
Test-Time Classifier Adjustment Module for
Model-Agnostic Domain Generalization

Yusuke Iwasawa
The University of Tokyo

iwasawa@weblab.t.u-tokyo.ac.jp

Yutaka Matsuo
The University of Tokyo

matsuo@weblab.t.u-tokyo.ac.jp

Abstract

This paper presents a new algorithm for domain generalization (DG), test-time
template adjuster (T3A), aiming to robustify a model to unknown distribution shift.
Unlike existing methods that focus on training phase, our method focuses test
phase, i.e., correcting its prediction by itself during test time. Specifically, T3A
adjusts a trained linear classifier (the last layer of deep neural networks) with the
following procedure: (1) compute a pseudo-prototype representation for each class
using online unlabeled data augmented by the base classifier trained in the source
domains, (2) and then classify each sample based on its distance to the pseudo-
prototypes. T3A is back-propagation-free and modifies only the linear layer;
therefore, the increase in computational cost during inference is negligible and
avoids the catastrophic failure might caused by stochastic optimization. Despite
its simplicity, T3A can leverage knowledge about the target domain by using
off-the-shelf test-time data and improve performance. We tested our method
on four domain generalization benchmarks, namely PACS, VLCS, OfficeHome,
and TerraIncognita, along with various backbone networks including ResNet18,
ResNet50, Big Transfer (BiT), Vision Transformers (ViT), and MLP-Mixer. The
results show T3A stably improves performance on unseen domains across choices
of backbone networks, and outperforms existing domain generalization methods.

1 Introduction

Deep neural networks often fail to generalize to out-of-distribution samples. Accuracy suffers when
the model performs under conditions different to those of training, such as variations in light [8],
weather [51], object poses [2], textures [16], or object backgrounds [5]. Nevertheless, the model may
be deployed to different conditions in practical situations; thus, some countermeasures are needed.

Over the past decade, various studies have focused on training a generalizable model to unseen
domains given a dataset consisting of several source domains. This setting is usually denoted as
domain generalization (DG) [6, 61]. Domain generalization operates under the assumption that one
can improve robustness to domain shift by incorporating the structure common to multiple domains.
For example, domain-invariant feature learning constrains the representation to be invariant to domain
shifts [14, 45, 29]. Other methods use meta-learning [19] to learn how to regularize the model to
improve the robustness [28, 4, 31]. However, despite significant work on this front, machine learning
systems are still vulnerable to domain shifts even after using the above methods during training.
Notably, recent large-scale benchmarks [17] show that many approaches do not provide significant
improvement compared to simple supervised learning, i.e., empirical risk minimization (ERM), with
a proper and practical experimental setup. It suggests that the setup in its current state may be too
difficult, and a different approach might be needed.

This paper proposes a method of using additional off-the-shelf data in the DG setup, the unsupervised
data available at the test-time. Since no data about the target domain is available during training in

35th Conference on Neural Information Processing Systems (NeurIPS 2021), virtual.



a DG setup, the existing domain generalization algorithms focus on how to use labeled data from
multiple-source domains. However, at test-time the model always has access to test data from the
target domain. Although the available data is constrained to be (1) unlabeled and (2) only available
online (models can not know all test cases in advance), this data provides clue about the target
distribution that is not available during training. It is natural to ask the question: How can we use the
off-the-shelf unlabeled data available at test-time to increase performance on the target domain?

It is worth emphasizing that our setting is different from the transductive setting [49, 22, 57] where
all test cases are known in advance, even though we use test data for adjustment. When testing, the
model is usually deployed in some environment, and must work well on various samples that will
appear continuously. Similarly, the deployed model usually needs to make correct predictions at
that moment; there is no point in going back in time and correcting the predictions. Therefore, it is
desirable that adjustment and inference be performed at the same time, not offline after a large amount
of data has been accumulated. Looking beyond domain generalization, some recent studies suggest
optimizing the model during test time using objective function defined only by unsupervised data
(e.g, prediction entropy) [34, 52]. However, updating parameters using stochastic gradient descent
(SGD) increases computational costs and harm inference throughput. In addition, data available at
test time is limited, and stochastic optimization can lead to catastrophic failure.

To this end, we present test-time templates adjuster (T3A), which adjusts the linear classifier (the
last layer of deep neural networks) at test-time. T3A adjusts the weights of the linear classifier
as the following optimization-free procedure: (1) create a pseudo-prototype for each class using
online unlabeled data and the classifier trained in the source domains, (2) and then classify each
sample based on its distance to the pseudo-prototype. This procedure makes the adjusted decision
boundary avoid the high-data density region on the target domain and reduce the ambiguity (entropy)
of predictions, which is known to be connected to classification error [52]. Since T3A does not
alter the training phase, it can be used together with existing DG algorithms. Moreover, it can be
used together with any classification model since it only adjusts the linear classifier on top of the
representations. Some readers may wonder how effective it is to modify only the linear classifier
while freezing the representation itself. Later in this paper (Section 3.2), we empirically demonstrate
that this modification is indeed beneficial.

We evaluate our method on multiple standard domain generalization benchmarks, namely VLCS [12],
PACS [27], OfficeHome [50], and TerraIncognita [5]. We compare our method with (1) various DG
algorithms reported in [17] and (2) Tent [52] that minimizes the prediction entropy at test time using
SGD. With the standard ResNet50 backbone [18], T3A improves ERM by 1.5 points on average
accuracy over four dataset, and outperforms most existing DG algorithms. Furthermore, we evaluated
our method with 10 different backbone networks, including residual networks (resnet18 and resnet50),
big transfer (BiT-M-R50x3, BiT-M-R101x3, and BiT-M-R152x2 [24]), vision transformers (ViT-B16,
ViT-L16, Hybrid ViT [9], DeiT [48]), and MLP-Mixer (Mixer-L16) [47]. The results show that T3A
gives a statistically significant performance gain against ERM on all backbone networks.

