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Abstract

Recent research suggests that systematic generalization in natural language un-
derstanding remains a challenge for state-of-the-art neural models such as Trans-
formers and Graph Neural Networks. To tackle this challenge, we propose Edge
Transformer, a new model that combines inspiration from Transformers and rule-
based symbolic AI. The first key idea in Edge Transformers is to associate vector
states with every edge, that is, with every pair of input nodes—as opposed to just
every node, as it is done in the Transformer model. The second major innovation is
a triangular attention mechanism that updates edge representations in a way that is
inspired by unification from logic programming. We evaluate Edge Transformer on
compositional generalization benchmarks in relational reasoning, semantic parsing,
and dependency parsing1. In all three settings, the Edge Transformer outperforms
Relation-aware, Universal and classical Transformer baselines.

1 Introduction

Transformers (Vaswani et al., 2017) have become ubiquitous in natural language processing and
deep learning more generally (e.g., Devlin et al., 2018; Raffel et al., 2020; Carion et al., 2020).
Nevertheless, systematic (or compositional) generalization benchmarks remain challenging for this
class of models, including large instances with extensive pre-training (Keysers et al., 2020; Tsarkov
et al., 2020; Gontier et al., 2020; Furrer et al., 2020). Similarly, despite their increasing application to
a variety of reasoning and inference problems, the ability of Graph Neural Networks’ (GNN) (Gori
et al., 2005; Scarselli et al., 2009; Veličković et al., 2018) to generalize systematically has also been
recently called into question (Sinha et al., 2019, 2020). Addressing these challenges to systematic
generalization is critical both for robust language understanding and for reasoning from other kinds
of knowledge bases.

In this work, inspired by symbolic AI, we seek to equip Transformers with additional representational
and computational capacity to better capture the kinds of information processing that underlie
systematicity. Our intuition is that classical Transformers can be interpreted as a kind of inferential
system similar to a continuous relaxation of a subset of the Prolog logic programming language.
In particular, as we discuss in the next section, Transformers can be seen as implementing a kind
of reasoning over properties of entities—for example, RED(·) or TABLE(·)—where any relations

1Code for our experiments can be found at: github.com/bergen/EdgeTransformer
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required for such reasoning—for example PART-OF(·, ·) or GRANDMOTHER(·, ·)—are inferred on the
fly with the self-attention mechanism.

Building on this intuition, in this work we propose Edge Transformers, a generalization of the
Transformer model that uses a novel triangular attention mechanism that is inspired by a much more
general family of inferential rules.

To achieve this, we endow the Edge Transformer with a 3D tensor state such that every edge, that
is, every pair of input nodes, contains a vector that represents relations between the two nodes. The
updates of each edge are computed using all adjacent edges in a way that is directly inspired by
unification in logic programming. While the use of edge features or even dynamic edge states can
be found in the Transformer and GNN literatures (Shaw et al., 2018; Gilmer et al., 2017; Gong and
Cheng, 2019), to the best of our knowledge such triangular updates are novel to our approach.

We evaluate the Edge Transformers on three recently proposed compositional generalization chal-
lenges. First, on the graph version of the CLUTRR relational reasoning challenge (Sinha et al., 2019),
our model displays stronger systematic generalization than Graph Attention Networks (Veličković
et al., 2018) and Relation-aware Transformers (Shaw et al., 2018). Second, on both dependency
parsing and semantic parsing versions (Goodwin et al., 2021a) of the Compositional Freebase Ques-
tions benchmark (Keysers et al., 2020) our model achieves a higher parsing accuracy than that of
classical Transformers and BiLSTMs. Last but not least, Edge Transformer achieves state-of-the-start
performance of 87.4% on the COGS benchmark for compositional generalization in semantic parsing.

2 Intuitions

A Transformer operates over a set of n entities—such as words in a sentence—which we represent
as nodes in a graph like those displayed on the left-hand side of Figure 1. Each node is associated
with a d-dimensional node-state X(i) for i ∈ n, which can be thought of as the output associated
with applying some function to the node—that, a representation of node properties. In transformers,
computation proceeds by sequentially associating each node with a number l of node-states, with
each state updated from node states at the preceding layer via the attention mechanism.

