts for an image. More examples can be found in Appendix.

We also apply MoD to the downstream tasks. The final loss for each task is a weighted combination of
the original task’s loss and the KL-divergence between the model’s prediction and the pseudo-targets.
For simplicity, we set the weight ↵ = 0.4 for all pre-training and downstream tasks 2.

3.4 Pre-training Datasets

Following UNITER [2], we construct our pre-training data using two web datasets (Conceptual
Captions [4], SBU Captions [5]) and two in-domain datasets (COCO [41] and Visual Genome [42]).
The total number of unique images is 4.0M, and the number of image-text pairs is 5.1M. To show
that our method is scalable with larger-scale web data, we also include the much noisier Conceptual
12M dataset [43], increasing the total number of images to 14.1M 3. Details are in Appendix.

3.5 Implementation Details

Our model consists of a BERTbase with 123.7M parameters and a ViT-B/16 with 85.8M parameters.
We pre-train the model for 30 epochs using a batch size of 512 on 8 NVIDIA A100 GPUs. We use the
AdamW [44] optimizer with a weight decay of 0.02. The learning rate is warmed-up to 1e�4 in the
first 1000 iterations, and decayed to 1e�5 following a cosine schedule. During pre-training, we take
random image crops of resolution 256⇥ 256 as input, and also apply RandAugment4 [45]. During
fine-tuning, we increase the image resolution to 384⇥ 384 and interpolate the positional encoding of
image patches following [38]. The momentum parameter for updating the momentum model is set as
0.995, and the size of the queue used for image-text contrastive learning is set as 65,536. We linearly
ramp-up the distillation weight ↵ from 0 to 0.4 within the 1st epoch.

4 A Mutual Information Maximization Perspective
In this section, we provide an alternative perspective of ALBEF and show that it maximizes a lower
bound on the mutual information (MI) between different “views” of an image-text pair. ITC, MLM,
and MoD can be interpreted as different ways to generate the views.

Formally, we define two random variables a and b as two different views of a data point. In self-
supervised learning [24, 25, 46], a and b are two augmentations of the same image. In vision-language
representation learning, we consider a and b as different variations of an image-text pair that capture
its semantic meaning. We aim to learn representations invariant to the change of view. This can
be achieved by maximizing the MI between a and b. In practice, we maximize a lower bound on
MI(a, b) by minimizing the InfoNCE loss [47] defined as:

LNCE = �Ep(a,b)

"
log

exp(s(a, b))
P

b̂2B̂ exp(s(a, b̂))

#
(8)

where s(a, b) is a scoring function (e.g., a dot product between two representations), and B̂ contains
the positive sample b and |B̂|� 1 negative samples drawn from a proposal distribution.

Our ITC loss with one-hot labels (Equation 2) can be re-written as:

Litc = �1

2
Ep(I,T )

⇥
log

exp(s(I, T )/⌧)
PM

m=1 exp(s(I, Tm)/⌧)
+ log

exp(s(T, I)/⌧)
PM

m=1 exp(s(T, Im)/⌧)

⇤
(9)

Minimizing Litc can be seen as maximizing a symmetric version of InfoNCE. Hence, ITC considers
the two individual modalities (i.e., I and T ) as the two views of an image-text pair, and trains the
unimodal encoders to maximize the MI between the image and text views for the positive pairs.

2our experiments show that ↵ = 0.3, 0.4, 0.5 yield similar performance, with ↵ = 0.4 slightly better
3some urls provided by the web datasets have become invalid
4we remove color changes from RandAugment because the text often contains color information
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As shown in [48], we can also interpret MLM as maximizing the MI between a masked word token
and its masked context (i.e. image + masked text). Specifically, we can re-write the MLM loss with
one-hot labels (Equation 3) as

Lmlm = �Ep(I,T̂ )

⇥
log

exp( (ymsk
)
>f(I, T̂ ))

P
y2V exp( (y)>f(I, T̂ ))

⇤
(10)

where  (y) : V ! Rd is a lookup function in the multimodal encoder’s output layer that maps a
word token y into a vector and V is the full vocabulary set, and f(I, T̂ ) is a function that returns the
final hidden state of the multimodal encoder corresponding to the masked context. Hence, MLM
considers the two views of an image-text pair to be: (1) a randomly selected word token, and (2) the
image + the contextual text with that word masked.