2 Preliminary and Related Work

2.1 Domain Generalization

Problem setup Following [6], we assume multiple datasets Dd = {(xd
i , y

d
i )}

nd
i=1 collected from

several different domains d ∈ {1, · · · , dtr}. The dataset Dd from domain d contains identically
and independently distributed samples characterized by some probability distribution P d(X,Y ),
where X and Y are random variables of input and target, respectively. Then, our goal is to develop a
predictor f(X) that performs well on some unseen test domain, which is characterized by a different
probability distribution P (X,Y ) 6= P d(X,Y ) for all d ∈ {1, · · · , dtr}. Note that one can not
assume the target distribution during training, e.g., no data about the target distribution is available at
the time. Therefore, the predictor is usually trained on datasets from several source domains. For
example, the predictor can be trained by minimizing the empirical risk:

argmin
φ

1

d

dtr∑
d=1

1

nd

nd∑
i=1

`(f(xd
i ), y

d
i ), (1)

where φ is the set of the parameters of the function, and ` is a loss function measuring prediction
error. In the rest of this paper, optimizing the predictor with eq. 1 is called ERM. In a real application,

2



the model will be deployed after training and expected to classify the data in an online manner.
For benchmarking the algorithm, given a dataset containing nd domains, we usually use the leave-
one-domain-out procedure, which uses a single domain as a test domain and the others as training
domains. The procedure is repeated nd times, changing the test domain every time.

Algorithms A central branch of DG algorithm is domain-invariant feature learning, which explicitly
reduces the domain gaps on a space of latent representations. For example, [14] proposed domain-
adversarial networks (DANN) which measure the domain gaps via an external domain classifier.
CORAL [45] align the second-order statistics of representations among different domains. [29] uses
maximum mean discrepancy (MMD) to measure the domain gap. Many extension have been proposed
[33, 1, 21], but they are all the same in that they enhance domain invariance. Another branch are
meta-learning-based methods [28, 4, 31], which divide the available domains into meta-train-domains
and meta-test-domain and regulate the model trained in meta-train-domains to be useful for the
meta-test-domain. Invariant risks minimization [3] regularizes ERM with a gradient normalization
penalty over a dummy classifier. Several studies propose to augment the data using mixup [59]
between two source domains, which implicitly enhances invariance to domain shifts [56, 58, 53].

Key differences As briefly mentioned above, existing domain generalization algorithms focus
on the training phase; how to regularize the predictor using the knowledge from multiple source
domains. Our work focuses on the test phase; how to adjust the model using online and unlabeled
data, which can characterize the target distribution. Note that proposed method works fully online; It
does not require access to offline unlabeled data, and therefore can be compared fairly with existing
DG methods

2.2 Other Related Work

Unsupervised domain adaptation. Our work is related to unsupervised domain adaptation (UDA)
[37, 38, 55] as both methods aim to adapt a model given unsupervised data. However, our work
primarily differs from UDA in that UDA focuses on adapting during training, while we focus on
adapting during testing. In other words, UDA assumes we can access labeled data from the source
domain and (unlabeled) data from the target domain at the same time, which is not always possible.

Source-free domain adaptation. Among them, recent “source-free” setups are particularly similar
to our setting [30, 25, 34]. In these setups, source data is not needed during the adaptation phase, and
the model is adapted using the unlabeled data solely from the target domain. However, this adaptation
is usually made in an offline manner, i.e., these source-free methods optimize offline with multiple
losses for multiple epochs. Our method adjusts the classifier in an online-manner, and therefore is
suitable for a domain generalization setup where the trained model is assumed to be deployed.

Test-time adaptation. Regarding the problem setup, our work is most closely related to test-
time adaptation [52] or test-time training [46]. Notably, [52] proposes fully test-time adaptation,
which modulates the BN parameter by minimizing the prediction entropy using stochastic gradient
descent. The concept of test-time adaptation is very similar to our work and can be used in domain
generalization, however, it has not been fully investigated under the domain generalization setup.
Moreover, recent architectures do not employ batch normalization either on pre-training (mainly to
avoid the large memory usage required by BN) or fine-tuning phase (for improving performance).
Besides, minimizing the prediction entropy using SGD could lead to trivial solutions, such as being
biased to predict only a particular class. In comparison, (1) our method can be used together with any
classification models since it only adjusts the linear classifier on the top of the representations, (2)
our method alleviates catastrophic forgetting due to not using SGD during test-time.

Prototypical networks. Before deep learning become popular, the prototype-based classifier is
well-investigated in the context of semi-supervised learning [10], continual learning [35, 39], and
few-shot learning [44]. Our work is most similar to prototypical networks [44], which combine
prototypical classifier and deep neural networks as with our method. However, the use-cases
mentioned above of prototypical networks assume access to a few labeled data from the same domain,
which differs in our case. To handle the difference, we combine prototypical networks with pseudo-
labeling techniques, which are often used in domain transfer literature [42]. Besides, connection to
entropy minimization is a new perspective introduced in this paper.

3



Algorithm 1 Algorithm of T3A for prediction.

Input: Feature extractor fθ, the batch of input B, and support sets Sk available at this point.
Output: Prediction for all x ∈ B, where x ∼ P (X).

# Step1. Adjust the template for each class using the B.
for x ∈ B do
ŷ = argmax qω(Y = yk|fθ(x)) (eq. 2)
Sk = Sk ∪ { fθ(x)

‖fθ(x)‖} for yk = ŷ (eq. 3)
end for
Filter support sets with eq. 6
# Step2. Predict based on the distance between the adjusted template.
return argmax γ(Y = yk|fθ(x)) for all x ∈ B (eq. 4)

3 Proposal: Optimization-Free Test-Time Classifier Adjustment Module

We propose to replace the output layer of the predictor trained on source-domains (i.e., linear classifier)
to a pseudo-prototypical classifier, whose prototype features are adjusted during test time while fixing
the features already trained on the source domains. We call our method T3A, for Test-Time Templates
Adjuster. We first explain the detailed algorithm (Section 3.1), and explain how and why it works
(Section 3.2). Algorithm 1 outlines the procedure.

3.1 Algorithm

We assume the predictor is deep neural networks (DNN) obtained by some learning algorithm (e.g.,
ERM, DANN, CORAL, etc.) using data from source domains. For convenience, the entire DNN is
divided into a linear classifier qω for the last layer and a feature extractor fθ for the rest, where ω and
θ are the parameters of neural networks. In usual domain generalization setup, fθ and qω are used to
predict data from the test domain. For new data x, the prediction is given by taking the argmax over
the following approximated probability distribution:

argmax
yk

qω(Y = yk|fθ(x)) =
exp(z · ωk)∑
j exp(z · ωj)

, (2)

where z = fθ(x), ωk ∈ Rzdim is the k-th element of the weights matrix in ω, and zdim is the
dimension of z, which depends on the feature extractor fθ. In this prediction, ωk works as the
template of representation for the class k, and prediction is done by measuring the distance (dot
product) between the template and the representation of the input data. Since this template was
trained in the source domain, there is no guarantee that it will be a good template in the target domain.