Adopting a Prolog-like notation, we could write the fundamental inferential process implemented by
the transformer architecture as

X l+1(1) `A X l(1), X l(2), . . . , X l(n). (1)

In logic programming, the turnstile symbol ` means that whenever the right-hand side of the
expression is true, the left-hand side must be true. In our interpretation of Transformers, the inference
rules expressed by `A are learned via the attention mechanism A, as is the meaning of each property
X l(·). Classical transformers can therefore be interpreted as an architecture specialized to learning
how entity properties can be inferred from the properties of other entities.

Despite the power of this mechanism, it still has noteworthy limitations. In particular, for many
practical reasoning and NLU tasks systems must learn dependencies between relations, such as
family relations: MOTHER(x, y) and MOTHER(y, z) implies GRANDMOTHER(x, z). Such a general
reasoning problem might be expressed in Prolog-like notation as follows.

X l+1(1, 2) `A X l(1, 1), X l(1, 2), . . . , X l(2, 1), X l(2, 2), . . . . (2)

It is of course possible for classical transformers to capture such reasoning patterns. But for them to
do so, each transformer state X l+1(1) must encode both the properties of the relation itself, that is,
MOTHER(·, ·) versus GRANDMOTHER(·, ·)—as well as all target nodes x with which node 1 stands
in the relation, that is MOTHER(1, x). In other words, to encode relations a classical transformer must
use its state representations for two distinct purposes. This mixing of concerns places a high burden
on the learning, and we hypothesize that the resulting inductive bias hinders the ability of this class
of models to generalize systematically.

To address this problem we propose that the fundamental object represented by the model
should not be a state associated with a node but, rather, states associated with edges, like
those displayed on the right of Figure 1. Such edge representations in turn are updated
based on an attention mechanism which attends to other edges. This mechanism is inspired
by the process of unification in logic programming. Critical to an inference rule such as
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Figure 1: Left: Transformer self-attention computes an update a3 for the node 3 by mixing value
vectors vi associated with each node i with attention weights αi. Right: triangular attention computes
an update a12 for the edge (1, 2) by mixing value vectors v1l2 computed for each triangle (1, l, 2)
with attention weights α1l2. Values v3, v112, v122 and their contributions are not shown for simplicity.

GRANDMOTHER(x, y) `A MOTHER(x, z) MOTHER(z, y) is the fact that the two predicates on
the right hand side of this rule share a variable z. Successfully inferring GRANDMOTHER(x, y) which
involve finding a binding for z which satisfies both MOTHER(z, y) and MOTHER(x, z)—a process
which is handled by unification in logic programming. We believe that this is a fundamental aspect of
relational reasoning and to capture this we make use of a form of attention which we call triangular
attention and which we further describe in the next section.

3 Edge Transformers

An edge transformer operates on a complete graph with n nodes and n2 directed edges (we allow
self-connections) labeled with d-dimensional feature vectors. An edge transformer state therefore is a
3-dimensional tensor X ∈ Rn,n,d that consist of edges states X(i, j) corresponding to every edge
(i, j), i, j ∈ [1, n]. We will also write xij for each edge state. An edge transformer layer computes

X ′ = FFN(LN(X +TriangularAttention(LN(X)))). (3)

Here, FFN(X) is a fully-connected feed-forward network with one hidden layer of 4 · d units that is
applied independently to each edge state xij , LN stands for the layer normalization mechanism (Ba
et al., 2016) which rescales activations of each feature f ∈ [1, d] across its occurrences in edge states
xij . Equation 3 follows the familiar structure of transformer (Vaswani et al., 2017) computations
with two important differences: (a) It uses a 3D-tensor state instead of a matrix state; and (b) it makes
use of a novel triangular attention mechanism that we describe below.

For a single edge state xij a single-head triangular attention update outputs a vector aij that is
computed as follows:

aij =W o
∑

l∈[1,n]

αiljvilj , (4)

αilj = softmax
l∈[1,n]

qilklj/
√
d, (5)

qil =W qxil, (6)

klj =W kxlj , (7)

vilj = V 1xil � V 2xlj , (8)

where � stands for elementwise multiplication, and W q,W k,W o, V 1, V 2 ∈ Rd,d are matrices that
are used to produce key, query, output and value vectors kil, qlj , aij and vilj respectively. Here and
in the rest of the paper we omit bias terms for clarity.

