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Abstract

Real-world data universally confronts a severe class-imbalance problem and ex-
hibits a long-tailed distribution, i.e., most labels are associated with limited in-
stances. The naïve models supervised by such datasets would prefer dominant
labels, encounter a serious generalization challenge and become poorly calibrated.
We propose two novel methods from the prior perspective to alleviate this dilemma.
First, we deduce a balance-oriented data augmentation named Uniform Mixup
(UniMix) to promote mixup in long-tailed scenarios, which adopts advanced mixing
factor and sampler in favor of the minority. Second, motivated by the Bayesian
theory, we figure out the Bayes Bias (Bayias), an inherent bias caused by the incon-
sistency of prior, and compensate it as a modification on standard cross-entropy
loss. We further prove that both the proposed methods ensure the classification
calibration theoretically and empirically. Extensive experiments verify that our
strategies contribute to a better-calibrated model and their combination achieves
state-of-the-art performance on CIFAR-LT, ImageNet-LT, and iNaturalist 2018.

1 Introduction

Balanced and large-scaled datasets [49, 39] have promoted deep neural networks to achieve re-
markable success in many visual tasks [23, 48, 21]. However, real-world data typically exhibits a
long-tailed (LT) distribution [34, 42, 25, 17], and collecting a minority category (tail) sample always
leads to more occurrences of common classes (head) [53, 26], resulting in most labels associated with
limited instances. The paucity of samples may cause insufficient feature learning on the tail classes
[64, 12, 33, 42], and such data imbalance will bias the model towards dominant labels [52, 53, 37].
Hence, the generalization of minority categories is an enormous challenge.

The intuitive approaches such as directly over-sampling the tail [9, 4, 45, 50, 5] or under-sampling the
head [18, 4, 20] will cause serious robustness problems. mixup [60] and its extensions [55, 59, 10] are
effective feature improvement methods and contribute to a well-calibrated model in balanced datasets
[54, 61], i.e., the predicted confidence indicates actual accuracy likelihood [16, 54]. However, mixup
is inadequately calibrated in an imbalanced LT scenario (Fig.1). In this paper, we raise a conception
called ⇠-Aug to analyze mixup and figure out that it tends to generate more head-head pairs, resulting
in unsatisfactory generalization of the tail. Therefore, we propose Uniform Mixup (UniMix), which
adopts a tail-favored mixing factor related to label prior and a inverse sampling strategy to encourage
more head-tail pairs occurrence for better generalization and calibration.

⇤Equal contribution.
†Corresponding author.
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Figure 1: Joint density plots of accuracy vs. confidence to
measure the calibration of classifiers on CIFAR-100-LT-100
during training. A well-calibrated classifier’s density will lay
around the red dot line y = x, indicating prediction score
reflects the actual likelihood of accuracy. mixup manages
to regularize classifier on balanced datasets. However, both
mixup and its extensions tend to be overconfident in LT sce-
narios. Our UniMix reconstructs a more balanced dataset
and Bayias-compensated CE erases prior bias to ensure bet-
ter calibration. Without loss of accuracy, either of proposed
methods trains the same classifier more calibrated and their
combination achieves the best. How to measure calibration
and more visualization results are available in Appendix D.2.

Previous works adjust the logits weight [31, 12, 52, 58] or margin [6, 44] on standard Softmax
cross-entropy (CE) loss to tackle the bias towards dominant labels. We analyze the inconstancy of
label prior, which varies in LT train set and balanced test set, and pinpoint an inherent bias named
Bayes Bias (Bayias). Based on the Bayesian theory, the posterior is proportional to prior times
likelihood. Hence, it’s necessary to adjust the posterior on train set by compensating different prior
for each class, which can serve as an additional margin on CE. We further demonstrate that the
Bayias-compensated CE ensures classification calibration and propose a unified learning manner
to combine Bayias with UniMix towards a better-calibrated model (see in Fig.1). Furthermore, we
suggest that bad calibrated approaches are counterproductive with each other, which provides a
heuristic way to analyze the combined results of different feature improvement and loss modification
methods (see in Tab.4).

In summary, our contributions are: 1) We raise the concept of ⇠-Aug to theoretically explain the reason
of mixup’s miscalibration in LT scenarios and propose Unimix (Sec.3.1) composed of novel mixing
and sampling strategies to construct a more class-balanced virtual dataset. 2) We propose the Bayias
(Sec.3.2) to compensate the bias incurred by different label prior, which can be unified with UniMix
by a training manner for better classification calibration. 3) We conduct sufficient experiments to
demonstrate that our method trains a well-calibrated model and achieves state-of-the-art results on
CIFAR-10-LT, CIFAR-100-LT, ImageNet-LT, and iNaturalist 2018.

2 Analysis of mixup

The core of supervised image classification is to find a ✓ parameterized mapping F✓ : X 2
Rc⇥h⇥w 7! Y 2 RC⇥1 to estimate the empirical Dirac delta distribution P�(x, y) =
1
N

PN
i=1 �(xi, yi) of N instances x 2 X and labels y 2 Y . The learning progress by minimiz-

ing Eq.1 is known as Empirical Risk Minimization (ERM), where L(Y = yi,F✓(X = xi)) is xi’s
conditional risk.