T3A adjusts the templates during test-time. Assume we have (batch of) test-data x at time t drawn
from target distribution P (X) 6= P d(X) for all d ∈ {1, · · · , dtr}. As each prototype should be
related to some class, we first augment the input data x via pseudo label ŷ, which is obtained via eq.
2. Then, we update a support set Skt as follows:

Skt =

{
Skt−1 ∪ {

fθ(x)
‖fθ(x)‖} if ŷ = yk

Skt−1 else,
(3)

where ‖a‖ represents the L2 norm of the vector a and Sk0 = { ωk

‖ωk‖}. If the input data contains
multiple samples at the same time (e.g., a batch of data), the above procedure is repeated for each
sample in the batch. Then, prediction is done by taking the argmax over the following adjusted
probability distribution:

argmax
yk

γc(Y = yk|fθ(x)) =
exp(z · ck)∑
j exp(z · cj)

, (4)

where ck are the centroids of Sk:
ck =

1

|Sk|
∑
z∈Skt

z. (5)

4



VLCS PACS OfficeHome Terra
Dataset

0.0

0.1

0.2

0.3

0.4

En
tro

py
 H

q(
y)

Seen
Unseen

(a) Prediction entropy

VLCS PACS OfficeHome Terra
Dataset

0.0

0.1

0.2

0.3

0.4

En
tro

py
 H

q(
y)

ERM
+T3A
+Tent-C

(b) ERM vs. T3A vs. Tent

VLCS PACS OfficeHome Terra
Dataset

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy None

+head
+body
+all

(c) Transferability

Figure 1: Pre-experimental results. (a) Comparing the entropy of predictions (with ResNet50) on
the source domains and the target domain. The domain shift increases entropy. (b) T3A effectively
reduces entropy. (c) Transferability of each components of the model trained by ERM in each dataset.

Note that, this procedure will be repeated each time new data arrives, without discarding the support
sets, which may make infeasible to retain all past data as in eq. 3. Also, some pseudo-labels are
assigned to the wrong class, and using this data is not desirable as it adds noise to the templates
and may deteriorate performance. To avoid this issue, we use the prediction entropy Hω(Ŷ |z) =
−
∑

k qω(Ŷ = yk|z) log qω(Ŷ = yk|z) to filter unreliable pseudo-labeled data. Specifically, before
making a prediction using eq. 4, only a part of the support set is restored as follows:

Skt = {z | z ∈ Skt , Hω(Ŷ |z) ≤ αk}, (6)

where αk is the M -th largest entropy of the support set Skt (M is a hyperparameter).

3.2 Remarks

Remark 1: T3A implicitly reduces prediction entropy. As prior works suggest [52], the predic-
tion entropy is often related to an error, as more confident predictions tend to be more correct. Figure
1-a shows that the prediction entropy also characterizes the difficulty in DG setup; entropy in the
unseen domain tends to be greater than entropy in the seen domains. To be more specific, we first
trained ResNet50 on the source domain by ERM. The training was done in leave-one-domain-out
manner, and we conducted three experiments with a different seed each time. We used four standard
datasets in domain generalization (VLCS [12], PACS [27], OfficeHome [50], and TerraIncognita
[5]). We used the implementation of DomainBed [17], and used the default hyper-parameters for
pre-training on source-domains and fine-tuning on a target domain: namely, we use Adam [23] with
a learning rate of 5e-5 for optimization and use a batch size of 32 with no dropout or weight decay.

With this in mind, existing studies have modified the model parameters to explicitly reduce entropy.
Although the proposed method does not explicitly reduce entropy, it has the effect of implicitly
reducing it. This is because the proposed method uses a template updated with samples from the
target distribution, which provides a decision boundary that avoids the dense parts of the target
distribution. Figure 1-b compares the prediction entropy on the target domain among (a) ERM
without test-time modulation, (b) T3A, (c) Tent-C, which updates the classifier to minimize entropy.
The results show that T3A can effectively reduce entropy without using online optimization. Note
that changing a hyper-parameter (such as learning rate) might change the results for Tent-C, but it
may corrupt the entire classifier. See Section 4 for the hyperparameter selection.

Remark 2: T3A is computationally light. Unlike Tent, our method does not use SGD. Besides,
the representations are fixed, and it is not necessary to repeat the forward propagation of the feature
extractor. The only computational overhead is the cost of one forward propagation of the last linear
layer, which is usually negligible compared to the forward and back propagation of feature extractors.
Since it is not desirable to reduce throughput when considering online prediction, the proposed
method is suitable in this respect as well.

Remark 3: Adjusting the linear classifier can significantly improve performance. Some
readers may wonder how effective it is to modify only the linear classifier while freezing the
representation. To answer this question, we compare the DG performance (None) before fine-tuning,

5



(head) after fine-tuning only qω , (body) after fine-tuning only fθ , and (all) after fine-tuning the entire
network (Figure 1-c). Each block corresponds to a different dataset, and each color represents a
different fine-tuning strategy. The results show that fine-tuning only the classifier often significantly
improves performance. For example, in VLCS, the average performance score jumps from 72.5 to
82.9, which is close to the 84.7 obtained when the entire network is fine-tuned. The performance
gain differs for each dataset, but the tendency is generally the same. In addition, this tendency was
the same for other backbone networks including BiT, ViT, and Mixer (see Appendix B). These results
indicate that adjusting only the linear classifier can significantly improve performance in various
configurations. Note that the number of parameters of the linear layer is much smaller than those of
the feature extractor in standard network architectures.

4 Experiment

We evaluate T3A on four standard domain generalization benchmarks, namely VLCS [12], PACS
[27], OfficeHome [50], and TerraIncognita [5]. Our implementation uses the DomainBed library
[17]1. We modify DomainBed (1) to use various backbone networks using the timm library [54]2,
and (2) to implement test-time adaptation algorithms (ours and Tent). For Tent, we used the original
implementation3. We run our experiments mainly on cloud V100x4 or A100x8 instances, depending
on the memory usage of the backbone networks. See Appendix A for more information, including
licensing information and total amount of compute.

Datasets. VLCS [12] comprises four photographic datasets d ∈ {Caltech101[13], LabelMe[40],
SUN09[7], VOC2007[11]}, containing 10, 729 examples of 5 classes. PCAS [27] comprises four
domains d ∈ {art, cartoons, photos, sketches}, containing 9, 991 examples of 7 classes. OfficeHome
[50] includes domains d ∈ {art, clipart, product, real}, containing 15, 588 examples and 65 classes.
TerraIncognita [5] includes photo of wild animals taken by camera at different locations. Following
[17], we used datasets of d ∈ {L100,L38,L43,L46}, containing 24, 788 examples and 10 classes.