Informally, updates associated with an edge (i, j) proceed by aggregating information across all
pairs of edges that share a node l, that is, all pairs (i, l) and (l, j). The updated edge value, aij , is
an attention-weighted mixture of contributions from each such pair of edges. Figure 1 visualizes
some of the key differences between transformer and edge transformer computations. Note that edges
(i, j), (i, l), and (l, j) form a triangle in the figure—hence the name of our attention mechanism.

We define a multi-head generalization of the above mechanism in a way similar to the implementation
of multi-head attention in vanilla transformers. Specifically, each head h ∈ [1,m] will perform Edge
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Figure 2: Illustrations of the benchmarks that we use to evaluate the Edge Transformer. (A) Relational
reasoning scenarios for the CLUTRR benchmark, with the relation length of 3 (top) and 6 (bottom).
(B) Dependency parsing for Compositional Freebase Questions (CFQ; reproduced with permission,
Goodwin et al., 2021b). (C) SPARQL query and the corresponding question from the CFQ semantic
parsing dataset. (D) graph representations of COGS semantic parses (Ontanón et al., 2021).

Attention using the smaller corresponding matrices W q,W k, V 1, V 2 ∈ Rd,d/m, and the joint output
aij will be computed by multiplying a concatenation of the heads’ output by W o:

aij =W o
[
a1ij ; . . . ; a

m
ij

]
. (9)

In practice a convenient way to implement an efficient batched version of edge attention is using the
Einstein summation operation which is readily available in modern deep learning frameworks.

Tied & Untied Edge Transformer Edge Transformer layers can be stacked with or without tying
weights across layers. By default we tie the weights in a way similar to Universal Transformer
(Dehghani et al., 2019). We will refer to the version with weights untied as Untied Edge Transformer.

Input & Output The Edge Transformer’s initial state X0 is defined differently for different
applications. When the input is a labeled graph with (possibly null) edge labels, the initial state
x0ij is produced by embedding the labels with a trainable embedding layer. When the input is a
sequence, such as for example a sequence of words or tokens ti, self-edges x0ii are initialized with the
embedding for token ti, and all edges x0ij are initialized with a relative position embedding (Shaw
et al., 2018):

x0ij =

{
e(ti) + a(0) if i = j

a(i− j) if i 6= j
(10)

where e is a trainable d-dimensional embedding layer, and a(i− j) is a relative position embedding
for the position difference i− j.
To produce a graph-structured output with Edge Transformer, a linear layer with cross-entropy loss
can be used for every edge (i, j). For classification problems with a single label for the entire input
the label can be associated with one of the edges, or edge representations can be pooled.

Lastly, an encoder-decoder version of Edge Transformer can be used to perform sequence-to-sequence
transduction. Our approach follows that used with the original Transformer architecture (Vaswani
et al., 2017). First, an encoder Edge Transformer processes the question and produces a 3D tensor
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Table 1: Hyperparameter settings for the Edge Transformer and for the baselines. L is the number of
layers, d is the dimensionality, h is the number of heads, B is the batch size, ρ is the learning rate, T
is training duration. For CFQ, “dep.” stands for dependency parsing and “sem.” stands for semantic
parsing.

Model Task L d h B ρ T

Edge Transformer CLUTRR 8 200 4 400 1 · 10−3 50 epochs
RAT CLUTRR 8 320 8 200 1 · 10−3 50 epochs
RRAT CLUTRR 6 320 8 200 1 · 10−3 50 epochs
Edge Transformer CFQ dep. 7 360 4 5 · 102 words 1 · 10−3 8000 steps
Transformer CFQ dep. 7 360 4 1 · 103 words 1 · 10−3 8000 steps
Universal Transformer CFQ dep. 8 360 4 5 · 102 words 1 · 10−3 8000 steps
Edge Transformer CFQ sem. 6 256 8 64 6 · 10−4 100 epochs
Universal Transformer CFQ sem. 4 256 8 64 6 · 10−4 100 epochs
Edge Transformer COGS 3 64 4 100 5 · 10−4 200 epochs

state xenc. Next, the decoder Edge Transformer generates output tokens one by one, left-to-right.
To produce the output distribution for the token we feed the state of the loop edge (i, i) through a
linear layer. To connect the decoder to the encoder we insert xenc into the decoder’s initial state. This
operation is the Edge Transformer’s equivalent to how the Transformer decoder cross-attends to the
Transformer encoder’s hidden states. To compute training log-likelihoods we adapt the Transformer
decoder’s causal masking approach to our triangular attention mechanism.