R�(F✓) =
Z

x2X
L (Y = y,F✓(X = x)) dP�(x, y) =

1

N

XN

i=1
L (Y = yi,F✓(X = xi)) (1)

To overcome the over-fitting caused by insufficient training of N samples, mixup utilizes Eq.2 to
extend the feature space to its vicinity based on Vicinal Risk Minimization (VRM) [8].

ex = ⇠ · xi + (1� ⇠) · xj ey = ⇠ · yi + (1� ⇠) · yj (2)

where ⇠ ⇠ Beta(↵,↵),↵ 2 [0, 1], the sample pair (xi, yi), (xj , yj) is drawn from training dataset
Dtrain randomly. Hence, Eq.2 converts P�(X,Y ) into empirical vicinal distribution P⌫(ex, ey) =
1
N

PN
i=1 ⌫(ex, ey|xi, yi), where ⌫(·) describes the manner of finding virtual pairs (ex, ey) in the vicinity

of arbitrary sample (xi, yi). Then, we construct a new dataset D⌫ := {(exk, eyk)}Mk=1 via Eq.2 and
minimize the empirical vicinal risk by Vicinal Risk Minimization (VRM):

R⌫(F✓) =
Z

ex2 eX
L
⇣
eY = ey,F✓( eX = ex)

⌘
dP⌫(ex, ey) =

1

M

XM

i=1
L
⇣
eY = eyi,F✓( eX = exi)

⌘
(3)

mixup is proven to be effective on balanced dataset due to its improvement of calibration [54, 16],
but it is unsatisfactory in LT scenarios (see in Tab.4). In Fig.1, mixup fails to train a calibrated model,

2



which surpasses baseline (ERM) a little in accuracy and seldom contributes to calibration (far from
y = x). To analyze the insufficiency of mixup, the definition of ⇠-Aug is raised.

Definition 1 ⇠-Aug. The virtual sample (exi,j , eyi,j) generated by Eq.2 with mixing factor ⇠ is
defined as a ⇠-Aug sample, which is a robust sample of class yi (class yj) iff ⇠ � 0.5(⇠ < 0.5) that
contributes to class yi (class yj) in model’s feature learning.

In LT scenarios, we reasonably assume the instance number n of each class is exponential with
parameter � [12] if indices are descending sorted by nyi , where yi 2 [1, C] and C is the total class
number. Generally, the imbalance factor is defined as ⇢ = ny1/nyC to measure how skewed the LT
dataset is. It is easy to draw � = ln ⇢/(C � 1). Hence, we can describe the LT dataset as Eq.4:

P(Y = yi) =

RR
xi2X ,yj2Y 1(X = xi, Y = yi)dxidyjRR
xi2X ,yj2Y 1(X = xi, Y = yj)dxidyj

=
�

e�� � e��C
e��yi , yi 2 [1, C] (4)

Then, we derive the following corollary to illustrate the limitation of naïve mixup strategy.

Corollary 1 When ⇠ ⇠ Beta(↵,↵),↵ 2 [0, 1], the newly mixed dataset D⌫ composed of ⇠-Aug
samples (exi,j , eyi,j) follows the same long-tailed distribution as the origin dataset Dtrain, where
(xi, yi) and (xj , yj) are randomly sampled from Dtrain. (See detail derivation in Appendix A.2.)

Pmixup(Y
⇤ = yi) = P2(Y = yi) + P(Y = yi)

ZZ

yi 6=yj

Beta(↵,↵)P(Y = yj)d⇠dyj

=
�

e�� � e��C
e��yi , yi 2 [1, C]

(5)

In mixup, the probability of any (exi,j , eyi,j) belongs to class yi or class yj is strictly determined by ⇠
and E(⇠) ⌘ 0.5. Furthermore, both (xi, yi) and (xj , yj) are randomly sampled and concentrated on
the head instead of tail, resulting in that the head classes get more ⇠-Aug samples than the tail ones.

3 Methodology

3.1 UniMix: balance-oriented feature improvement

mixup and its extensions tend to generate head-majority pseudo data, which leads to the deficiency
on the tail feature learning and results in a bad-calibrated model. To obtain a more balanced dataset
D⌫ , we propose the UniMix Factor ⇠⇤i,j related to the prior probability of each category and a novel
UniMix Sampler to obtain sample pairs. Our motivation is to generate comparable ⇠-Aug samples of
each class for better generalization and calibration.

UniMix Factor. Specifically, the prior in imbalanced train set and balanced test set of class yi is
defined as Ptrain(Y = yi) , ⇡yi , and Ptest(Y = yi) ⌘ 1/C, respectively. We design the UniMix
Factor ⇠⇤i,j for each virtual sample exi,j instead of a fixed ⇠ in mixup. Consider adjusting ⇠ with the
class prior probability ⇡yi ,⇡yj . It is intuitive that a proper factor ⇠i,j = ⇡yj/(⇡yi + ⇡yj ) ensures exi,j

to be a ⇠-Aug sample of class yj if ⇡yi � ⇡yj , i.e., class yi occupies more instances than class yj .