Backbone networks. For the main experiments, we use residual networks with 50 layers
(ResNet50), which was the default setting of the prior studies. In addition, we tested our algo-
rithms on 10 different pre-trained models: residual networks with different layers (ResNet18 and
ResNet50), Big Transfer [24] with different layers (BiT-M-R50x3, BiT-M-R101x3, and BiT-M-
R152x2 ), Vision Transformers [9] with variations (ViT-B16, ViT-L16, HViT, which uses ResNet50
as patch embedding of ViT, DeiT [48]), and MLP-Mixer (Mixer-L16) [47].

Baselines. We compare our method to domain generalization algorithms and test-time adaptation
algorithms. For domain generalization algorithms, we mainly compared with the results reported in
[17]. These results include the following algorithms: Empirical Risk Minimization (ERM), Group
Distributionally Robust Optimization (GroupDRO) [41], Inter-domain Mixup (Mixup) [56, 58, 53],
Meta-Learning for Domain Generalization (MLDG) [28], DomainAdversarial Neural Networks
(DANN) [15], Class-conditional DANN (C-DANN) [32], Deep CORrelation ALignment (CORAL)
[45], Maximum Mean Discrepancy (MMD) [29], Invariant Risk Minimization (IRM) [3], Adaptive
Risk Minimization (ARM) [60], Marginal Transfer Learning (MTL) [6] Style-Agnostic Networks
(SagNet) [36], and Representation Self Challenging (RSC) [20].

We also compared our method with existing test-time adaptation methods. Note that we can not
simply use BN-based methods (including Tent [52], which is the most up-to-date method) on the DG
setup because [17] omit the BN layer from pre-trained ResNet when fine-tuning on source domains.
Besides, several backbone networks evaluated in our paper do not contain BN from the beginning.
Therefore, we first tested two slightly modified versions of Tent on standard DG setup (Table 1, Table
2, and Figure 2). Specifically, Tent-C modulates the entire classifier to reduce prediction entropy.
Tent-BN adds one BN layer just before the linear classifier and then modulates BN’s normalization
and transformation parameters. We then compare T3A with other test-time adaptation methods
(including SHOT [34], pseudo labeling (PL) [26], Tent-Full [52], BN-Norm [43]) using ResNet18
and ResNet50 without removing batch normalization layer (Table 3).

1https://github.com/facebookresearch/DomainBed
2https://github.com/rwightman/pytorch-image-models
3https://github.com/DequanWang/tent

6



Table 1: Domain generalization accuracy for all datasets and algorithms. Bold type indicates
performance improvement from the base model, and * indicates statistical significance in one-sided
paired t-test (** indicates p ≤ 0.01, * indicates p ≤ 0.05).

Algorithm VLCS PACS OfficeHome Terra Avg
ERM 77.5 ± 0.4 85.5 ± 0.2 66.5 ± 0.3 46.1 ± 1.8 69.0
IRM 78.5 ± 0.5 83.5 ± 0.8 64.3 ± 2.2 47.6 ± 0.8 68.5
GroupDRO 76.7 ± 0.6 84.4 ± 0.8 66.0 ± 0.7 43.2 ± 1.1 67.6
Mixup 77.4 ± 0.6 84.6 ± 0.6 68.1 ± 0.3 47.9 ± 0.8 69.5
MLDG 77.2 ± 0.4 84.9 ± 1.0 66.8 ± 0.6 47.7 ± 0.9 69.2
CORAL 78.8 ± 0.6 86.2 ± 0.3 68.7 ± 0.3 47.6 ± 1.0 70.3
MMD 77.5 ± 0.9 84.6 ± 0.5 66.3 ± 0.1 42.2 ± 1.6 67.7
DANN 78.6 ± 0.4 83.6 ± 0.4 65.9 ± 0.6 46.7 ± 0.5 68.7
CDANN 77.5 ± 0.1 82.6 ± 0.9 65.8 ± 1.3 45.8 ± 1.6 67.9
MTL 77.2 ± 0.4 84.6 ± 0.5 66.4 ± 0.5 45.6 ± 1.2 68.5
SagNet 77.8 ± 0.5 86.3 ± 0.2 68.1 ± 0.1 48.6 ± 1.0 70.2
ARM 77.6 ± 0.3 85.1 ± 0.4 64.8 ± 0.3 45.5 ± 0.3 68.3
VREx 78.3 ± 0.2 84.9 ± 0.6 66.4 ± 0.6 46.4 ± 0.6 69.0
RSC 77.1 ± 0.5 85.2 ± 0.9 65.5 ± 0.9 46.6 ± 1.0 68.6

ERM† 77.7 ± 0.1 83.6 ± 0.9 66.4 ± 0.3 46.5 ± 0.3 68.6
+T3A (Ours) 80.0 ± 0.2 85.3 ± 0.6 68.3 ± 0.1 47.0 ± 0.6 70.1∗∗
+Tent-BN 68.2 ± 0.2 84.8 ± 0.5 67.0 ± 0.4 44.7 ± 0.3 66.2
+Tent-C 77.0 ± 0.4 82.3 ± 1.2 65.7 ± 0.2 45.5 ± 0.4 67.6

CORAL† 78.6 ± 0.5 84.2 ± 0.3 68.3 ± 0.1 48.1 ± 1.3 69.8
+T3A (Ours) 79.5 ± 0.5 85.6 ± 0.2 69.2 ± 0.2 47.3 ± 0.7 70.4∗
+Tent-BN 71.4 ± 0.7 85.6 ± 0.2 69.2 ± 0.2 46.5 ± 0.5 68.2
+Tent-C 78.1 ± 0.5 83.7 ± 0.4 68.2 ± 0.1 47.8 ± 1.1 69.5

Hyperparameters and model selection. As [17] claimed, model selection is not trivial in DG
and significantly affects performance. We used standard training-domain validation for selecting
hyperparameters, which uses the subset of each training domain to choose a model. As reported in
[17], we split the data from each domain into 80% and 20% splits and use larger splits for training
and smaller splits to select hyperparameters. Following [17], we conduct a random search of 20 trials
over a joint distribution of all hyperparameters to train the base model (see Appendix A.4).

In addition, T3A has one hyperparameter M for deciding the number of supports to restore, and Tent
has two primary hyperparameters: β for multiplying the base learning rate (used for the base model)
and γ for the number of iterations per adaptation. It is worth emphasizing that these parameters
should be selected before the deployment, i.e., before accessing the test data. We simply selected
these hyperparameters by the average accuracy in the training-domain validation data when using
these adjustment modules. Specifically, we tested M ∈ {1, 5, 20, 50, 100,N/A} for T3A, where N/A
means restoring all samples, and combination of β ∈ {0.1, 1.0, 10.0} and γ ∈ {1, 3} for Tent.