4 Experiments

In our experiments we compare the systematic generalization ability of Edge Transformers to that
of Transformers (Vaswani et al., 2017), Universal Transformers (Dehghani et al., 2019), Relation-
aware Transformers (Shaw et al., 2018), Graph Attention Networks (Veličković et al., 2018) and
other baselines. We focus on three synthetic benchmarks with carefully controlled train-test splits,
Compositional Language Understanding and Text-based Relational Reasoning (CLUTRR), proposed
by Sinha et al. (2019), Compositional Freebase Questions (CFQ) proposed by Keysers et al. (2020)
and Compositional Generation Challenge based on Semantic Interpretation (COGS) by Kim and
Linzen (2020). Systematic generalization refers to the ability to recombine known primitive units
in novel combinations. These three benchmarks match test and train in terms of primitive atoms
used and rules of combination, but test on novel combinations of atoms not seen in train. These
benchmarks are thus appropriate for assessing whether Edge Transformers have a greater ability to
generalize systematically than existing models.

In all tables we report mean ± standard error over multiple runs. For details on the hyperparameter
search procedure see Appendix A. For the chosen hyperparameter settings see Table 1.

4.1 Relational Reasoning on Graphs

In the first round of experiments, we use the CLUTRR benchmark proposed by Sinha et al. (2019).
CLUTRR evaluates the ability of models to infer unknown familial relations between individuals
based on sets of given relations. For example, if one knows that A is a son of B, C is a son of B and C
has an uncle called D, one can infer that D must also be the uncle of A (see Figure 2, A). The authors
propose training models on scenarios that require a small number (2, 3 or 4) of supporting relations to
infer the target relation and test on scenarios where more (up to 10) supporting relations are required.
We will refer to the number of inferential steps required to prove the target relation as the relation
length k. For relation lengths k = 2, 3, 4, we train models on the original CLUTRR training set from
Sinha et al. (2019), which contains 15k examples. For relation lengths k = 2, 3, we generate a larger
training set containing 35k examples using Sinha et al. (2019)’s original code, allowing us to measure
systematic generalization performance with less variance. We use the noiseless (only the required
facts are included) graph-based version of the challenge, where the input is represented as a labeled
graph, and the model’s task is to label a missing edge in this graph.
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Figure 3: Relation prediction accuracy on CLUTRR for test relations of lengths k ∈ [2, 10]. GAT
results from Sinha et al. (2019) (only shown for the k = 2, 3, 4 task, as the k = 2, 3 training set was
regenerated). Edge, Relation-Aware (RAT), Relation-updating Relation-aware (RRAT) Transformer
results are averaged over 10 runs.

We create the Edge Transformer’s initial state X0 by embedding edge labels. We apply a linear layer
to the final representation xLij of the query edge (i, j) in order to produce logits for a cross-entropy
loss. Our main baseline is a Relation-aware Transformer (RAT) (RT; Shaw et al., 2018), a Transformer
variant that can be conditioned on arbitrary graphs. Edges for RAT are initialized by embedding edge
labels, and nodes are initialized with zero vectors. Logits are computed by applying a linear layer to
concatenated representations of the nodes that occur in the queried edge. We also compare against
a variant of RAT which updates both nodes and edges. For this Relation-updating Relation-aware
Transformer (RRAT), node updates are computed in the same way as in RAT. The update for the
edge xij is computed by concatenating the representations for nodes i and j, and applying a linear
layer. Separate feed-forward layers are applied to nodes and edges. Logits are computed by applying
a linear layer to the queried edge. Finally, for the k = 2, 3, 4 setting we include the Graph Attention
Networks (GAT, Veličković et al. (2018)) results from the original CLUTRR paper for comparison.
Figure 3 displays the results. One can see the Edge Transformer beats all baselines by wide margins,
in both k = 2, 3 and k = 2, 3, 4 training settings.