Both ITC and MLM generate views by taking partial information from an image-text pair, through
either modality separation or word masking. Our momentum distillation can be considered as
generating alternative views from the entire proposal distribution. Take ITCMoD in Equation 6 as an
example, minimizing KL(pi2t(I), qi2t(I)) is equivalent to minimizing the following objective:

�
X

m

qi2tm (I) log pi2tm (I) = �
X

m

exp(s0(I, Tm)/⌧)
PM

m=1 exp(s
0(I, Tm)/⌧)

log
exp(s(I, Tm)/⌧)

PM
m=1 exp(s(I, Tm)/⌧)

(11)

It maximizes MI(I, Tm) for texts that share similar semantic meaning with the image I because those
texts would have larger qi2tm (I). Similarly, ITCMoD also maximizes MI(Im, T ) for images that are
similar to T . We can follow the same method to show that MLMMoD generates alternative views
y0 2 V for the masked word ymsk, and maximizes the MI between y0 and (I, T̂ ). Therefore, our
momentum distillation can be considered as performing data augmentation to the original views. The
momentum model generates a diverse set of views that are absent in the original image-text pairs, and
encourages the base model to learn representations that capture view-invariant semantic information.

5 Downstream V+L Tasks

We adapt the pre-trained model to five downstream V+L tasks. We introduce each task and our
fine-tuning strategy below. Details of the datasets and fine-tuning hyperparameters are in Appendix.

Image-Text Retrieval contains two subtasks: image-to-text retrieval (TR) and text-to-image retrieval
(IR). We evaluate ALBEF on the Flickr30K [49] and COCO benchmarks, and fine-tune the pre-
trained model using the training samples from each dataset. For zero-shot retrieval on Flickr30K,
we evaluate with the model fine-tuned on COCO. During fine-tuning, we jointly optimize the ITC
loss (Equation 2) and the ITM loss (Equation 4). ITC learns an image-text scoring function based
on similarity of unimodal features, whereas ITM models the fine-grained interaction between image
and text to predict a matching score. Since the downstream datasets contain multiple texts for each
image, we change the ground-truth label of ITC to consider multiple positives in the queue, where
each positive has a ground-truth probability of 1/#positives. During inference, we first compute the
feature similarity score sitc for all image-text pairs. Then we take the top-k candidates and calculate
their ITM score sitm for ranking. Because k can be set to be very small, our inference speed is much
faster than methods that require computing the ITM score for all image-text pairs [2, 3, 8].

Visual Entailment (SNLI-VE5 [51]) is a fine-grained visual reasoning task to predict whether
the relationship between an image and a text is entailment, neutral, or contradictory. We follow
UNITER [2] and consider VE as a three-way classification problem, and predict the class probabilities
using a multi-layer perceptron (MLP) on the multimodal encoder’s representation of the [CLS] token.

Visual Question Answering (VQA [52]) requires the model to predict an answer given an image
and a question. Different from existing methods that formulate VQA as a multi-answer classification
problem [53, 2], we consider VQA as an answer generation problem, similar to [54]. Specifically, we
use a 6-layer transformer decoder to generate the answer. As shown in Figure 3a, the auto-regressive
answer decoder receives the multimodal embeddings through cross attention, and a start-of-sequence
token ([CLS]) is used as the decoder’s initial input token. Likewise, an end-of-sequence token
([SEP]) is appended to the end of decoder outputs which indicates the completion of generation.