4.1 Results

Table 1 summarizes the results when ResNet50 is used as the backbone network. The first block
(from ERM to RSC) is the value taken from [17]. The lines labeled ERM† and CORAL† are the
scores reproduced in our environments. The proposed method and Tent are based on this reproduced
model. Figure 2 shows the distribution of performance improvement by the proposed method for
models trained with different hyperparameters (20× 3 for each test environment). In addition, Table
2 show the DG accuracy with 10 different backbones. Note that this experiment is conducted only on
the default hyperparameter of ERM. Every number we report is a mean and standard error over three
repetitions with different weight initialization, and dataset splits.

T3A stably improves the performance of the base model. The second block of Table 1 shows
that T3A stably improves the performance of the ERM model. Specifically, the proposed method
improves 2.3 points, 2.0 points, 1.9 points, and 0.5 points for each dataset respectively. The average

7



Table 2: Domain generalization accuracy with different backbone networks. T3A increases the
performance agnostic to backbone networks. Note that, this experiments is conducted only on the
default hyperparameters of ERM. Bold type indicates performance improvement, and * indicates
statistical significance in paired t-test (** indicates p ≤ 0.01, * indicates p ≤ 0.05).

Models VLCS PACS OfficeHome Terra Avg
resnet18 73.2 ± 0.9 80.3 ± 0.4 55.7 ± 0.2 40.7 ± 0.3 62.5
+T3A 76.5 ± 0.9 81.7 ± 0.1 57.0 ± 0.4 41.6 ± 0.5 64.2∗

resnet50 75.5 ± 0.1 83.9 ± 0.2 64.4 ± 0.2 45.4 ± 1.2 67.3
+T3A 78.3 ± 0.7 84.5 ± 0.3 66.5 ± 0.2 45.9 ± 0.5 68.8∗

BiT-M-R50x3 76.7 ± 0.1 84.4 ± 1.2 69.2 ± 0.6 52.5 ± 0.3 70.7
+T3A 79.7 ± 0.3 85.4 ± 0.9 71.7 ± 0.6 52.2 ± 0.6 72.3∗

BiT-M-R101x3 75.0 ± 0.6 84.0 ± 0.7 67.7 ± 0.5 47.8 ± 0.8 68.6
+T3A 78.6 ± 0.4 85.4 ± 0.5 69.9 ± 0.4 48.1 ± 0.8 70.5∗

BiT-M-R152x2 76.7 ± 0.3 85.2 ± 0.1 71.3 ± 0.6 51.4 ± 0.6 71.1
+T3A 79.1 ± 0.4 86.4 ± 0.1 73.2 ± 0.5 50.9 ± 0.7 72.4∗

ViT-B16 79.2 ± 0.3 85.7 ± 0.1 78.4 ± 0.3 41.8 ± 0.6 71.3
+T3A 80.2 ± 0.4 86.0 ± 0.1 78.9 ± 0.3 42.5 ± 0.7 71.9∗

ViT-L16 78.2 ± 0.5 84.6 ± 0.5 78.0 ± 0.1 42.7 ± 1.9 70.9
+T3A 79.0 ± 0.6 85.5 ± 0.6 78.7 ± 0.2 45.3 ± 0.4 72.1∗∗

DeiT 79.3 ± 0.4 87.8 ± 0.5 76.6 ± 0.3 50.0 ± 0.2 73.4
+T3A 81.3 ± 0.4 89.5 ± 0.4 78.3 ± 0.2 50.1 ± 0.2 74.8∗

HViT 79.2 ± 0.5 89.7 ± 0.4 80.0 ± 0.2 51.4 ± 0.9 75.1
+T3A 81.0 ± 0.1 90.4 ± 0.5 80.5 ± 0.2 52.3 ± 1.0 76.1∗

Mixer-L16 76.4 ± 0.2 81.3 ± 1.0 69.4 ± 1.6 37.1 ± 0.4 66.1
+T3A 80.3 ± 0.3 83.0 ± 0.8 72.3 ± 1.8 37.5 ± 0.8 68.3∗

C L S V
Test Env

10.0%

5.0%

0.0%

5.0%

10.0%

Ac
c

(a) ERM on VLCS

A C P S
Test Env

10.0%

5.0%

0.0%

5.0%

10.0%

Ac
c

(b) ERM on PACS

A C P S
Test Env

10.0%

5.0%

0.0%

5.0%

10.0%

Ac
c

(c) CORAL on PACS

Figure 2: Distribution of performance improvements by the proposed method for models trained
with different hyperparameters (20× 3 for each test environment). Dashed line in each violin plot
represents the quartile of the distribution.

improvement from ERM is 1.5 points. For clarification, paired t-test was performed using 48 paired
data (4 datasets, 4 test domains, 3 different seeds). As a results, the difference is statistically significant
(p ≤ 0.01). Note that, Tent-BN improves the performance in PACS and OfficeHome, but it is not
stable may be due to the failure of the optimization. Tent-C never improve the performance.

In addition, Fig. 2 show that the third-quarter quantile of the improvement range is often more
than 0, which means the proposed method is also robust to the hyperparameters of the base model.
Furthermore, Table 2 shows that the proposed method can also improve the performance of more
sophisticated backbone networks. For example, the proposed method improves performance by
an average of 1.0 points for HViT, which achieved the best performance of all backbones. The

8



improvement by the proposed method is statistically significant (p ≤ 0.05 for ViT-L16, p ≤ 0.01 for
other backbones) with the one-side paired t-test.

T3A outperforms most existing DG algorithms. For example, in VLCS, the proposed method
achieves 80.0%, which is significantly better than the prior best-reported score, 78.8%. Similarly, it is
85.3% for PACS, 68.3% (best) for OfficeHome and 47.0% for TerraIncognita, and 70.1% in average
(third best). Note that the scores we reproduce are much worse than the reported scores in PACS,
which reduces the average performance. In PACS, the improvement from ERM by the proposed
method is 1.7 points, which is the most significant improvement from any reported value.

For a more accurate comparison, we also examined whether the proposed method would improve the
performance of CORAL, which had achieved the best performance in existing reports. As shown
in the third block of Table 1, the proposed method can also improve the performance of CORAL.
The average improvement is 0.6 points. Average performance is 70.4%, which is the best among
all algorithms. Note that, similar to ERM, the reproduced score and the reported score are slightly
different (and the score in PACS is particularly low).