4.2 Dependency Parsing of CFQ

In our second set of experiments we use the dependency parsing version of the CFQ challenge
(Keysers et al., 2020) recently proposed by Goodwin et al. (2021b). The original CFQ challenge
evaluates compositional generalization in semantic parsing—in the case of CFQ, the task of translating
natural language questions into corresponding knowledge graph queries. The CFQ benchmark was
constructed by generating test/train splits which minimize the difference between the test and train
distributions over primitive units, like words, while maximizing the compound divergence—the
dissimilarity between test and train distributions over larger structures, like phrases. As a result,
at test time, a model has to generalize to novel syntactic constructions, such as “Was NP NP?”
(“Was Alice the sister of Bob?”) that were not seen during training. Keysers et al. (2020) released
three different maximum compound divergence (MCD) splits. Goodwin et al. (2021b) propose a
dependency parsing version of the CFQ task and show that the MCD splits are challenging for a
state-of-the-art dependency parser (see Figure 2, B). This dependency parsing task is convenient for
evaluating Edge Transformer in an encoder-only graph prediction setting that is simpler than the
original sequence-to-sequence formulation of the CFQ task (see Section 4.3 for results in the original
setting).

We use the Stanza framework for dependency parsing (Qi et al., 2020) in which we replace the
default BiLSTM model with Transformer, Universal Transformer or Edge Transformer variants.
The models are trained to label each pair of positions i and j with a dependency type label or a
null label. These predictions are then combined into a parse tree by Stanza’s spanning-tree-based
parsing algorithm. The model’s initial state X0 is initialized from token and relational embeddings as
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Table 2: Dependency parsing accuracy on Compositional Freebase Queries (CFQ). EM is Exact
Match accuracy, LAS is Labeled Attachment Score. BiLSTM results are from Goodwin et al. (2021a).
Transformer, Universal Transformer and Edge Transformer results are averaged over 10 runs.

Model MCD1 MCD2 MCD3
EM LAS EM LAS EM LAS

BiLSTM 96.6 ± 1.3 99.6 ± 0.2 71.4 ± 2.6 93.3 ± 0.9 56.8 ± 2.8 90.9 ± 1.0
Transformer 75.3 ± 1.7 97.0 ± 0.1 59.3 ± 2.7 91.8 ± 0.4 48.0 ± 1.6 89.4 ± 0.3
Universal Transformer 80.1 ± 1.7 97.8 ± 0.2 68.6 ± 2.3 92.5 ± 0.4 59.4 ± 2.0 90.5 ± 0.5
Edge Transformer 97.4 ± 0.8 99.4 ± 0.2 89.5 ± 0.5 96.8 ± 0.1 89.1 ± 0.2 96.3 ± 0.1

described by Equation 10. For Edge Transformer, pairwise output labels between positions i and j
are predicted directly from edge xij . For the baselines, these labels are obtained by passing each pair
of nodes through a biaffine layer, following Dozat and Manning (2017). The training set contains
approximately 100K questions.

We report the Labeled Attachment Score (LAS) that assesses partial correctness (F1) of the predicted
dependency trees as well as the exact match accuracy (EM) that only takes into account completely
predicted trees. As can be seen in Table 2, Edge Transformer enjoys a sizable performance advantage
(17-30% EM accuracy) over all baseline models on the MCD2 and MCD3 splits. On MCD1 split both
the BiLSTM and Edge Transformer achieve near-perfect performance, while the classical Transformer
lags behind.

4.3 Semantic Parsing of CFQ

We furthermore experiment with the original semantic parsing task from CFQ. In this task, natural
language questions must be translated to knowledge graph queries in SPARQL query language (see
Figure 2, C). We use the encoder-decoder version of Edge Transformer to produce the sequence of
query tokens from a sequence of questions tokens.

The O(n3) computational complexity and memory footprint of Edge Transformer pose a challenge
in this round of experiments as the decoder’s input size n is larger than for the other tasks (more
than 100 tokens for some examples). To remedy this, we filter out training examples in which the
SPARQL queries are more than 50 tokens long. Even after this filtering training an Edge Transformer
model on CFQ semantic parsing requires 1-2 days of using 4 NVIDIA V100 GPUs. This makes a
larger scale hyperparameter search prohibitively expensive for this model. To tune Edge Transformer,
we first perform the hyperparameter search for the computationally cheaper Universal Transformer
baseline which we found to outperform the vanilla Transformer in preliminary experiments. For Edge
Transformer we only try a few variations on the chosen Universal Transformer configuration (see
Appendix A.2 for more details). As suggested in the original CFQ paper (Keysers et al., 2020), we
tune hyperparameters on the random split and keep the compositional generalization splits for testing.
We reduce the size of the random split training data from ∼ 90K examples to ∼ 20K to increase the
sensitivity to different hyperparameter choices. For each MCD split we report mean exact match
accuracy for 30 Universal Transformer and 5 Edge Transformer runs.

