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Abstract

Image-based virtual try-on is one of the most promising applications of human-
centric image generation due to its tremendous real-world potential. Yet, as most
try-on approaches fit in-shop garments onto a target person, they require the labori-
ous and restrictive construction of a paired training dataset, severely limiting their
scalability. While a few recent works attempt to transfer garments directly from one
person to another, alleviating the need to collect paired datasets, their performance
is impacted by the lack of paired (supervised) information. In particular, disen-
tangling style and spatial information of the garment becomes a challenge, which
existing methods either address by requiring auxiliary data or extensive online opti-
mization procedures, thereby still inhibiting their scalability. To achieve a scalable
virtual try-on system that can transfer arbitrary garments between a source and
a target person in an unsupervised manner, we thus propose a texture-preserving
end-to-end network, the PAtch-routed SpaTially-Adaptive GAN (PASTA-GAN),
that facilitates real-world unpaired virtual try-on. Specifically, to disentangle the
style and spatial information of each garment, PASTA-GAN consists of an inno-
vative patch-routed disentanglement module for successfully retaining garment
texture and shape characteristics. Guided by the source person keypoints, the
patch-routed disentanglement module first decouples garments into normalized
patches, thus eliminating the inherent spatial information of the garment, and then
reconstructs the normalized patches to the warped garment complying with the
target person pose. Given the warped garment, PASTA-GAN further introduces
novel spatially-adaptive residual blocks that guide the generator to synthesize
more realistic garment details. Extensive comparisons with paired and unpaired
approaches demonstrate the superiority of PASTA-GAN, highlighting its ability to
generate high-quality try-on images when faced with a large variety of garments
(e.g. vests, shirts, pants), taking a crucial step towards real-world scalable try-on.

1 Introduction

Image-based virtual try-on, the process of computationally transferring a garment onto a particular
person in a query image, is one of the most promising applications of human-centric image generation
with the potential to revolutionize shopping experiences and reduce purchase returns. However, to
fully exploit its potential, scalable solutions are required that can leverage easily accessible training
data, handle arbitrary garments, and provide efficient inference results. Unfortunately, to date, most
existing methods [35, 38, 12, 7, 37, 9, 10, 4, 36, 39] rely on paired training data, i.e., a person image

∗Xiaodan Liang is the corresponding author. Our code will be available at PASTA-GAN.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

https://github.com/xiezhy6/PASTA-GAN


Person Garment Try-on Person Garment Try-on Person Garment Try-on

Upper-

body

Transfer

Lower-

body

Transfer

Full Body

Transfer

Figure 1: Example virtual try-on results from our PASTA-GAN, which is flexible for various try-on
scenarios, e.g., garment transfer for the upper body, the lower body, and the full body.

and its corresponding in-shop garment, leading to laborious data-collection processes. Furthermore,
these methods are unable to exchange garments directly between two person images, thus largely
limiting their application scenarios and raising the need for unpaired solutions to ensure scalability.

While unpaired solutions have recently started to emerge, performing virtual try-on in an unsupervised
setting is extremely challenging and tends to affect the visual quality of the try-on results. Specifically,
without access to the paired data, these models are usually trained by reconstructing the same person
image, which is prone to over-fitting, and thus underperform when handling garment transfer during
testing. The performance discrepancy is mainly reflected in the garment synthesis results, in particular
the shape and texture, which we argue is caused by the entanglement of the garment style and spatial
representations in the synthesis network during the reconstruction process.

While this is not a problem for the traditional paired try-on approaches [35, 12, 37, 10], which avoid
this problem and preserve the garment characteristics by utilizing a supervised warping network to
obtain the warped garment in target shape, this is not possible in the unpaired setting due to the lack
of warped ground truth. The few works that do attempt to achieve unpaired virtual try-on, therefore,
choose to circumvent this problem by either relying on person images in various poses for feature
disentanglement [23, 33, 32, 31, 1, 5], which again leads to a laborious data-collection process, or
require extensive online optimization procedures [25, 17] to obtain fine-grain details of the original
garments, harming the inference efficiency. However, none of the existing unpaired try-on methods
consider the problem of coupled style and spatial garment information directly, which is crucial to
obtain accurate garment transfer results in the unpaired and unsupervised virtual try-on scenario.