However, ⇠i,j is uniquely determined by ⇡yi ,⇡yj . To improve the robustness and generalization,
original Beta(↵,↵) is adjusted to obtain UniMix Factor ⇠⇤i,j . Notice that ⇠ is close to 0 or 1 and
symmetric at 0.5, we transform it to maximize the probability of ⇠i,j = ⇡yj/(⇡yi + ⇡yj ) and its
vicinity. Specifically, if note ⇠ ⇠ Beta(↵,↵) as f(⇠;↵,↵), we define ⇠⇤i,j ⇠ U (⇡yi ,⇡yj ,↵,↵) as:

⇠⇤i,j ⇠ U (⇡yi ,⇡yj ,↵,↵) =

8
>><

>>:

f(⇠⇤i,j �
⇡yj

⇡yi + ⇡yj

+ 1;↵,↵), ⇠⇤i,j 2 [0,
⇡yj

⇡yi + ⇡yj

);

f(⇠⇤i,j �
⇡yj

⇡yi + ⇡yj

;↵,↵), ⇠⇤i,j 2 [
⇡yj

⇡yi + ⇡yj

, 1]
(6)

Rethink Eq.2 with ⇠⇤i,j described as Eq.6:

exi,j = ⇠⇤i,j · xi + (1� ⇠⇤i,j) · xj eyi,j = ⇠⇤i,j · yi + (1� ⇠⇤i,j) · yj (7)

We have the following corollary to show how ⇠⇤i,j ameliorates the imbalance of Dtrain:
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Corollary 2 When ⇠⇤i,j ⇠ U (⇡yi ,⇡yj ,↵,↵),↵ 2 [0, 1], the newly mixed dataset D⌫ composed
of ⇠-Aug samples (exi,j , eyi,j) follows a middle-majority distribution (see Fig.2), where (xi, yi) and
(xj , yj) are both randomly sampled from Dtrain. (See detail derivation in Appendix A.3.)

P⇤
mixup(Y

⇤ = yi) = P(Y = yi)

Z

yj<yi

1

✓Z
⇠⇤i,jU (⇡i,⇡j ,↵,↵)d⇠

⇤
i,j � 0.5

◆
P(Y = yj)dyj

=
�

(e�� � e��C)2

⇣
e��(yi+1) � e�2�yi

⌘
, yi 2 [1, C]

(8)

Figure 2: Visualization of ⇠-Aug samples
distribution (C = 100, ⇢ = 200) in Corol-
lary1,2,3. x-axis: class indices. y-axis:
probability of each class. mixup (blue) ex-
hibits the same LT distribution as origin
(purple). ⇠⇤ (green) alleviates such situation
and the full pipeline (⌧ = �1) (red) con-
structs a more uniform distributed dataset.
See more results in Appendix A.5.

UniMix Sampler. UniMix Factor facilitates ⇠-Aug sam-
ples more balance-distributed over all classes. However,
most samples are still ⇠-Aug for the head or middle (see
Fig.2(green)). Actually, the constraint that pair xi, xj

drawn from the head and tail respectively is preferred,
which dominantly generates ⇠-Aug samples for tail classes
with ⇠⇤i,j . To this end, we consider sample xj from Dtrain

with probability inverse to the label prior:

Pinv(Y = yi) =
P⌧ (Y = yi)R

yj2Y P
⌧ (Y = yj)dyj

(9)

When ⌧ = 1, UniMix Sampler is equivalent to a random
sampler. ⌧ < 1 indicates that xj has higher probability
drawn from tail class. Note that xi is still randomly sampled
from Dtrain, i.e., it’s most likely drawn from the majority
class. The virtual sample exi,j obtained in this manner is
mainly a ⇠-Aug sample of the tail composite with xi from
the head. Hence Corollary3 is derived:

Corollary 3 When ⇠⇤i,j ⇠ U (⇡yi ,⇡yj ,↵,↵),↵ 2
[0, 1], the newly mixed dataset D⌫ composed of ⇠-Aug samples (exi,j , eyi,j) follows a tail-majority
distribution (see Fig.2), where (xi, yi) is randomly and (xj , yj) is inversely sampled from Dtrain,
respectively. (See detail derivation in Appendix A.4.)

PUniMix(Y
⇤ = yi) = P(Y = yi)

Z

yj<yi

1

✓Z
⇠⇤i,jU (⇡i,⇡j ,↵,↵)d⇠

⇤
i,j � 0.5

◆
Pinv(Y = yj)dyj

=
�

(e�� � e��C) (e��⌧C � e��⌧ )

⇣
e��yi(⌧+1) � e��(⌧+yi)

⌘
, yi 2 [1, C]

(10)

With the proposed UniMix Factor and UniMix Sampler, we get the complete UniMix manner, which
constructs a uniform ⇠-Aug samples distribution for VRM and greatly facilitates model’s calibration
(See Fig.2 (red) & 1). We construct D⌫ := {(exk, eyk)}Mk=1 where {exk, eyk} is (exi,j , eyi,j) generated by
(xi, yi) and (xj , yj). We conduct training via Eq.3 and the loss via VRM is available as:

L(eyk,F✓(exk)) = ⇠⇤i,jL(yi,F✓(exi,j)) + (1� ⇠⇤i,j)L(yj ,F✓(exi,j)) (11)