The results are shown in Table 3. Edge Transformer reaches the state-of-the-art performance among
the non-pretrained encoder-decoder models. It reaches 24.67 ± 1.27 % average MCD accuracy that
approximately 3 percentage points ahead of comparable competition. Notably, Edge Transformer
also beats Universal Transformer on our filtered random split (99.08 ± 0.1% vs 98.45 ± 0.08 %
accuracy).

4.4 Semantic Parsing of COGS

As our final evaluation of the ability of Edge Transformers to generalize systematically, we make
use of the COGS benchmark of Kim and Linzen (2020). COGS defines a semantic parsing task
from natural language sentences to linguistic denotations expressed in a logical formalism derived
from that of Reddy et al. (2017). The training/test split in COGS is designed to test the ability of
models to generalize from observed sentences, to sentences of greater complexity that exhibit novel
combinations of primitive words and phrases. We train and test on the graph representation of the
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Table 3: Exact match accuracy of the produced SPARQL queries for CFQ semantic parsing experi-
ments. ♠ and ♦ denote results from (Keysers et al., 2020) and (Furrer et al., 2020) respectively. We
convert the 95% confidence intervals reported in both papers to standard errors.

Model MCD avg. MCD1 MCD2 MCD3

Universal Transformer 21.26 ± 1.06 42.7 ± 2.55 9.46 ± 1.2 11.62 ± 0.68
Edge Transformer 24.69 ± 1.27 47.73 ± 3.63 13.14 ± 2.12 13.2 ± 1.38
Universal Transformer ♠ 18.9 ± 1.1 37.4 ± 1.8 8.1 ± 1.3 11.3 ± 0.2
Evolved Transformer ♦ 20.8 ± 0.6 42.4 ± 0.8 9.3 ± 0.6 10.8 ± 0.2
T5-small ♦ 21.4 ± 1.2 42.5 ± 2.1 11.2 ± 1.2 10.6 ± 0.3

Table 4: Top section: graph prediction accuracy for Edge Transformer and comparable graph
prediction Transformer results by Ontanón et al. (2021) (marked by ♦). Bottom section: best COGS
results by Akyürek et al. (2021) (♠) and Csordás et al. (2021) (♣) obtained by predicting semantic
parses as sequences of tokens.

Model Generalization Accuracy

Edge Transformer 87.4 ± 0.4
Universal Transformer - Attention Decoder ♦ 78.4
LSTM+Lex ♠ 82 ± 1.
Transformer ♣ 81 ± 0.01

COGS semantic parses provided by Ontanón et al. (2021). The nodes in these semantic graphs are
input tokens that are labeled with word-level category information, for example, semantic role and
part-of-speech. The edges connect some pairs of nodes to indicate parent-child dependencies between
them, similar to a dependency parse (see Figure 2,D). The Edge Transformer model predicts node
labels for token i by applying several linear layers (one for each label type) to self-edges xii. For
edge labels, each node has a unique parent (for nodes with no parent, we follow Ontanón et al. (2021)
and treat them as being their own parent). To predict the parent of node i, we apply a linear layer to
all edges xji, and take a softmax across the position axis. Hyperparameters for Edge Transformer
were not tuned for this task. Instead, we used the best setting identified by Ontanón et al. (2021) for
the Transformer architecture (see Appendix A.3), and default settings for the optimizer.

As can be seen from Table 4, Edge Transformers exhibits a state-of-the-art performance of 87.4 ±
0.4 % on COGS, outperforming the baseline graph prediction models from (Ontanón et al., 2021) by
9 percentage points on this challenging task. This performance is also higher than what is reported in
the literature for the original sequence prediction version of the COGS task, including 82% accuracy
of the lexicon-equipped LSTM (LSTM+Lex by Akyürek et al. (2021)) and 81% accuracy of the
carefully initialized Transformer model (Csordás et al., 2021).