In this paper, to tackle the essential challenges mentioned above, we propose a novel PAtch-routed
SpaTially-Adaptive GAN, named PASTA-GAN, a scalable solution to the unpaired try-on task.
Our PASTA-GAN can precisely synthesize garment shape and style (see Fig. 1) by introducing a
patch-routed disentanglement module that decouples the garment style and spatial features, as well as
a novel spatially-adaptive residual module to mitigate the problem of feature misalignment.

The innovation of our PASTA-GAN includes three aspects: First, by separating the garments into
normalized patches with the inherent spatial information largely reduced, the patch-routed disen-
tanglement module encourages the style encoder to learn spatial-agnostic garment features. These
features enable the synthesis network to generate images with accurate garment style regardless of
varying spatial garment information. Second, given the target human pose, the normalized patches
can be easily reconstructed to the warped garment complying with the target shape, without requiring
a warping network or a 3D human model. Finally, the spatially-adaptive residual module extracts the
warped garment feature and adaptively inpaints the region that is misaligned with the target garment
shape. Thereafter, the inpainted warped garment features are embedded into the intermediate layer of
the synthesis network, guiding the network to generate try-on results with realistic garment texture.

We collect a scalable UnPaired virtual Try-on (UPT) dataset and conduct extensive experiments on
the UPT dataset and two existing try-on benchmark datasets (i.e., the DeepFashion [21] and the
MPV [6] datasets). Experiment results demonstrate that our unsupervised PASTA-GAN outperforms
both the previous unpaired and paired try-on approaches.
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Figure 2: Overview of the inference process. (a) Given the source and target images of person (Is, It),
we can extract the source garment Gs, the source pose Js, and the target pose Jt. The three are then
sent to the patch-routed disentanglement module to yield the normalized garment patches Pn and
the warped garment Gt. (b) The modified conditional StyleGAN2 first collaboratively exploits the
disentangled style code w, projected from Pn, and the person identity feature fid, encoded from
target head and pose (Ht, Jt), to synthesize the coarse try-on result Ĩt

′
in the style synthesis branch

along with the target garment mask Mg . It then leverages the warped garment feature fg in the texture
synthesis branch to generate the final try-on result I ′t.

2 Related Work

Paired Virtual Try-on. Paired try-on methods [13, 35, 38, 12, 24, 37, 9, 10, 36] aim to transfer an
in-shop garment onto a reference person. Among them, VITON [13] for the first time integrates
a U-Net [29] based generation network with a TPS [2] based deformation approach to synthesize
the try-on result. CP-VTON [35] improves this paradigm by replacing the time-consuming warping
module with a trainable geometric matching module. VTNFP [38] adopts human parsing to guide the
generation of various body parts, while [24, 37, 39] introduce a smooth constraint for the warping
module to alleviate the excessive distortion in TPS warping. Besides the TPS-based warping strategy,
[12, 36, 10] turn to the flow-based warping scheme which models the per-pixel deformation. Recently,
VITON-HD [4] focuses on high-resolution virtual try-on and proposes an ALIAS normalization
mechanism to resolve the garment misalignment. PF-AFN [10] improves the learning process by
employing knowledge distillation, achieving state-of-the-art results. However, all of these methods
require paired training data and are incapable of exchanging garments between two person images.

Unpaired Virtual Try-on. Different from the above methods, some recent works [23, 33, 32, 31,
25, 17] eliminate the need for in-shop garment images and directly transfer garments between two
person images. Among them, [23, 33, 32, 31, 1, 5] leverage pose transfer as the pretext task to learn
disentangled pose and appearance features for human synthesis, but require images of the same
person with different poses.2 In contrast, [25, 17] are more flexible and can be directly trained with
unpaired person images. However, OVITON [25] requires online appearance optimization for each
garment region during testing to maintain texture detail of the original garment. VOGUE [17] needs
to separately optimize the latent codes for each person image and the interpolate coefficient for the
final try-on result during testing. Therefore, existing unpaired methods require either cumbersome
data collecting or extensive online optimization, extremely harming their scalability in real scenarios.