5results on SNLI-VE should be interpreted with caution because its test data has been reported to be noisy [50]
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Figure 3: The model architecture for VQA and NLVR2. For VQA, we append an auto-regressive decoder to
generate the answer given the image-question embeddings. For NLVR2, we replicate the transformer block
within each layer of multimodal encoder to enable reasoning over two images.

The answer decoder is initialized using the pre-trained weights from the multimodal encoder, and
finetuned with a conditional language-modeling loss. For a fair comparison with existing methods,
we constrain the decoder to only generate from the 3,128 candidate answers [55] during inference.

Natural Language for Visual Reasoning (NLVR2 [19]) requires the model to predict whether a text
describes a pair of images. We extend our multimodal encoder to enable reasoning over two images.
As shown in Figure 3b, each layer of the multimodal encoder is replicated to have two consecutive
transformer blocks, where each block contains a self-attention layer, a cross-attention layer, and a
feed-forward layer (see Figure 1). The two blocks within each layer are initialized using the same
pre-trained weights, and the two cross-attention layers share the same linear projection weights for the
keys and values. During training, the two blocks receive two sets of image embeddings for the image
pair. We append a MLP classifier on the multimodal encoder’s [CLS] representation for prediction.

For NLVR2, we perform an additional pre-training step to prepare the new multimodal encoder for
encoding an image-pair. We design a text-assignment (TA) task as follows: given a pair of images and
a text, the model needs to assign the text to either the first image, the second image, or none of them.
We consider it as a three-way classification problem, and use a FC layer on the [CLS] representation
to predict the assignment. We pre-train with TA for only 1 epoch using the 4M images (Section 3.4).

Visual Grounding aims to localize the region in an image that corresponds to a specific textual
description. We study the weakly-supervised setting, where no bounding box annotations are available.
We perform experiments on the RefCOCO+ [56] dataset, and fine-tune the model using only image-
text supervision following the same strategy as image-text retrieval. During inference, we extend
Grad-CAM [9] to acquire heatmaps, and use them to rank the detected proposals provided by [53].

6 Experiments
6.1 Evaluation on the Proposed Methods

First, we evaluate the effectiveness of the proposed methods (i.e. image-text contrastive learning,
contrastive hard negative mining, and momentum distillation). Table 1 shows the performance of
the downstream tasks with different variants of our method. Compared to the baseline pre-training
tasks (MLM+ITM), adding ITC substantially improves the pre-trained model’s performance across

#Pre-train Training tasks TR IR SNLI-VE NLVR2 VQA
Images (flickr test) (test) (test-P) (test-dev)

4M

MLM + ITM 93.96 88.55 77.06 77.51 71.40
ITC + MLM + ITM 96.55 91.69 79.15 79.88 73.29
ITC + MLM + ITMhard 97.01 92.16 79.77 80.35 73.81
ITCMoD + MLM + ITMhard 97.33 92.43 79.99 80.34 74.06
Full (ITCMoD + MLMMoD + ITMhard) 97.47 92.58 80.12 80.44 74.42
ALBEF (Full + MoDDownstream) 97.83 92.65 80.30 80.50 74.54

14M ALBEF 98.70 94.07 80.91 83.14 75.84

Table 1: Evaluation of the proposed methods on four downstream V+L tasks. For text-retrieval (TR) and
image-retrieval (IR), we report the average of R@1, R@5 and R@10. ITC: image-text contrastive learning.
MLM: masked language modeling. ITMhard: image-text matching with contrastive hard negative mining. MoD:
momentum distillation. MoDDownstream: momentum distillation on downstream tasks.
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Method # Pre-train Flickr30K (1K test set) MSCOCO (5K test set)
Images TR IR TR IR