3.2 Bayias: an inherent bias in LT

The bias between LT set and balanced set is ineluctable and numerous studies [12, 53, 57] have
demonstrated its existence. To eliminate the systematic bias that classifier tends to predict the head,
we reconsider the parameters training process. Generally, a classifier can be modeled as:

ŷ = argmax
yi2Y

e
P

di2D[(WT )
(di)
yi

F(x;✓)(di)]+byi

P
yj2Y e

P
di2D[(WT )

(di)
yj

F(x;✓)(di)]+byj
, argmax

yi2Y

e (x;✓,W,b)yi

P
yj2Y e

 (x;✓,W,b)yj
(12)

where ŷ indicts the predicted label, and F(x; ✓) 2 RD⇥1 is the D-dimension feature extracted by the
backbone with parameter ✓. W 2 RD⇥C represents the parameter matrix of the classifier.
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Previous works [12, 53] have demonstrated that it is not suitable for imbalance learning if one ignores
such bias. In LT scenarios, the instances number in each class of the train set varies greatly, which
means the corresponding prior probability Ptrain(Y = y) is highly skewed whereas the distribution
on the test set Ptest(Y = y) is uniform.

According to Bayesian theory, posterior is proportional to prior times likelihood. The supervised
training process of  (x; ✓,W, b) in Eq.12 can regard as the estimation of likelihood, which is
equivalent to get posterior for inference in balanced dataset. Considering the difference of prior
during training and testing, we have the following theorem (See detail derivation in Appendix B.1):

Theorem 3.1 For classification, let  (x; ✓,W, b) be a hypothesis class of neural networks of input
X = x, the classification with Softmax should contain the influence of prior, i.e., the predicted label
during training should be:

ŷ = argmax
yi2Y

e (x;✓,W,b)yi
+log (⇡yi

)+log (C)

P
yj2Y e

 (x;✓,W,b)yj
+log (⇡yj

)+log (C) (13)

In balanced datasets, all classes share the same prior. Hence, the supervised model  (x; ✓,W, b)
could use the estimated likelihood P(X = x|Y = y) of train set to correctly obtain posterior
P(Y = y|X = x) in test set. However, in LT datasets where Ptrain(Y = yi) = ⇡yi and Ptest(Y =
yi) ⌘ 1/C, prior cannot be regard as a constant over all classes any more. Due to the difference on
prior, the learned parameters ✓,W, b , ⇥ will yield class-level bias, i.e., the optimization direction
is no longer as described in Eq.12. Thus, the bias incurred by prior should compensate at first. To
correctness the bias for inferring, the offset term that model in LT dataset to compensate is:

By = log(⇡y) + log(C) (14)
Furthermore, the proposed Bayias By enables predicted probability reflecting the actual correctness
likelihood, expressed as Theorem 3.2. (See detail derivation in Appendix B.2.)

Theorem 3.2 By-compensated cross-entropy loss in Eq.15 ensures classification calibration.

LB(yi, (x;⇥)) = log
h
1 +

X
yk 6=yi

e(Byk
�Byi ) · e (x;⇥)yk� (x;⇥)yi

i
(15)

Here, the optimization direction during training will convert to  (X; ✓,W, b) + By . In particular, if
the train set is balanced, Ptrain(Y = y) , ⇡y ⌘ 1/C, then By = log(1/C) + log(C) ⌘ 0, which
means the Eq.12 is a balanced case of Eq.13. We further raise that By is critical to the classification
calibration in Theorem 3.2. The pairwise loss in Eq.15 will guide model to avoid over-fitting the tail
or under-fitting the head with better generalization, which contributes to a better calibrated model.

Compared with logit adjustment [44], which is also a margin modification, it is necessary to make
a clear statement about the concrete difference from three points. 1) Logit adjustment is motivated
by Balanced Error Rate (BER), while the Bayias compensated CE loss is inspired by the Bayesian
theorem. We focus more on the model performance on the real-world data distribution. 2) As
motioned above, our loss is consistent with standard CE loss when the train set label prior is the same
as real test label distribution. 3) Our loss can tackle the imbalanced test set situation as well by simply
setting the margin as By = log(⇡y) + log(⇡0

y), where the ⇡0
y represents the test label distribution.

The experiment evidence can be found in Appendix Tab.D2.

3.3 Towards calibrated model with UniMix and Bayias

It’s intuitive to integrate feature improvement methods with loss modification ones for better per-
formance. However, we find such combinations fail in most cases and are counterproductive with
each other, i.e., the combined methods reach unsatisfactory performance gains. We suspect that
these methods take contradictory trade-offs and thus result in overconfidence and bad calibration.
Fortunately, the proposed UniMix and Bayias are both proven to ensure calibration. To achieve a
better-calibrated model for superior performance gains, we introduce Alg.1 to tackle the previous
dilemma and integrate our two proposed approaches to deal with poor generalization of tail classes.
Specially, inspired by previous work [24], we overcome the coverage difficulty in mixup [60] by
removing UniMix in the last several epochs and thus maintain the same epoch as baselines. Note that
Bayias-compensated CE is only adopted in the training process as discussed in Sec.3.2.
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Algorithm 1 Integrated training manner towards calibrated model.
Input: Dtrain, Batch Size N , Stop Steps T1, T2, Random Sampler R, UniMix Sampler R⇤