3 PASTA-GAN

Given a source image Is of a person wearing a garment Gs, and a target person image It, the
unpaired virtual try-on task aims to synthesize the try-on result I ′t retaining the identity of It but
wearing the source garment Gs. To achieve this, our PASTA-GAN first utilizes the patch-routed
disentanglement module (Sec. 3.1) to transform the garment Gs into normalized patches Pn that
are mostly agnostic to the spatial features of the garment, and further deforms Pn to obtain the

2As the concurrent work StylePoseGAN [31] is the most related pose transfer-based approach, we provide a
more elaborate discussion of the inherent differences in the supplementary.
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warped garment Gt complying with the target person pose. Then, an attribute-decoupled conditional
StyleGAN2 (Sec. 3.2) is designed to synthesize try-on results in a coarse-to-fine manner, where we
introduce novel spatially-adaptive residual blocks (Sec. 3.3) to inject the warped garment features into
the generator network for more realistic texture synthesis. The loss functions and training details will
be described in Sec. 3.4. Fig. 2 illustrates the overview of the inference process for PASTA-GAN.

3.1 Patch-routed Disentanglement Module

Since the paired data for supervised training is unavailable for the unpaired virtual try-on task, the
synthesis network has to be trained in an unsupervised manner via image reconstruction, and thus
takes a person image as input and separately extracts the feature of the intact garment and the feature
of the person representation to reconstruct the original person image. While such a training strategy
retains the intact garment information, which is helpful for the garment reconstruction, the features
of the intact garment entangle the garment style with the spatial information in the original image.
This is detrimental to the garment transfer during testing. Note that the garment style here refers
to the garment color and categories, i.e., long sleeve, short sleeve, etc., while the garment spatial
information implies the location, the orientation, and the relative size of the garment patch in the
person image, in which the first two parts are influenced by the human pose while the third part is
determined by the relative camera distance to the person.

To address this issue, we explicitly divide the garment into normalized patches to remove the inherent
spatial information of the garment. Taking the sleeve patch as an example, by using division and
normalization, various sleeve regions from different person images can be deformed to normalized
patches with the same orientation and scale. Without the guidance of the spatial information, the
network is forced to learn the garment style feature to reconstruct the garment in the synthesis image.
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Figure 3: The process of the patch-routed deformation.
Please zoom in for more details.

Fig. 3 illustrates the process of obtain-
ing normalized garment patches, which in-
cludes two main steps: (1) pose-guided
garment segmentation, and (2) perspective
transformation-based patch normalization.
Specifically, in the first step, the source gar-
ment Gs and human pose (joints) Js are
firstly obtained by applying [11] and [3] to
the source person Is, respectively. Given
the body joints, we can segment the source
garment into several patches Ps, which can
be quadrilaterals with arbitrary shapes (e.g., rectangle, square, trapezoid, etc.), and will later be
normalized. Taking the torso region as an example, with the coordinates of the left/right shoulder
joints and the left/right hips joints in P i

s , a quadrilateral crop (of which the four corner points are
visualized in color in P i

s of Fig. 3) covering the torso region of Gs can be easily performed to produce
an unnormalized garment patch. Note that we define eight patches for upper-body garments, i.e., the
patches around the left/right upper/bottom arm, the patches around the left/right hips, a patch around
the torso, and a patch around the neck. In the second step, all patches are normalized to remove
their spatial information by perspective transformations. For this, we first define the same amount
of template patches Pn with fixed 64× 64 resolution as transformation targets for all unnormalized
source patches, and then compute a homography matrixHi

s→n ∈ R3×3 [40] for each pair of P i
s and

P i
n, based on the four corresponding corner points of the two patches. Concretely,Hi

