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Abstract

Recent research has seen several advances relevant to black-box variational infer-
ence (VI), but the current state of automatic posterior inference is unclear. One
such advance is the use of normalizing flows to define flexible posterior densities
for deep latent variable models. Another direction is the integration of Monte-Carlo
methods to serve two purposes; first, to obtain tighter variational objectives for
optimization, and second, to define enriched variational families through sam-
pling. However, both flows and variational Monte-Carlo methods remain relatively
unexplored for black-box VI. Moreover, on a pragmatic front, there are several
optimization considerations like step-size scheme, parameter initialization, and
choice of gradient estimators, for which there is no clear guidance in the literature.
In this paper, we postulate that black-box VI is best addressed through a careful
combination of numerous algorithmic components. We evaluate components relat-
ing to optimization, flows, and Monte-Carlo methods on a benchmark of 30 models
from the Stan model library. The combination of these algorithmic components
significantly advances the state-of-the-art "out of the box" variational inference.

1 Introduction

We consider the problem of automatic posterior inference. A scientist or expert creates a model
p(z, x) for latent variables z and observed variables x. For example, z might be population-level
preferences for a political candidate in each district in a country, while x is an observed set of polls.
Then, we wish to approximate the posterior p(z|x), i.e., determine what the observed data say about
the latent variables under the specified model. The ultimate aim of automatic inference is that a
domain expert can create a model and get answers without manually tinkering with inference details.

In practice, one often resorts to approximate inference. Markov chain Monte Carlo (MCMC) methods
are widely applicable and are asymptotically exact, but sometimes slow. Variational inference (VI)
approximates the posterior within a tractable family. This can be much faster but is not asymptotically
exact. Recent developments led to “black-box VI” methods that, like MCMC, apply to a broad class
of models [30, 15, 2].

However, to date, black-box VI is not widely adopted for posterior inference. Moreover, there have
been several advances that are relevant to black-box VI, but have been little evaluated in that context.
One such advance is normalizing flows, which define flexible densities through a composition of
invertible transformations [31, 26]. Surprisingly, normalizing flows have seen almost no investigation
for black-box VI; instead, they have been used either to directly learn a density [8, 9, 27, 19] or to
bound the likelihood of a deep latent variable model pθ(x) =

∫
pθ(z, x)dz [31, 20, 13]. In both

cases, there is no mechanistic model and little or no focus on posterior queries.
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Figure 1: (Left) Path study: Empirical complementary-CDF for performance improvement over ADVI.
(Right) Relationship of methods: Solid lines show modifications that improve performance (included on the
left) dotted lines show modifications with unclear benefits (not shown on the left).

Another major direction is the development of tighter variational objectives that integrate Monte
Carlo techniques such as importance weighting [3, 25, 23]. These were also initially designed to
support learning of deep latent variable models. However, further developments have shown that
they can also be viewed as enriching the variational family [1, 7, 10, 11]. Still, little is known about
the practical performance of these techniques on real models. Further, importance weighting can
be used in two ways. First, importance weighted sampling can be used at inference time to obtain
better approximate samples, regardless of how the approximate distribution was created. Second,
importance weighting training can be used during optimization to tighten an objective reflecting how
well such a sampling scheme will work. There is little evidence in the literature about these.

It is essential for many users that black-box VI be fully automatic. This brings up numerous
practical issues, such as initialization, step-size schedules, and the choice of gradient estimator. There
have been few attempts to address this [21] and several basic questions remain unanswered: Do
recent techniques to enrich variational families such as normalizing flows and variational Monte
Carlo methods improve accuracy on mechanistic models? Which of these is more important? Can
optimization be made robust enough to work with these techniques “out of the box” on real models?

The basic hypothesis of this paper is that automatic black-box VI can be best achieved through a
thoughtful integration of many different algorithmic components. We carefully measure the impact
of these components on 30 real models from the Stan model library [35, 36]. Our primary finding is
that a combination of techniques to improve optimization robustness and enrich variational families
collectively yield remarkable improvements in the accuracy of black-box VI. More concretely, we
make the following observations.