Output: Optimized ⇥⇤, i.e., feature extractor parameters ✓⇤, classifier parameters W ⇤, b⇤

1: Initialize the parameters ⇥(0) randomly and calculate By via Eq.14
2: for t = 0 to T1 do

3: Sample a mini-batch B = {xi, yi}Ni=1  R(Dtrain,N )
4: Sample a mini-batch B⇤ = {x⇤

j , y
⇤
j }Nj=1  R⇤(Dtrain,N )

5: Calculate UniMix factor ⇠⇤ via Eq.6
6: Construct VRM dataset B⌫ = {exk, eyk}Nk=1 via Eq.7
7: Calculate LB⌫ = E[⇠⇤i,jLB(yi, (ex;⇥(t))) + (1� ⇠⇤i,j)LB(y⇤j , (ex;⇥(t)))] via Eq.11,15
8: Update ⇥(t+1)  ⇥(t) � ↵r⇥(t)LB⌫

9: end for

10: for t = T1 to T2 do

11: Sample a mini-batch B = {xi, yi}Ni=1  R(Dtrain,N )
12: Calculate LB = E[LB(yi, (xi;⇥))] via Eq.15
13: Update ⇥(t+1)  ⇥(t) � ↵r⇥(t)LB
14: end for

4 Experiment

4.1 Results on synthetic dataset

We make an ideal binary classification using Support Vector Machine (SVM) [14] to show the
distinguish effectiveness of UniMix. Suppose there are samples from two disjoint circles respectively:

z+ = {(x, y)|(x� x0)
2 + (y � y0)

2  r2}
z� = {(x, y)|(x+ x0)

2 + (y + y0)
2  r2}

(16)

To this end, we randomly sample m discrete point pairs from z+ to compose positive samples
z+p = {(x+

1 , y
+
1 ), · · · , (x+

m, y+m)}, and m negative samples z�n = {(x�
1 , y

+
1 ), · · · , (x�

m, y�m)} from
z� correspondingly, thus to generate a balanced dataset Dbal = {z+p , z�n } with P

�
(x, y) 2 z+p

�
=

P ((x, y) 2 z�n ) = 0.5. For imbalance data, we sample n(n⌧ m) negative data from z� to generate
z�n0 = {(x0�

1 , y0�1 ), · · · , (x0�
n , y0�n )}, so as to compose the imbalance dataset Dimbal = {z+p , z�n0},

with P
�
(x, y) 2 z+p

�
� P

�
(x, y) 2 z�n0

�
. We train the SVM model on the two synthetic datasets,

and visualize the classification boundary of each dataset in Fig.3.

(a) imbalanced scenario (b) with mixup (c) with UniMix (d) balanced scenario

Figure 3: SVM decision boundary on the synthetic balanced dataset (Fig.3(d)) and imbalanced dataset
(Fig.3(a),3(b),3(c)). The theoretical classification boundary of the synthetic dataset is y=�x. "�"
represents generated pseudo data, where blue and green represent belong to z� and z+, respectively.

The SVM reaches an approximate ideal boundary on balanced datasets (Fig.3(d)) but severely
deviates from the y = �x in the imbalanced dataset (Fig.3(a)). As proven in Sec.2, mixup (Fig.3(b))
is incapable of shifting imbalance distribution, resulting in no better result than the original one
(Fig.3(a)). After adopting the proposed UniMix, the classification boundary in Fig.3(c) shows much
better results than the original imbalanced dataset, which gets closed to the ideal boundary.
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4.2 Results on CIFAR-LT

The imbalanced datasets CIFAR-10-LT and CIFAR-100-LT are constructed via suitably discarding
training samples following previous works [64, 12, 44, 6]. The instance numbers exponentially
decay per class in train dataset and keep balanced during inference. We extensively adopt ⇢ 2
{10, 50, 100, 200} for comprehensive comparisons. See implementation details in Appendix C.1.

Comparison methods. We evaluate the proposed method against various representative and effective
approaches extensively, summarized into the following groups: a) Baseline. We conduct plain
training with CE loss called ERM as baseline. b) Feature improvement methods modify the input
feature to cope with LT datasets. mixup [60] convexly combines images and labels to build virtual data
for VRM. Manifold mixup [55] performs the linear combination in latent states. Remix [10] conducts
the same combination on images and adopts tail-favored rules on labels. M2m [33] converts majority
images to minority ones by adding noise perturbation, which need an additional pre-trained classifier.
BBN [64] utilizes features from two branches in a cumulative learning manner. c) Loss modification

methods either adjust the logits weight or margin before the Softmax operation. Specifically, focal
loss [38], CB [12] and CDT [58] re-weight the logits with elaborate strategies, while LDAM [6] and
Logit Adjustment [44] add the logits margin to shift decision boundary away from tail classes. d)

Other methods. We also compare the proposed method with other two-stage approaches (e.g. DRW
[6]) for comprehensive comparisons.

Table 1: Top-1 validation accuracy(%) of ResNet-32 on CIFAR-10/100-LT. E2E: end to end training.
Underscore: the best performance in each group. †: our reproduced results. ‡: reported results in
[64]. ?: reported results in [58]. Our calibration ensured method achieves the best performance.