s→n serves as a
perspective transformation to relate the pixel coordinates in the two patches, formulated as: xin

yin
1

 = Hi
s→n

 xis
yis
1

 =

 hi11 hi12 hi13
hi21 hi22 hi23
hi31 hi32 hi33

 xis
yis
1

 (1)

where (xin, y
i
n) and (xis, y

i
s) are the pixel coordinates in the normalized template patch and the unnor-

malized source patch, respectively. To compute the homography matrixHi
s→n, we directly leverage

the OpenCV API, which takes as inputs the corner points of the two patches and is implemented by
using least-squares optimization and the Levenberg-Marquardt method [8]. After obtainingHi

s→n,
we can transform the source patch P i

s to the normalized patch P i
n according to Eq. 1.

Moreover, the normalized patches Pn can further be transformed to target garment patches Pt by
utilizing the target pose Jt, which can be obtained from the target person It via [3]. The mechanism
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of that backward transformation is equivalent to the forward one in Eq. 1, i.e., computing the
homography matrixHi

n→t based on the four point pairs extracted from the normalized patch P i
n and

the target pose Jt. The recovered target patches Pt can then be stitched to form the warped garment
Gt that will be sent to the texture synthesis branch in Fig. 2 to generate more realistic garment
transfer results. We can also regardHs→t = Hn→t · Hs→n as the combined deformation matrix that
warps the source garment to the target person pose, bridged by an intermediate normalized patch
representation that is helpful for disentangling garment styles and spatial features.

3.2 Attribute-decoupled Conditional StyleGAN2

Motivated by the impressive performance of StyleGAN2 [15] in the field of image synthesis, our
PASTA-GAN inherits the main architecture of StyleGAN2 and modifies it to the conditional version
(see Fig. 2). In the synthesis network, the normalized patches Pn are projected to the style code w
through a style encoder followed by a mapping network, which is spatial-agnostic benefiting from
the disentanglement module. In parallel, the conditional information including the target head Ht

and pose Jt is transferred into a feature map fid, encoding the identity of the target person by the
identity encoder. Thereafter, the synthesis network starts from the identity feature map and leverages
the style code as the injected vector for each synthesis block to generate the try-on result Ĩt

′
.

However, the standalone conditional StyleGAN2 is insufficient to generate compelling garment
details especially in the presence of complex textures or logos. For example, although the illustrated
Ĩt
′

in Fig. 2 can recover accurate garment style (color and shape) given the disentangled style code w,
it lacks the complete texture pattern. The reasons for this are twofold: First, the style encoder projects
the normalized patches into a one-dimensional vector, resulting in loss of high frequency information.
Second, due to the large variety of garment texture, learning the local distribution of the particular
garment details is highly challenging for the basic synthesis network.

To generate more accurate garment details, instead of only having a one-way synthesis network,
we intentionally split PASTA-GAN into two branches after the 128× 128 synthesis block, namely
the Style Synthesis Branch (SSB) and the Texture Synthesis Branch (TSB). The SSB with normal
StyleGAN2 synthesis blocks aims to generate intermediate try-on results Ĩt

′
with accurate garment

style and predict a precise garment mask Mg that will be used by TSB. The purpose of TSB is
to exploit the warped garment Gt, which has rich texture information to guide the synthesis path,
and generate high-quality try-on results. We introduce a novel spatially-adaptive residual module
specifically before the final synthesis block of the TSB, to embed the warped garment feature fg
(obtained by passing Mg and Gt through the garment encoder) into the intermediate features and
then send them to the newly designed spatialy-apaptive residual blocks, which are beneficial for
successfully synthesizing texture of the final try-on result I ′t. The detail of this module will be
described in the following section.

3.3 Spatially-adaptive Residual Module

Warped 

Garment

Target Garment 

Mask

Misaligned 

Region

Figure 4: Illustration of misalignment
between the warped garment and target
garment shape. The orange and green re-
gion represent the region to be inpainted
and to be removed, respectively.