T3A outperforms existing test-time adaptation methods. We further compare T3A with other
test-time adaptation methods when backbone networks employ the BN layer so that we can make a
fair comparison with the prior BN-based methods [43, 52]. We used ResNet18 w/BN and ResNet50
w/BN as backbone networks. Note that the results of ResNet in Table 1 and Table 2 do not use the BN
layer since it is the default option in [17]. Therefore, the results below are not directly comparable to
the DG method shown in Table 1 and Table 2 of the current manuscript.

We tested the following six baselines in addition to T3A, Tent-BN, and Tent-C. (1) Tent-Full updates
BN statistics and transformations, which is the same as the original proposal [52]. (2) BN-Norm
update BN statistics but fixes transformations parameters [43]. (3) PL (Pseudo Label) [26] updates
entire networks by minimizing the cross-entropy between prediction and the pseudo label. Following
[52], we assign the pseudo label if the predictions are over a threshold (0.9 in our experiment).
(4) PL-C updates the linear classifier by minimizing the above-mentioned pseudo-label loss. (5)
SHOT [34] updates feature extractor to minimize entropy, diversity regularizer, and pseudo-label
loss. While [34] originally proposed SHOT in the context of source-free domain adaptation (offline
adaptation setup), the method itself can be transferred to our setup. Note that the original SHOT
uses the label-smoothing when training on the source domain. However, we focus on the adaptation
method, and therefore the source model is the same as the other baselines for the fair comparison. (6)
SHOT-IM [34] updates the feature extractor to minimize entropy and the diversity regularizer.

In summary, (1) all baseline except BN-Norm and T3A use stochastic optimization during test-time,
which is not desirable since it may cause catastrophic failure and must increase computational costs.
(2) Tent-Full and BN-Norm are powerful yet constrained to be applicable only if the architecture uses
BN.

Table 3 compares results under the training-domain model selection as with Table 1 and Table 2.
For clarification, we also compare performance under the oracle model selection (28 in Appendix
C ), where one can use the validation set on the target domain (20% of all data as described above).
We can make the following observations. (1) The proposed method still outperformed all baselines
in both backbone networks. Among baselines, only Tent-Full and PL-C perform better than None
(w/o adaptation) on average. (2) When we select the hyper-parameters with a test-domain validation
set, Tent-Full gives comparable performances with the proposed method. In addition, compared
to T3A and PL-C, the T3A performs better under both model selection strategies. These results
clarify the difficulty of model selection in optimization-based methods and the merit of the proposed
optimization-free approach in this setup. (3) Updating feature extractor (or the large portion of the
parameters) does not work well in general, while it is common in SFDA (offline) setup. The results
suggest that we need different treatments on online and offline setup.

5 Discussion and Conclusion

This paper presents a new domain generalization algorithm, T3A, which adjusts its predictions during
test-time by itself. We show that T3A reduces prediction entropy (Fig. 1-c), and more importantly,
generalization error on unseen domain (Table 1). T3A can adapt different domain generalization

9



Table 3: Comparison of our method and existing test-time adaptation methods. Unlike Table 1 and
Table 2, we used ResNet18 and ResNet50 without removing batch normalization layer as backbone
networks. As with Table 2, this experiments is conducted only on the default hyperparameters of
ERM. Bold type indicates performance improvement, and * indicates statistical significance in paired
t-test (* indicates p ≤ 0.05).

Models VLCS PACS OfficeHome Terra Avg
resnet18 w/ BN 73.0 ± 0.6 79.5 ± 0.4 61.8 ± 0.3 41.7 ± 0.9 64.0
SHOT-IM 61.6 ± 0.3 82.1 ± 0.3 62.5 ± 0.3 32.8 ± 0.4 59.8
SHOT 61.8 ± 0.3 82.3 ± 0.2 62.8 ± 0.2 32.7 ± 0.4 59.9
PL 67.0 ± 0.6 72.9 ± 1.0 56.3 ± 2.5 35.4 ± 1.7 57.9
PL-C 71.8 ± 1.3 78.9 ± 0.4 61.7 ± 0.3 43.1 ± 0.9 63.9
Tent-Full 72.3 ± 0.3 83.9 ± 0.3 62.7 ± 0.2 36.9 ± 0.3 64.0
BN-Norm 70.4 ± 1.0 82.7 ± 0.1 62.0 ± 0.1 36.4 ± 0.2 62.9
Tent-C 71.3 ± 1.5 74.6 ± 1.9 60.5 ± 0.4 40.9 ± 0.5 61.8
Tent-BN 64.7 ± 0.7 81.1 ± 0.2 62.5 ± 0.3 36.4 ± 0.9 61.2
T3A (Ours) 74.5 ± 0.9 81.4 ± 0.2 63.2 ± 0.4 39.5 ± 0.3 64.6∗

resnet50 w/ BN 74.3 ± 0.5 84.1 ± 0.1 66.9 ± 0.2 45.8 ± 1.8 67.8
SHOT-IM 61.5 ± 1.7 84.6 ± 0.3 68.0 ± 0.0 33.8 ± 0.3 62.0
SHOT 61.6 ± 1.8 84.8 ± 0.5 68.0 ± 0.0 34.6 ± 0.3 62.3
PL 63.4 ± 1.8 80.1 ± 3.5 61.3 ± 1.5 36.8 ± 4.4 60.4
PL-C 73.3 ± 0.8 84.7 ± 0.3 66.4 ± 0.3 47.0 ± 1.7 67.9
Tent-Full 75.4 ± 0.6 87.0 ± 0.2 66.9 ± 0.2 42.6 ± 0.8 68.0
BN-Norm 71.3 ± 0.4 85.8 ± 0.1 66.4 ± 0.1 42.3 ± 0.4 66.5
Tent-C 72.4 ± 1.5 84.4 ± 0.1 66.2 ± 0.2 42.4 ± 3.1 66.4
Tent-BN 65.6 ± 1.4 84.9 ± 0.0 67.7 ± 0.2 42.7 ± 0.5 65.2
T3A (Ours) 76.0 ± 0.3 85.1 ± 0.2 68.2 ± 0.1 44.6 ± 0.9 68.5∗

algorithms for training-phase (the third block of Table 1), and different backbone networks (Table
2). Note that this property is important in practice because a better backbone network usually give
significant performance gains. For example, Table 2 suggest a practitioner should try HViT, which
outperforms ResNet50 by a large margin (7.8 points in average) if computational resources allow.
T3A can boost HViT’s performance by 1.0 points. Unlike existing studies that update the model
with SGD during testing, the proposed method is optimization-free. Therefore, the computational
overhead is negligible, and the behavior is unlikely to become unstable, making T3A especially
suitable for online settings where the model needs to (adapt and) predict online as with typical DG.