Dataset E2E CIFAR-10-LT CIFAR-100-LT

⇢ (easy! hard) - 10 50 100 200 10 50 100 200

ERM† 3 86.39 74.94 70.36 66.21 55.70 44.02 38.32 34.56

mixup‡ [60] 3 87.10 77.82 73.06 67.73 58.02 44.99 39.54 34.97
Manifold Mixup‡ [55] 3 87.03 77.95 72.96 - 56.55 43.09 38.25 -
Remix [10] 3 88.15 79.20 75.36 67.08 59.36 46.21 41.94 36.99
M2m [33] 7 87.90 - 78.30 - 58.20 - 42.90 -
BBN‡ [64] 7 88.32 82.18 79.82 - 59.12 47.02 42.56 -

Focal? [38] 3 86.55 76.71† 70.43 65.85 55.78 44.32† 38.41 35.62
Urtasun et al [47] 3 82.12 76.45 72.23 66.25 52.12 43.17 38.90 33.00
CB-Focal [12] 3 87.10 79.22 74.57 68.15 57.99 45.21 39.60 36.23
⌧ -norm? [30] 3 87.80 82.78† 75.10 70.30 59.10 48.23† 43.60 39.30
LDAM† [6] 3 86.96 79.84 74.47 69.50 56.91 46.16 41.76 37.73
LDAM+DRW† [6] 7 88.16 81.27 77.03 74.74 58.71 47.97 42.04 38.45
CDT? [58] 3 89.40 81.97† 79.40 74.70 58.90 45.15† 44.30 40.50
Logit Adjustment [44] 3 89.26† 83.38† 79.91 75.13† 59.87† 49.76† 43.89 40.87†

Ours 3 89.66 84.32 82.75 78.48 61.25 51.11 45.45 42.07

Results. We present results of CIFAR-10-LT and CIFAR-100-LT in Tab.1. Our proposed method
achieves state-of-the-art results against others on each ⇢, with performance gains improved as ⇢ gets
increased (See Appendix D.1). Specifically, our method overcomes the ignorance in tail classes
effectively with better calibration, which integrates advantages of two group approaches and thus
surpass most two-stage methods (i.e., BBN, M2m, LDAM+DRW). However, not all combinations
can get ideal performance gains as expected. More details will be discussed in Sec.4.4.

To quantitatively describe the contribution to model calibration, we make quantitative comparisons
on CIFAR-10-LT and CIFAR-100-LT. According to the definition ECE and MCE (see Appendix
Eq.D.2,D.3), a well-calibrated model should minimize the ECE and MCE for better generalization
and robustness. In this experiment, we adopt the most representative ⇢ 2 {10, 100} with previous
mainstream state-of-the-art methods.

The results in Tab.2 show that either of the proposed methods generally outperforms previous
methods, and their combination enables better classification calibration with smaller ECE and MCE.
Specifically, mixup and Remix have negligible contributions to model calibration. As analyzed
before, such methods tend to generate head-head pairs in favor of the feature learning of majority
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Table 2: Quantitative calibration metric of ResNet-32 on CIFAR-10/100-LT test set. Smaller ECE and
MCE indicate better calibration results. Either of the proposed methods achieves a well-calibrated
model compared with others. The combination of UniMix and Bayias achieves the best performance.

Dataset CIFAR-10-LT CIFAR-100-LT

⇢ 10 100 10 100

Calibration Metric (%) ECE MCE ECE MCE ECE MCE ECE MCE

ERM 6.60 74.96 20.53 73.91 22.85 34.50 38.23 87.22
mixup [60] 6.55 24.54 19.20 37.84 19.69 38.53 32.72 50.46
Remix [10] 6.81 22.44 15.38 27.99 20.17 32.99 33.56 50.96
LDAM+DRW [6] 11.22 45.92 19.89 49.07 30.54 55.57 42.18 64.78

UniMix (ours) 6.00 25.99 12.87 28.30 19.38 33.40 27.12 41.46
Bayias (ours) 5.52 20.14 11.05 23.72 17.42 28.26 24.31 39.66
UniMix+Bayias (ours) 4.74 13.67 10.19 25.47 15.24 23.67 23.04 37.36

classes. However, more head-tail pairs are required for better feature representation of the tail
classes. In contrast, both the proposed UniMix and Bayias pay more attention to the tail and achieve
satisfactory results. It is worth mentioning that improving calibration in post-hoc manners [16, 63] is
also effective, and we will discuss it in Appendix D.2.3. Note that LDAM is even worse calibrated
compared with baseline. We suggest that LDAM adopts an additional margin only for the ground-
truth label from the angular perspective, which shifts the decision boundary away from the tail class
and makes the tail predicting score tend to be larger. Additionally, LDAM requires the normalization
of input features and classifier weight matrix. Although a scale factor is proposed to enlarge the
logits for better Softmax operation [56], it is still harmful to calibration. It also accounts for its
contradiction with other methods. Miscalibration methods combined will make models become even
more overconfident and damage the generalization and robustness severely.