Given the style code that factors out the spatial informa-
tion and only keeps the style information of the garment,
the style synthesis branch in Fig. 2 can accurately predict
the mean color and the shape mask of the target garment.
However, its inability to model the complex texture raises
the need to exploit the warped garment Gt to provide fea-
tures that encode high-frequency texture patterns, which is
in fact the motivation of the target garment reconstruction
in Fig. 3.

However, as the coarse warped garment Gt is directly
obtained by stitching the target patches together, its shape
is inaccurate and usually misaligns with the predicted
mask Mg (see Fig.4). Such shape misalignment in Gt will
consequently reduce the quality of the extracted warped
garment feature fg .
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To address this issue, we introduce the spatially-adaptive residual module between the last two
synthesis blocks in the texture synthesis branch as shown in Fig. 2. This module is comprised of a
garment encoder and three spatially-adaptive residual blocks with feature inpainting mechanism to
modulate intermediate features by leveraging the inpainted warped garment feature.

To be specific on the feature inpainting process, we first remove the part of Gt that falls outside of
Mg (green region in Fig.4), and explicitly inpaint the misaligned regions of the feature map within
Mg with average feature values (orange region in Fig. 4). The inpainted feature map can then help
the final synthesis block infer reasonable texture in the inside misaligned parts.

Therefore given the predicted garment mask Mg , the coarse warped garment Gt and its mask Mt, the
process of feature inpainting can be formulated as:

Malign =Mg ∩Mt, (2)

Mmisalign =Mg −Malign, (3)
f ′g = Eg(Gt �Mg), (4)

fg = f ′g � (1−Mmisalign) +A(f ′g �Malign)�Mmisalign, (5)

where Eg(·) represents the garment encoder and f ′g denotes the raw feature map of Gt masked by
Mg . A(·) calculates the average garment features and fg is the final inpainted feature map.

Subsequently, inspired by the SPADE ResBlk from SPADE [26], the inpainted garment features are
used to calculate a set of affine transformation parameters that efficiently modulate the normalized
feature map within each spatially-adaptive residual block. The normalization and modulation process
for a particular sample hz,y,x at location (z ∈ C, y ∈ H,x ∈ W ) in a feature map can then be
formulated as:

γz,y,x(fg)
hz,y,x − µz

σz
+ βz,y,x(fg), (6)

where µz = 1
HW

∑
y,x hz,y,x and σz =

√
1

HW

∑
y,x (hz,y,x − µz)

2 are the mean and standard
deviation of the feature map along channel C. γz,y,x(·) and βz,y,x(·) are the convolution operations
that convert the inpainted feature to affine parameters.

Eq. 6 serves as a learnable normalization layer for the spatially-adaptive residual block to better
capture the statistical information of the garment feature map, thus helping the synthesis network to
generate more realistic garment texture.

With the modulated intermediate feature maps produced by the spatially-adaptive residual module,
the texture synthesis branch can effectively utilize the reconstructed warped garment and generate the
final compelling try-on result with high-frequency texture patterns.

3.4 Loss Functions and Training Details

As paired training data is unavailable, our PASTA-GAN is trained unsupervised via image recon-
struction. During training, we utilize the reconstruction loss Lrec and the perceptual loss [14] Lperc

for both the coarse try-on result Ĩ ′ and the final try-on result I ′:

Lrec =
∑

I∈{Ĩ′,I′}

‖I − Is‖1 and Lperc =
∑

I∈{Ĩ′,I′}

5∑
k=1

λk ‖φk(I)− φk (Is)‖1 , (7)

where φk(I) denotes the k-th feature map in a VGG-19 network [34] pre-trained on the ImageNet [30]
dataset. We also use the L1 loss between the predicted garment mask Mg and the real mask Mgt

which is obtained via human parsing [11]:

Lmask = ‖Mg −Mgt‖1. (8)

Besides, for both Ĩ ′ and I ′, we calculate the adversarial loss LGAN which is the same as in Style-
GAN2 [15]. The total loss can be formulated as

L = LGAN + λrecLrec + λpercLperc + λmaskLmask, (9)

where λrec, λperc, and λmask are the trade-off hyper-parameters.
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Figure 5: Comparison among the source garment and different warped garments.