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10
UNITER 4M 87.3 98.0 99.2 75.6 94.1 96.8 65.7 88.6 93.8 52.9 79.9 88.0
VILLA 4M 87.9 97.5 98.8 76.3 94.2 96.8 - - - - - -
OSCAR 4M - - - - - - 70.0 91.1 95.5 54.0 80.8 88.5
ALIGN 1.2B 95.3 99.8 100.0 84.9 97.4 98.6 77.0 93.5 96.9 59.9 83.3 89.8
ALBEF 4M 94.3 99.4 99.8 82.8 96.7 98.4 73.1 91.4 96.0 56.8 81.5 89.2
ALBEF 14M 95.9 99.8 100.0 85.6 97.5 98.9 77.6 94.3 97.2 60.7 84.3 90.5

Table 2: Fine-tuned image-text retrieval results on Flickr30K and COCO datasets.

Method # Pre-train Flickr30K (1K test set)
Images TR IR

R@1 R@5 R@10 R@1 R@5 R@10
UNITER [2] 4M 83.6 95.7 97.7 68.7 89.2 93.9
CLIP [6] 400M 88.0 98.7 99.4 68.7 90.6 95.2
ALIGN [7] 1.2B 88.6 98.7 99.7 75.7 93.8 96.8
ALBEF 4M 90.5 98.8 99.7 76.8 93.7 96.7
ALBEF 14M 94.1 99.5 99.7 82.8 96.3 98.1

Table 3: Zero-shot image-text retrieval results on Flickr30K.

Method VQA NLVR2 SNLI-VE
test-dev test-std dev test-P val test

VisualBERT [13] 70.80 71.00 67.40 67.00 - -
VL-BERT [10] 71.16 - - - - -
LXMERT [1] 72.42 72.54 74.90 74.50 - -
12-in-1 [12] 73.15 - - 78.87 - 76.95
UNITER [2] 72.70 72.91 77.18 77.85 78.59 78.28
VL-BART/T5 [54] - 71.3 - 73.6 - -
ViLT [21] 70.94 - 75.24 76.21 - -
OSCAR [3] 73.16 73.44 78.07 78.36 - -
VILLA [8] 73.59 73.67 78.39 79.30 79.47 79.03
ALBEF (4M) 74.54 74.70 80.24 80.50 80.14 80.30
ALBEF (14M) 75.84 76.04 82.55 83.14 80.80 80.91

Table 4: Comparison with state-of-the-art methods on downstream vision-language tasks.

all tasks. The proposed hard negative mining improves ITM by finding more informative training
samples. Furthermore, adding momentum distillation improves learning for both ITC (row 4), MLM
(row 5), and on all downstream tasks (row 6). In the last row, we show that ALBEF can effectively
leverage more noisy web data to improve the pre-training performance.

6.2 Evaluation on Image-Text Retrieval
Table 2 and Table 3 report results on fine-tuned and zero-shot image-text retrieval, respectively. Our
ALBEF achieves state-of-the-art performance, outperforming CLIP [6] and ALIGN [7] which are
trained on orders of magnitude larger datasets. Given the considerable amount of improvement of
ALBEF when the number of training images increases from 4M to 14M, we hypothesize that it has
potential to further grow by training on larger-scale web image-text pairs.

6.3 Evaluation on VQA, NLVR, and VE
Table 4 reports the comparison with existing methods on other V+L understanding tasks. With 4M
pre-training images, ALBEF already achieves state-of-the-art performance. With 14M pre-training
images, ALBEF substantially outperforms existing methods, including methods that additionally
use object tags [3] or adversarial data augmentation [8]. Compared to VILLA [8], ALBEF achieves
absolute improvements of 2.37% on VQA test-std, 3.84% on NLVR2 test-P, and 1.88% on SNLI-VE
test. Because ALBEF is detector-free and requires lower resolution images, it also enjoys much faster
inference speed compared to most existing methods (>10 times faster than VILLA on NLVR2).