4.5 Ablation Experiments

To explore the performance of Edge Transformers, we experiment with several variations of the
model. First, we train Edge Transformers with untied weights, using separate weights for each layer,
as is usually done with classical Transformers. We refer to this variant as untied weights. Second, we
simplify the Edge Transformer computations by computing the value vilj for each triangle (i, l, j)
using only the edge (i, l) instead of using both edges (i, l) and (l, j). This is equivalent to replacing
Equation 8 with vilj = V 1xil. We will refer to this condition as value ablation. Third and finally, we
use a key vector kij =W kxij instead of klj =W kxlj for computing attention scores in Equation 5.
We call this condition attention ablation.

We compare our base model to the above variants on the CLUTRR task, the MCD3 split of the CFQ
dependency parsing task and on the COGS task. In CLUTTR experiments we rerun the hyperparame-
ters for each ablated model, whereas in other experiments we keep the same hyperparameters as for
base Edge Transformer. Table 5 shows results for CLUTRR and Table 6 shows results for CFQ and
COGS. One can see that value ablation consistently leads to worse performance on CLUTRR and
CFQ dependency parsing, confirming the importance of the unification-inspired triangular updates
described in Equations 5-8 and illustrated in Figure 1. Likewise, attention ablation hurts the perfor-
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Table 5: Results of ablation experiments on CLUTRR. “Base” is Edge Transformer as described in
Section 3. See Section 4 for details on ablated model variants. Results are averaged over 10 runs.

Model Test k
6 7 8 9 10

Train on k=2,3 Base 82.0 ± 2.0 74.3 ± 2.4 66.9 ± 2.6 61.8 ± 2.9 58.1 ± 2.8
Untied weights 78.9 ± 1.0 71.0 ± 1.1 63.2 ± 1.1 58.5 ± 1.2 55.3 ± 1.2
Value ablation 54.4 ± 3.4 44.2 ± 3.6 36.9 ± 3.6 33.9 ± 3.7 30.7 ± 3.6
Attention ablation 84.4 ± 1.7 73.1 ± 2.3 63.2 ± 2.2 56.4 ± 2.1 51.4 ± 1.9

Train on k=2,3,4 Base 98.1 ± 0.3 97.9 ± 0.7 95.3 ± 1.5 92.3 ± 1.5 92.1 ± 1.5
Untied weights 98.2 ± 0.3 98.2 ± 0.3 95.6 ± 0.7 93.1 ± 1.4 90.2 ± 1.4
Value ablation 92.6 ± 1.3 86.2 ± 2.1 82.5 ± 3.2 77.1 ± 3.7 75.2 ± 2.7
Attention ablation 95.9 ± 2.1 95.2 ± 2.5 92.8 ± 3.1 89.8 ± 2.9 78.7 ± 2.5

Table 6: Results of ablation experiments on CFQ dependency parsing and COGS graph semantic
parsing. “Base” stands for the Edge Transformer as described in Section 3. See Section 4 for details
on ablated model variants. Results are averaged over 10 runs. EM is Exact Match accuracy, LAS is
Labeled Attachment Score.

Model MCD3 COGS
EM LAS Gen. Accuracy

Base 89.1 ± 0.2 96.3 ± 0.1 87.4 ± 0.4
Untied weights 37.2 ±12.4 53.2 ±14.2 86.3 ± 0.8
Value ablation 84.5 ±1.1 95.5 ±0.3 87.8 ± 0.5
Attention ablation 88.1 ±0.7 96.4 ±0.1 86.3 ± 0.7

mance on CLUTRR and COGS. Lastly, for untying weights, there is some evidence of deterioration
for the CLUTRR setting where we train on k = 2, 3, and a large effect for CFQ dependency parsing.

5 Related Work

Most variations of the Transformer architecture by Vaswani et al. (2017) aim to improve upon
its quadratic memory and computation requirements. To this end, researchers have experimented
with recurrency (Dai et al., 2019), sparse connectivity (Ainslie et al., 2020), and kernel-based
approximations to attention (Choromanski et al., 2021). Most relevant here is the use of relative
positional embeddings in Relation-aware Transformers proposed by (Shaw et al., 2018) and refined by
(Dai et al., 2019). While this approach introduces edges to Transformers, unlike in Edge Transformers,
these edges are static; that is, they do not depend on external input other than the respective edge
labels.