During training, although the source and target pose are the same, the coarse warped garment Gt is
not identical to the intact source garment Gs, due to the crop mechanism in the patch-routed disentan-
glement module. More specifically, the quadrilateral crop for Gs is by design not seamless/perfect
and there will accordingly often exist some small seams between adjacent patches in Gt as well as
incompleteness along the boundary of the torso region. To further reduce the training-test gap of
the warped garment, we introduce two random erasing operations during the training phase. First,
we randomly remove one of the four arm patches in the warped garment with a probability of α1.
Second, we use the random mask from [19] to additionally erase parts of the warped garment with
a probability of α2. Both of the erasing operations can imitate self-occlusion in the source person
image. Fig. 5 illustrates the process by displaying the source garment Gs, the warped garment G′t
that is obtained by directly stitching the warped patches together, and the warped garment Gt that
is sent to the network. We can observe a considerable difference between Gt and Gs. An ablation
experiment to validate the necessity of the randomly erasing operation for the unsupervised training
is included in the supplementary material.

4 Experiments

Datasets. We conduct experiments on two existing virtual try-on benchmark datasets (MPV [6]
dataset and DeepFashion [21] dataset) and our newly collected large-scale benchmark dataset for
unpaired try-on, named UPT. UPT contains 33,254 half- and full-body front-view images of persons
wearing a large variety of garments, e.g., long/short sleeve, vest, sling, pants, etc. UPT is further split
into a training set of 27,139 images and a testing set of 6,115 images. In addition, we also pick out the
front view images from MPV [6] and DeepFashion [21] to expand the size of our training and testing
set to 54,714 and 10,493, respectively. Personally identifiable information (i.e. face information) has
been masked out.

Metrics. We apply the Fréchet Inception Distance (FID) [27] to measure the similarity between
real and synthesized images, and perform human evaluation to quantitatively evaluate the synthesis
quality of different methods. For the human evaluation, we design three questionnaires corresponding
to the three used datasets. In each questionnaire, we randomly select 40 try-on results generated by
our PASTA-GAN and the other compared methods. Then, we invite 30 volunteers to complete the 40
tasks by choosing the most realistic try-on results. Finally, the human evaluation score is calculated
as the chosen percentage for a particular method.

Implementation Details. Our PASTA-GAN is implemented using PyTorch [28] and is trained on 8
Tesla V100 GPUs. During training, the batch size is set to 96 and the model is trained for 4 million
iterations with a learning rate of 0.002 using the Adam optimizer [16] with β1 = 0 and β2 = 0.99.
The loss hyper-parameters λrec, λperc, and λmask are set to 40, 40, and 100, respectively. The
hhyper-parameters for the random erasing probability α1 and α2 are set to 0.2 and 0.9, respectively. 3

Baselines. To validate the effectiveness of our PASTA-GAN, we compare it with the state-of-the-art
methods, including three paired virtual try-on methods, CP-VTON [35], ACGPN [37], PFAFN [10],
and two unpaired methods Liquid Warping GAN [20] and ADGAN [23], which have released the
official code and pre-trained weights.4 We directly use the pre-trained model of these methods as
their training procedure depends on the paired data of garment-person or person-person image pairs,
which are unavailable in our dataset. When testing paired methods under the unpaired try-on setting,
we extract the desired garment from the person image and regard it as the in-shop garment to meet the

3Additional details for the UPT dataset (e.g., data distribution, data pre-processing), the human evaluation,
training details, and the inference time analysis, etc. are provided in the supplementary material.

4For all these prior approaches, research use is permitted according to the respective licenses. Note, we are
unable to compare with [31], [17] and [25] as they have not released their code or pre-trained model.
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Table 1: The FID score [27] and human evaluation score among different methods under the unpaired
setting on the DeepFashion dataset [21] and our UPT dataset.