6.4 Weakly-supervised Visual Grounding
Table 5 shows the results on RefCOCO+, where ALBEF substantially outperforms existing meth-
ods [57, 58] (which use weaker text embeddings). The ALBEFitc variant computes Grad-CAM
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Method Val TestA TestB
ARN [57] 32.78 34.35 32.13
CCL [58] 34.29 36.91 33.56
ALBEFitc 51.58 60.09 40.19
ALBEFitm 58.46 65.89 46.25

Table 5: Weakly-supervised visual
grounding on RefCOCO+ [56] dataset.

“man with head down” “girl with black tank” “green shirt”

Figure 4: Grad-CAM visualization on the cross-attention maps in
the 3rd layer of the multimodal encoder.

Q: is this rice noodle soup?
A: yes

Q: what is to the right of 
the soup? A: chopsticks

Q: what does the truck on 
the left sell? A: ice cream

Q: what is the man doing in 
the street? A: walking

Figure 5: Grad-CAM visualizations on the cross-attention maps of the multimodal encoder for the VQA model.
“a little girl holding a kitten next to a blue fence”

“girl” “holding” “kitten” “next” “blue”
Figure 6: Grad-CAM visualizations on the cross-attention maps corresponding to individual words.

visualizations on the self-attention maps in the last layer of the image encoder, where the gradients are
acquired by maximizing the image-text similarity sitc. The ALBEFitm variant computes Grad-CAM
on the cross-attention maps in the 3rd layer of the multimodal encoder (which is a layer specialized
in grounding), where the gradients are acquired by maximizing the image-text matching score sitm.
Figure 4 provides a few visualizations. More analysis is in Appendix.

We provide the Grad-CAM visualizations for VQA in Figure 5. As can be seen in Appendix, the
Grad-CAM visualizations from ALBEF are highly correlated with where humans would look when
making decisions. In Figure 6, we show per-word visualizations for COCO. Notice how our model
not only grounds objects, but also their attributes and relationships.

6.5 Ablation Study
Flickr30K w/ hard negs w/o hard negs

sitc k = 16 k = 128 k = 256 k = 128

TR 97.30 98.60 98.57 98.57 98.22 (�0.35)
IR 90.95 93.64 93.99 93.95 93.68 (�0.31)

Table 6: Ablation study on fine-tuned image-text retrieval. The av-
erage recall on the test set is reported. We use sitc to filter top-k
candidates and calculate their sitm score for ranking.

Table 6 studies the effect of vari-
ous design choices on image-text
retrieval. Since we use sitc to filter
top-k candidates during inference,
we vary k and report its effect. In
general, the ranking result acquired
by sitm is not sensitive to changes
in k. We also validate the effect of hard negative mining in the last column.

NLVR2 w/ TA w/o TA
share all share CA no share share all share CA no share

dev 82.13 82.55 81.93 80.52 80.28 77.84
test-P 82.36 83.14 82.85 81.29 80.45 77.58

Table 7: Ablation study on NLVR2.

Table 7 studies the effect of text-
assignment (TA) pre-training and
parameter sharing on NLVR2. We
examine three strategies: (1) the
two mutimodal blocks share all
parameters, (2) only the cross-
attention (CA) layers are shared, (3) no sharing. Without TA, sharing the entire block has better
performance. With TA to pre-train the model for image-pair, sharing CA leads to the best performance.

7 Conclusion and Social Impacts
This paper proposes ALBEF, a new framework for vision-language representation learning. ALBEF
first aligns the unimodal image representation and text representation before fusing them with a
multimodal encoder. We theoretically and experimentally verify the effectiveness of the proposed
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image-text contrastive learning and momentum distillation. Compared to existing methods, ALBEF
offers better performance and faster inference speed on multiple downstream V+L tasks.

While our paper shows promising results on vision-language representation learning, additional
analysis on the data and the model is necessary before deploying it in practice, because web data may
contain unintended private information, unsuitable images, or harmful texts, and only optimizing
accuracy may have unwanted social implications.
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