One of the limitations of T3A is how to extend it beyond the classification problem. Since the
proposed method creates a template online for each prediction class, it is not trivial to adapt it for
continuous prediction. Note that Tent have the same problem, as prediction entropy is hard to compute
in the regression case. It is a future task to apply this idea to a broader range of problem settings.

Another potential drawback of the proposed method is that the model can change at any time, making
it difficult to thoroughly test its behavior in advance. This may raise ethical concerns in some
sensitive applications, making it more difficult to sanitize the model and ensure it does not make
unfair decisions. In such a situation, fully online adaptation might be difficult, and one may want
to update the model offline. We encourage examination of each of these works on the frontier of
test-time adaptation.

Although accuracy was greatly improved, there is massive room for improvement as the performance
in the unknown domain is still significantly worse than performance in the known domain. From a
probabilistic viewpoint, the templates of each class can be regarded as the statistics of the P (Z|Y ),
and our method adjusts it. As it is connected to the prediction P (Y |Z) = P (Z|Y )P (Y )

P (Z) , adjusting
it can correlates the prediction. From this perspective, using the average templates might be too
restrictive, and one can use higher-order statistics to improve performance. Alternatively, one can
retain all reliable samples, approximating P (Z|Y ) as empirical distribution. We hope that the
findings of this paper will lead to a better test-time adaptation method and lead to the development of
machine learning systems that work well in unknown environments.

10



Acknowledgements

This work has been supported by JSPS Grant-in-Aid for Early-Career Scientists Number JP18K18101 and
the Mohammed bin Salman Center for Future Science and Technology for Saudi-Japan Vision 2030 at The
University of Tokyo (MbSC2030). Computational resource of AI Bridging Cloud Infrastructure (ABCI) provided
by National Institute of Advanced Industrial Science and Technology (AIST) was used.

References
[1] K. Akuzawa, Yusuke Iwasawa, and Y. Matsuo. Adversarial invariant feature learning with accuracy

constraint for domain generalization. In ECML/PKDD, 2019.

[2] Michael A. Alcorn, Qi Li, Zhitao Gong, Chengfei Wang, Long Mai, Wei-Shinn Ku, and Anh M Nguyen.
Strike (with) a pose: Neural networks are easily fooled by strange poses of familiar objects. CVPR, pages
4840–4849, 2019.

[3] Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization. arXiv
preprint arXiv:1907.02893, 2019.

[4] Y. Balaji, S. Sankaranarayanan, and R. Chellappa. Metareg: Towards domain generalization using
meta-regularization. In NeurIPS, 2018.

[5] Sara Beery, Grant Van Horn, and P. Perona. Recognition in terra incognita. In ECCV, 2018.

[6] Gilles Blanchard, Gyemin Lee, and Clayton Scott. Generalizing from several related classification tasks to
a new unlabeled sample. In NIPS, pages 2178–2186, 2011.

[7] M. J. Choi, Joseph J. Lim, A. Torralba, and A. Willsky. Exploiting hierarchical context on a large database
of object categories. CVPR, pages 129–136, 2010.

[8] Dengxin Dai and L. Gool. Dark model adaptation: Semantic image segmentation from daytime to nighttime.
ITSC, pages 3819–3824, 2018.

[9] A. Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
M. Dehghani, Matthias Minderer, G. Heigold, S. Gelly, Jakob Uszkoreit, and N. Houlsby. An image is
worth 16x16 words: Transformers for image recognition at scale. In ICLR, 2021.

[10] Kurt Driessens, Peter Reutemann, Bernhard Pfahringer, and Claire Leschi. Using weighted nearest neighbor
to benefit from unlabeled data. In PAKDD, 2006.

[11] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The
PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results. http://www.pascal-
network.org/challenges/VOC/voc2007/workshop/index.html.

[12] Chen Fang, Ye Xu, and D. Rockmore. Unbiased metric learning: On the utilization of multiple datasets
and web images for softening bias. ICCV, pages 1657–1664, 2013.

[13] Li Fei-Fei, R. Fergus, and P. Perona. One-shot learning of object categories. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 28:594–611, 2006.

[14] Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation. In ICML,
2015.

[15] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François Lavio-
lette, Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural networks. JMRL,
17(1):2096–2030, 2016.

[16] Robert Geirhos, Patricia Rubisch, Claudio Michaelis, M. Bethge, Felix Wichmann, and W. Brendel.
Imagenet-trained cnns are biased towards texture; increasing shape bias improves accuracy and robustness.
ArXiv, abs/1811.12231, 2019.

[17] Ishaan Gulrajani and David Lopez-Paz. In search of lost domain generalization. In ICLR, 2021.

[18] Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. CVPR,
pages 770–778, 2016.

[19] Timothy M. Hospedales, Antreas Antoniou, P. Micaelli, and A. Storkey. Meta-learning in neural networks:
A survey. IEEE transactions on pattern analysis and machine intelligence, PP, 2021.

11



[20] Zeyi Huang, Haohan Wang, E. Xing, and Dong Huang. Self-challenging improves cross-domain general-
ization. In ECCV, 2020.

[21] Yusuke Iwasawa, K. Akuzawa, and Y. Matsuo. Stabilizing adversarial invariance induction from divergence
minimization perspective. In IJCAI, 2020.

[22] T. Joachims. Transductive inference for text classification using support vector machines. In ICML, 1999.

[23] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

[24] Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, J. Puigcerver, Jessica Yung, S. Gelly, and N. Houlsby.
Big transfer (bit): General visual representation learning. In ECCV, 2020.

[25] Jogendra Nath Kundu, Naveen Venkat, V. RahulM., and R. Venkatesh Babu. Universal source-free domain
adaptation. CVPR, pages 4543–4552, 2020.

[26] Dong-Hyun Lee. Pseudo-label : The simple and efficient semi-supervised learning method for deep neural
networks. 2013.

[27] Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M Hospedales. Deeper, broader and artier domain
generalization. In ICCV, pages 5543–5551. IEEE, 2017.

[28] Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M Hospedales. Learning to generalize: Meta-learning
for domain generalization. In AAAI, 2018.

[29] Haoliang Li, Sinno Jialin Pan, S. Wang, and A. Kot. Domain generalization with adversarial feature
learning. CVPR, pages 5400–5409, 2018.

[30] Rui Li, Qianfen Jiao, Wenming Cao, H. Wong, and Si Wu. Model adaptation: Unsupervised domain
adaptation without source data. CVPR, pages 9638–9647, 2020.