4.3 Results on large-scale datasets

We further verify the proposed method’s effectiveness quantitatively on large-scale imbalanced
datasets, i.e. ImageNet-LT and iNaturalist 2018. ImageNet-LT is the LT version of ImageNet [49]
by sampling a subset following Pareto distribution, which contains about 115K images from 1, 000
classes. The number of images per class varies from 5 to 1, 280 exponentially, i.e., ⇢ = 256. In our
experiment, we utilize the balanced validation set constructed by Cui et al. [12] for fair comparisons.
The iNaturalist species classification dataset [25] is a large-scale real-world dataset which suffers
from extremely label LT distribution and fine-grained problems [25, 64]. It is composed of 435, 713
images over 8, 142 classes with ⇢ = 500. The official splits of train and validation images [6, 64, 30]
are adopted for fair comparisons. See implementation details in Appendix C.2.

Table 3: Top-1 validation accuracy(%) of ResNet-10/50 on ImageNet-LT and ResNet-50 on iNaturalist
2018. E2E: end to end training. †: our reproduced results. ‡: results reported in origin paper.

Dataset ImageNet-LT iNaturalist 2018

Method E2E ResNet-10 � ResNet-50 � ResNet-50 �

CE† 3 35.88 - 38.88 - 60.88 -
CB-CE† [12] 3 37.06 +1.18 40.85 +1.97 63.50 +2.62
LDAM [6] 3 36.05† +0.17 41.86† +2.98 64.58‡ +3.70

OLTR‡ [42] 7 35.60 -0.28 40.36 +1.48 63.90 +3.02
LDAM+DRW [6] 7 38.22† +2.34 45.75† +6.87 68.00‡ +7.12
BBN‡ [64] 7 - - 66.29 +5.41
c-RT [30] 7 41.80‡ +5.92 47.54† +8.66 67.60† +6.72

Ours 3 42.90 +7.02 48.41 +9.53 69.15 +8.27

Results. Tab.3 illustrates the results on large-scale datasets. Ours is consistently effective and out-
performs existing mainstream methods, achieving distinguish improvement compared with previous
SOTA c-RT [30] in the compared backbones. Especially, our method outperforms the baseline on
ImageNet-LT and iNaturalist 2018 by 9.53% and 8.27% with ResNet-50, respectively. As can be
noticed in Tab.3, the proposed method also surpasses the well-known two-stage methods [30, 6, 64],
achieving superior accuracy with less computation load in a concise training manner.
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4.4 Further Analysis

Effectiveness of UniMix and Bayias. We conduct extensive ablation studies in Tab.4 to demonstrate
the effectiveness of the proposed UnixMix and Bayias, with detailed analysis in various combinations
of feature-wise and loss-wise methods on CIFAR-10-LT and CIFAR-100-LT. Indeed, both UniMix
and Bayias turn out to be effective in LT scenarios. Further observation shows that with calibration
ensured, the proposed method gets significant performance gains and achieve state-of-the-art results.
Noteworthy, LDAM [6] makes classifiers miscalibrated, which leads to unsatisfactory improvement
when combined with mixup manners.
Table 4: Ablation study between feature-wise and loss-wise methods. LDAM is counterproductive
to mixup and its extensions. Bayias-compensated CE ensures calibration and shows excellent
performance gains especially combined with UniMix.

Dataset CIFAR-10-LT CIFAR-100-LT

⇢ (easy! hard) 100 200 100 200

Mix Loss Top1 Acc � Top1 Acc � Top1 Acc � Top1 Acc �

None CE 70.36 - 66.21 - 38.32 - 34.56 -
mixup CE 73.06 +2.70 67.73 +1.52 39.54 +1.22 34.97 +0.41
Remix CE 75.36 +5.00 67.08 +0.87 41.94 +3.62 36.99 +2.43
UniMix CE 76.47 +6.11 68.42 +2.21 41.46 +3.14 37.63 +3.07

None LDAM 74.47 - 69.50 - 41.76 - 37.73 -
mixup LDAM 73.96 -0.15 67.89 -1.61 40.22 -1.54 37.52 -0.21
Remix LDAM 74.33 -0.14 69.66 +0.16 40.59 -1.17 37.66 -0.07
UniMix LDAM 75.35 +0.88 70.77 +1.27 41.67 -0.09 37.83 +0.01

None Bayias 78.70 - 74.21 - 43.52 - 38.83 -
mixup Bayias 81.75 +3.05 76.69 +2.48 44.56 +1.04 41.19 +2.36
Remix Bayias 81.55 +2.85 75.81 +1.60 45.01 +1.49 41.44 +2.61
UniMix Bayias 82.75 +4.05 78.48 +4.27 45.45 +1.93 42.07 +3.24

Evaluating different UniMix Sampler. Corollary 1,2,3 demonstrate distinguish influence of
UniMix. However, the ⇠-sample can not be completely equivalent with orginal ones. Hence,
an appropriate ⌧ in Eq.9 is also worth further searching. Fig.4 illustrates the accuracy with different
⌧ on CIFAR-10-LT and CIFAR-100-LT setting ⇢ = 10 and 100. For CIFAR-10-LT (Fig.4(a),4(b)),
⌧ = �1 is possibly ideal, which forces more head-tail instead of head-head pairs get generated to
compensate tail classes. In the more challenging CIFAR-100-LT, ⌧ = 0 achieves the best result. We
suspect that unlike simple datasets (e.g., CIFAR-10-LT), where overconfidence occurs in head classes,
all classes need to get enhanced in complicated LT scenarios. Hence, the augmentation is effective
and necessary both on head and tail. ⌧ = 0 allows both head and tail get improved simultaneously.