Method DeepFashion UPT

FID ↓ Human Evaluation ↑ FID ↓ Human Evaluation ↑
CP-VTON [35] 69.46 2.177% 70.76 1.551%
ACGPN [37] 44.41 4.597% 37.99 3.448%
PFAFN [10] 46.19 4.677% 36.69 4.224%

ADGAN [23] 37.36 21.29% 39.60 7.241%
Liquid Warping GAN [20] 42.18 12.98% 33.18 9.310%

PASTA-GAN (Ours) 21.58 54.27% 7.852 74.22%

Person Garment CP-VTON ACGPN PFAFN ADGAN
PASTA-

GAN

Liquid 

Warping 

GAN
Person Garment CP-VTON ACGPN PFAFN ADGAN

PASTA-

GAN

Liquid 

Warping 

GAN

Figure 6: Visual comparison among PASTA-GAN and the baseline methods under the unpaired
setting on the UPT dataset. Please zoom in for more details.

need of paired approaches. To fairly compare with the paired methods, we further conduct another
experiment on the paired MPV dataset [6], in which the paired methods take an in-shop garment and
a person image as inputs, while our PASTA-GAN still directly receives two person images. See the
following two subsections for detailed comparisons on both paired and unpaired settings.

4.1 Comparison with the state-of-the-art methods on unpaired benchmark

Quantitative: As reported in Table 1, when testing on the DeepFashion [21] and the UPT dataset
under the unpaired setting, our PASTA-GAN outperforms both the paired methods [35, 37, 10] and
the unpaired methods [23, 20] by a large margin, obtaining the lowest FID score and the highest
human evaluation score, demonstrating that PASTA-GAN can generate more photo-realistic images.
Note that, although ADGAN [23] is trained on the DeepFashion dataset, our PASTA-GAN still
surpasses it. Since the data in the DeepFashion dataset is more complicated than the data in UPT, the
FID scores for the DeepFashion dataset are generally higher than the FID scores for the UPT dataset.

Qualitative: As shown in Fig. 6, under the unpaired setting, PASTA-GAN is capable of generating
more realistic and accurate try-on results. On the one hand, paired methods [35, 37, 10] tend to fail
in deforming the cropped garment to the target shape, resulting in the distorted warped garment that
is largely misaligned with the target body part. On the other hand, unpaired method ADGAN [23]
cannot preserve the garment texture and the person identity well due to its severe overfitting on the
DeepFashion dataset. Liquid Warping GAN [20], another publicly available appearance transfer
model, heavily relies on the 3D body model named SMPL [22] to obtain the appearance transfer
flow. It is sensitive to the prediction accuracy of SMPL parameters, and thus prone to incorrectly
transfer the appearance from other body parts (e.g., hand, lower body) into the garment region in
case of inaccurate SMPL predictions. In comparison, benefited by the patch-routed mechanism,
PASTA-GAN can learn appropriate garment features and predict precise garment shape. Further, the
spatially-adaptive residual module can leverage the warped garment feature to guide the network
to synthesize try-on results with realistic garment textures. Note that, in the top-left example of
Fig. 6, our PASTA-GAN seems to smooth out the belt region. The reason for this is a parsing error.
Specifically, the human parsing model [18] that was used does not designate a label for the belt, and
the parsing estimator [11] will therefore assign a label for the belt region (i.e. pants, upper clothes,
background, etc). For this particular example, the parsing label for the belt region is assigned the
background label. This means that the pants obtained according to the predicted human parsing will
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Table 2: The FID score [27] and human evaluation score among different methods under their
corresponding test setting on the MPV dataset [6].