[31] Y. Li, Yongxin Yang, W. Zhou, and Timothy M. Hospedales. Feature-critic networks for heterogeneous
domain generalization. In ICML, 2019.

[32] Ya Li, Mingming Gong, Xinmei Tian, Tongliang Liu, and Dacheng Tao. Domain generalization via
conditional invariant representations. In AAAI, 2018.

[33] Ya Li, Xinmei Tian, Mingming Gong, Yajing Liu, Tongliang Liu, Kun Zhang, and Dacheng Tao. Deep
domain generalization via conditional invariant adversarial networks. In ECCV, pages 624–639, 2018.

[34] Jian Liang, D. Hu, and Jiashi Feng. Do we really need to access the source data? source hypothesis transfer
for unsupervised domain adaptation. In ICML, 2020.

[35] Thomas Mensink, Jakob J. Verbeek, Florent Perronnin, and Gabriela Csurka. Distance-based image
classification: Generalizing to new classes at near-zero cost. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 35:2624–2637, 2013.

[36] H. Nam, Hyunjae Lee, Jongchan Park, W. Yoon, and Donggeun Yoo. Reducing domain gap via style-
agnostic networks. ArXiv, abs/1910.11645, 2019.

[37] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on Knowledge and
Data Engineering, 22:1345–1359, 2010.

[38] V. Patel, Raghuraman Gopalan, R. Li, and R. Chellappa. Visual domain adaptation: A survey of recent
advances. IEEE Signal Processing Magazine, 32:53–69, 2015.

[39] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, G. Sperl, and Christoph H. Lampert. icarl: Incremental
classifier and representation learning. 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 5533–5542, 2017.

[40] Bryan C. Russell, A. Torralba, K. Murphy, and W. Freeman. Labelme: A database and web-based tool for
image annotation. International Journal of Computer Vision, 77:157–173, 2007.

[41] Shiori Sagawa, Pang Wei Koh, T. Hashimoto, and Percy Liang. Distributionally robust neural networks for
group shifts: On the importance of regularization for worst-case generalization. ArXiv, abs/1911.08731,
2019.

[42] K. Saito, Y. Ushiku, and T. Harada. Asymmetric tri-training for unsupervised domain adaptation. In ICML,
2017.

12



[43] Steffen Schneider, Evgenia Rusak, Luisa Eck, Oliver Bringmann, Wieland Brendel, and Matthias Bethge.
Improving robustness against common corruptions by covariate shift adaptation. In NeurIPS, 2020.

[44] J. Snell, Kevin Swersky, and R. Zemel. Prototypical networks for few-shot learning. In NIPS, 2017.

[45] Baochen Sun and Kate Saenko. Deep coral: Correlation alignment for deep domain adaptation. In ECCV
Workshops, 2016.

[46] Y. Sun, Xiaolong Wang, Zhuang Liu, J. Miller, Alexei A. Efros, and Moritz Hardt. Test-time training for
out-of-distribution generalization. ArXiv, abs/1909.13231, 2019.

[47] I. Tolstikhin, N. Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Unterthiner, Jessica
Yung, Daniel Keysers, Jakob Uszkoreit, Mario Lucic, and A. Dosovitskiy. Mlp-mixer: An all-mlp
architecture for vision. ArXiv, abs/2105.01601, 2021.

[48] Hugo Touvron, M. Cord, M. Douze, Francisco Massa, Alexandre Sablayrolles, and Herv’e J’egou. Training
data-efficient image transformers & distillation through attention. ArXiv, abs/2012.12877, 2020.

[49] V. Vapnik. Statistical learning theory. 1998.

[50] Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and S. Panchanathan. Deep hashing network
for unsupervised domain adaptation. CVPR, pages 5385–5394, 2017.

[51] G. Volk, S. Mueller, Alexander von Bernuth, Dennis Hospach, and O. Bringmann. Towards robust
cnn-based object detection through augmentation with synthetic rain variations. ITSC, pages 285–292,
2019.

[52] Dequan Wang, Evan Shelhamer, Shaoteng Liu, B. Olshausen, and Trevor Darrell. Tent: Fully test-time
adaptation by entropy minimization. In ICLR, 2021.

[53] Yufei Wang, Haoliang Li, and A. Kot. Heterogeneous domain generalization via domain mixup. ICASSP,
pages 3622–3626, 2020.

[54] Ross Wightman. Pytorch image models. https://github.com/rwightman/pytorch-image-models, 2019.

[55] Garrett Wilson and D. Cook. A survey of unsupervised deep domain adaptation. TIST, 11:1 – 46, 2020.

[56] Minghao Xu, Jia yu Zhang, Bingbing Ni, Teng Li, Chengjie Wang, Qi Tian, and W. Zhang. Adversarial
domain adaptation with domain mixup. In AAAI, 2020.

[57] X. Xu, Timothy M. Hospedales, and S. Gong. Transductive zero-shot action recognition by word-vector
embedding. International Journal of Computer Vision, 123:309–333, 2016.

[58] Shen Yan, Huan Song, Nanxiang Li, L. Zou, and Liu Ren. Improve unsupervised domain adaptation with
mixup training. ArXiv, abs/2001.00677, 2020.

[59] Hongyi Zhang, Moustapha Cissé, Yann Dauphin, and David Lopez-Paz. mixup: Beyond empirical risk
minimization. ArXiv, abs/1710.09412, 2018.

[60] Marvin Zhang, H. Marklund, Abhishek Gupta, Sergey Levine, and Chelsea Finn. Adaptive risk minimiza-
tion: A meta-learning approach for tackling group shift. ArXiv, abs/2007.02931, 2020.

[61] K. Zhou, Z. Liu, Yu Qiao, Tao Xiang, and Chen Change Loy. Domain generalization: A survey. ArXiv,
abs/2103.02503, 2021.

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s contribu-
tions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See Section 5.1.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See Section 5.1.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

13

https://github.com/rwightman/pytorch-image-models


3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experimental
results (either in the supplemental material or as a URL)? [Yes] See supplemental materials.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were chosen)?
[Yes] See Section 4 and Appendix A.

(c) Did you report error bars (e.g., with respect to the random seed after running experiments
multiple times)? [Yes] We repeated entire experiments three times as recommended by the prior
works.

(d) Did you include the total amount of compute and the type of resources used (e.g., type of GPUs,
internal cluster, or cloud provider)? [Yes] See Section 4 and Appendix A.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes] See Appendix A.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re us-

ing/curating? [Yes]
(e) Did you discuss whether the data you are using/curating contains personally identifiable informa-

tion or offensive content? [Yes]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if applicable?
[N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review Board (IRB)
approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount spent on
participant compensation? [N/A]

14