Graph Neural Networks (GNNs; Gori et al., 2005; Scarselli et al., 2009; Kipf and Welling, 2017), and
especially Graph Attention Networks (Veličković et al., 2018) are closely related to Transformers,
especially relation-aware variants. Unlike Transformers, GNNs operate on sparse graphs. While some
GNN variants use edge features (Gilmer et al., 2017; Chen et al., 2019) or even compute dynamic
edge states (Gong and Cheng, 2019), to the best of our knowledge no GNN architecture updates edge
states based on the states of other edges as we do in Equations 5-8.

A number of studies of systematic generalization have examined the ability of neural networks to
handle inputs consisting of familiar atoms that are combined in novel ways. Such research is typically
conducted using carefully controlled train-test splits (Lake and Baroni, 2018; Hupkes et al., 2019;
Sinha et al., 2019; Bahdanau et al., 2019; Keysers et al., 2020; Kim and Linzen, 2020). Various
techniques have been used to improve generalization on some of the these benchmarks, including
(but not limited to) data augmentation (Andreas, 2019; Akyürek et al., 2020), program synthesis (Nye
et al., 2020), meta-learning (Lake, 2019), and task-specific model design (Guo et al., 2020). Most
relevant to our work is the Neural Theorem Proving (NTP) approach proposed by (Rocktäschel and
Riedel, 2017) and developed by (Minervini et al., 2020). NTP can be described as a differentiable
version of Prolog backward-chaining inference with vector embeddings for literals and predicate
names. Unlike NTP, Edge Transformers do not make rules explicit; we merely provide the networks
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with an architecture that facilitates the learning of rule-like computations by the attention mechanism.
Edge Transformers remain closer to general purpose neural models such as Transformers in spirit
and, as demonstrated by our CFQ and COGS experiments, can be successfully applied in the contexts
where the input is not originally formulated as a knowledge graph.

Finally, the Inside-Outside autoencoder proposed by Drozdov et al. (2019) for unsupervised con-
stituency parsing is the most similar to our work at the technical level. The Inside-Outside approach
also features vector states for every pair of input nodes. However, in contrast to the Edge Transformer,
the attention is restricted by the span structure of the input.

6 Discussion

We present the Edge Transformer, an instantiation of the idea that a neural model may benefit from an
extended 3D-tensor state that more naturally accommodates relational reasoning. Our experimental
results are encouraging, with clear performance margins in favor of the Edge Transformer over
competitive baselines on three compositional generalization benchmarks. Our ablations experiments
confirm the importance of core intuitions underlying the model design.

Edge Transformers can be seen as belonging to the line of work on neuro-symbolic architectures
(Mao et al., 2018; Rocktäschel and Riedel, 2017; Evans and Grefenstette, 2018, to name but a few).
Compared to most work in the field, Edge Transformers are decidedly more neural: no logical gates
or rule templates can be found in our architecture. We believe this is a promising direction for
further exploration, as it allows the model to retain the key advantages of neural architectures: their
generality, interchangeability and ability to learn from data.

Edge Transformer computations and memory usage scale as O(n3) with respect to the input size n.
While this makes scaling to larger inputs challenging, in our experience modern GPU hardware
allows training Edge Transformers with inputs of size up to a hundred entities. One way to use Edge
Transformer in applications with larger inputs is to create Edge Transformer nodes only for the most
salient or important components of an input. For example, in the language modelling context these
could be just the heads of noun phrases and/or just the named entities. Future work could build and
pretrain on raw text hybrid models that combine both Transformer- and Edge Transformer-based
processing, the latter performed only for a small subset of nodes.
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Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., and Bengio, Y. (2018). Graph
Attention Networks. arXiv:1710.10903 [cs, stat]. arXiv: 1710.10903.

13


	Introduction
	Intuitions
	Edge Transformers
	Experiments
	Relational Reasoning on Graphs
	Dependency Parsing of CFQ
	Semantic Parsing of CFQ
	Semantic Parsing of COGS
	Ablation Experiments

	Related Work
	Discussion
	Additional Experiment Details
	CLUTTR and CFQ Dependency Parsing
	CFQ Semantic Parsing
	COGS Semantic Parsing