(a) CIFAR-10-LT-10. (b) CIFAR-10-LT-100. (c) CIFAR-100-LT-10. (d) CIFAR-100-LT-100.

Figure 4: Comparison of top-1 validation accuracy(%) of ResNet-32 on CIFAR-LT when varying ⌧
in Eq.9 for UniMix. The histogram indicates average results in repeated experiments.

Do minorities really get improved? To observe the amelioration on tail classes, Fig.5 visualizes
log-confusion matrices on CIFAR-100-LT-100. In Fig.5(e), our method exhibits satisfactory general-
ization on the tail. Vanilla ERM model (Fig.5(a)) is a trivial predictor which simplifies tail instances
as head labels to minimize the error rate. Feature improvement [10] and loss modification [6, 58]
methods do alleviate LT problem to some extent. The misclassification cases (i.e., non-diagonal
elements) in Fig.5(b),5(c),5(d) become smaller and more balanced distributed compared with ERM.
However, the error cases are still mainly in the upper or lower triangular, indicating the existence of
inherent bias between the head and tail. Our method (Fig.5(e)) significantly alleviates such dilemma.
The non-diagonal elements are more uniformly distributed throughout the matrix rather than in
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(a) ERM (b) LDAM+DRW [6] (c) CDT [58] (d) Remix [10] (e) Ours

Figure 5: The log-confusion matrix on CIFAR-100-LT-100 validation dataset. The x-axis and y-axis
indicate the ground truth and predicted labels, respectively. Deeper color indicates larger values.

the corners, showing superiority to erase the bias in LT scenarios. Our method enables effective
feature improvement for data-scarce classes and alleviates the prior bias, suggesting our success in
regularizing tail remarkably.

5 Related work and discussion

Why need calibration? To quantify the predictive uncertainty, calibration [2] is put forward to
describe the relevance between predictive score and actual correctness likelihood. A well-calibrated
model is more reliable with better interpretability, which probabilities indicate optimal expected costs
in Bayesian decision scenarios [43]. Guo et al. [16] firstly provide metric to measure the calibration
of CNN and figure out well-performed models are always in lack of calibration, indicating that CNN
is sensitive to be overconfidence and lacks robustness. Thulasidasan et al. [54] point out that the
effectiveness of mixup in balanced datasets originates from superior calibration modification. Menon
et al. [44] further show how to ensure optimal classification calibration for a pair-wise loss.

Feature-wise methods. Intuitively, under-sampling the head [18, 4, 20] or over-sampling the tail
[9, 4, 45, 50, 5] can improve the inconsistent performance of imbalanced datasets but tend to either
weaken the head or over-fitting the tail. Hence, many effective works generate additional samples
[11, 62, 33] to compensate the tail classes. BBN [64] uses two branches to extract features from head
and tail simultaneously, while c-RT [30] trains feature representation learning and classification stage
separately. mixup [60] and its variants [55, 59, 10] are effective and easy-implement feature-wise
methods that convexly combine input and label pairs to generate virtual samples. However, naïve
mixup manners are deficient in LT scenarios as we discussed in Sec.2. In contrast, our UniMix tackles
such a dilemma by constructing class balance-oriented virtual data as describe in Sec.3.1 and shows
satisfactory calibration as Fig.1 exhibits.

Loss modification. Numerous experimental and theoretical studies [46, 12, 53, 57] have demon-
strated the existence of inherent bias between LT train set and balanced test set in supervised learning.
Previous works [27, 28, 31, 12, 38] make networks prefer learning tail samples by additional class-
related weight on CE loss. Some works further correct CE according to the gradient generated by
different samples [52, 36] or from the perspective of Gaussian distribution and Bayesian estimation
[19, 32]. Meta-learning approaches [15, 1, 51, 47, 29] optimize the weights of each class in CE
as learnable parameters and achieve remarkable success. Cao et al. [6] theoretically provides the
ideal optimal margin for CE from the perspective of VC generalization bound. Compared with Logit
Adjustment [44] motivated by balance error rate, our Bayias-compensated CE eliminates bias incured
by prior and is consistent with balanced datasets, which ensures classification calibration as well.

6 Conclusion

We systematically analyze the limitations of mainstream feature improvement methods, i.e., mixup
and its extensions in the label-imbalanced situation, and propose the UniMix to construct a more class-
balanced virtual dataset that significantly improves classification calibration. We further pinpoint
an inherent bias induced by the inconstancy of label distribution prior between long-tailed train
set and balanced test set. We prove that the standard cross-entropy loss with the proposed Bayias
compensated can ensure classification calibration. The combination of UniMix and Bayias achieves
state-of-the-art performance and contributes to a better-calibrated model (Fig.1). Further study in
Tab.4 shows that the bad calibration methods are counterproductive with each other. However, more
in-depth analysis and theoretical guarantees are still required, which we leave for our future work.
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