Method CP-VTON [35] ACGPN [37] PFAFN [10] PASTA-GAN(Ours)

FID ↓ 37.72 23.20 17.40 16.48
Human Evaluation ↑ 8.071% 12.64% 28.71% 50.57%

Person
In-shop 

Garment
Garment CP-VTON ACGPN PFAFN

PASTA-

GAN
Person

In-shop 

Garment
Garment CP-VTON ACGPN PFAFN

PASTA-

GAN

Figure 7: Visual comparison among PASTA-GAN and the paired baseline methods under their
corresponding test setting on the MPV dataset [6]. Please zoom in for more details.

not contain the belt, which will therefore not be contained in the normalized patches and the warped
pants. The style synthesis branch then predicts the precise mask for the pants (including the belt
region) and the texture synthesis branch inpaints the belt region with the white color according to the
features of the pants.

4.2 Comparison with the state-of-the-art methods on paired benchmark

Quantitative: Tab. 2 illustrates the quantitative comparison on the MPV dataset [6], in which the
paired methods are tested under the classical paired setting, i.e., transferring an in-shop garment
onto a reference person. Our unpaired PASTA-GAN, nevertheless, can surpass the paired methods
especially the state-of-the-art PFAFN [10] in both FID and human evaluation score, further evidencing
the superiority of our PASTA-GAN.

Qualitative: Under the paired setting, the visual quality of the paired methods improves considerably,
as shown in Fig. 7. The paired methods depend on TPS-based or flow-based warping architectures to
deform the whole garment, which may lead to the distortion of texture and shape since the global
interpolation or pixel-level correspondence is error-prone in case of large pose variation. Our PASTA-
GAN, instead, warps semantic garment patches separately to alleviate the distortion and preserve
the original garment texture to a larger extent. Besides, the paired methods are unable to handle
garments like sling that are rarely presented in the dataset, and perform poorly on full-body images.
Our PASTA-GAN instead generates compelling results even in these challenging scenarios.

4.3 Ablation Studies

Patch-routed Disentanglement Module: To validate its effectiveness, we train two PASTA-GANs
without texture synthesis branch, denoted as PASTA-GAN? and PASTA-GAN∗, which take the intact
garment and the garment patches as input of the style encoder, respectively. As shown in Fig. 8,
PASTA-GAN? fails to generate accurate garment shape. In contrast, the PASTA-GAN∗ which factors
out spatial information of the garment, can focus more on the garment style information, leading to
the accurate synthesis of the garment shape. However, without the texture synthesis branch, both of
them are unable to synthesize the detailed garment texture. The models with the texture synthesis
branch can preserve the garment texture well as illustrated in Fig 8.

Spatially-adaptive Residual Module To validate the effectiveness of this module, we further train
two PASTA-GANs with texture synthesis branch, denoted as PASTA-GAN† and PASTA-GAN‡,
which excludes the style synthesis branch and replaces the spatially-adaptive residual blocks with
normal residual blocks, respectively. Without the support of the corresponding components, both
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Figure 8: Qualitative results and quantitative results of the ablation study with different configurations,
in which SSB, TSB, GP, NRB, SRB refer to style synthesis branch, texture synthesis branch, garment
patches, normal residual blocks, and spatially-adaptive residual blocks, respectively.

PASTA-GAN† and PASTA-GAN‡ fail to fix the garment misalignment problem, leading to artifacts
outside the target shape and blurred texture synthesis results. The full PASTA-GAN instead can
generate try-on results with precise garment shape and texture details. The quantitative comparison
results in Fig. 8 further validate the effectiveness of our designed modules.

5 Conclusion

We propose the PAtch-routed SpaTially-Adaptive GAN (PASTA-GAN) towards facilitating scalable
unpaired virtual try-on. By utilizing the novel patch-routed disentanglement module and the spatially-
adaptive residual module, PASTA-GAN effectively disentangles garment style and spatial information
and generates realistic and accurate virtual-try on results without requiring auxiliary data or extensive
online optimization procedures. Experiments highlight PASTA-GAN’s ability to handle a large
variety of garments, outperforming previous methods both in the paired and the unpaired setting.

We believe that this work will inspire new scalable approaches, facilitating the use of the large amount
of available unlabeled data. However, as with most generative applications, misuse of these techniques
is possible in the form of image forgeries, i.e. warping of unwanted garments with malicious intent.
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