• A prior step-size scheme often leads to suboptimal results. Using a comprehensive search over
step-sizes is far more reliable (Figure 2).

• When using a Gaussian variational distribution, it is consistently helpful to use the sticking the
landing" (STL) gradient estimator [33] that drops the “score term” from the evidence lower bound
(ELBO) (Figure 3).

• Importance-weighted sampling can be used as a post hoc method to improve the posterior found
by any inference method. This consistently improves results at minimal cost (Figures 4 and 8)

• Importance-weighted training introduces a trade-off between computational complexity and
quality. The benefits are not consistent in our experiments (Figures 5 and 9).

• Real-NVP [9] (evaluated for the first time for black-box VI) gives excellent performance. Due
to high nonlinearity, one might expect that fully-automatic optimization would be a challenge.
However, when combined with our step-size scheme, it consistently delivers strong results without
user-intervention (Figures 6 to 8).
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• When using a normalizing flow variational distribution, the STL estimator is again helpful (Fig-
ure 7). However, this uses an inverse transform, which is not efficient with all flows (Section 4.3).

• The doubly-reparameterized estimator [37] consistently improves convergence when applied to
importance weighted training (Figure 13 in appendix). However, as above, the overall value of
importance-weighted training is unclear.

Our final method combines importance sampling, normalizing flows, a highly robust step-size scheme
and the STL gradient estimator, to improve the performance by one nat or more on at least 60% of the
models when compared to Automatic Differentiation Variational Inference (ADVI) (see performance
of Method (4c) in Figure 1). We believe this strategy represents the state-of-the-art for fully-automatic
black-box VI for posterior inference.

2 Problem Setup

Directly computing the posterior is typically intractable; VI searches for the closest approximation of
p(z|x) within a parameterized family qφ(z) by maximizing the ELBO [34]

L(φ) = Eqφ(z) [log p(z, x)− log qφ(z)] = log p(x)−KL[qφ(z)‖p(z|x)]. (1)

Since KL-divergence is non-negative, L(φ) lower-bounds log p(x) for all φ. Moreover, when p is
fixed, optimizing L(φ) is equivalent to minimizing the KL-divergence between qφ(z) and p(z|x).

Exploiting the observations above, there are two basic uses of VI. The first is to learn the parameters
θ of a model pθ(z, x) from examples of x. In this case, VI is used to provide a tractable objective that
lower-bounds the exact likelihood. This is the basis of variational auto-encoders [18, 32] and their
relatives. The second use of VI is to infer the posterior p(z|x) of a fixed model. This is the setting of
black-box VI [30], the focus of this paper.

2.1 Rules of engagement

This paper studies many black-box VI methods. Each method is optimized using its own objective to
produce an approximate posterior qφ(z). During optimization, all methods have the same compu-
tational budget, measured as 100 "oracle evaluations" of the log p per iteration, and are optimized
for 30, 000 iterations. Then, 10,000 fresh samples are drawn from qφ to evaluate either the ELBO in
Equation (1) or the importance-weighted ELBO in Equation (4), depending on the method. In either
case, this gives a lower-bound on log p(x) (or equivalently an upper-bound on the KL-divergence
[10]). Applying importance-weighting can be seen as an algorithmic component, not just a "metric"
since it gives a different approximation of the posterior [11].

We evaluate each method using a benchmark of 30 models from the Stan Model library [35, 36]. To
remove any ambiguity, a standalone description of each method compared is given in Appendix A.

Visualizing results across many models and inference schemes is a challenge. Simple ideas like
scatterplots fail because there are many inference schemes and huge differences in log p(x) across
models. Instead, we study results using "empirical complementary CDF plots". Two inference
methods are compared by computing, for each model i ∈ {1, · · · , 30}, the difference ∆i between the
lower-bounds produced by the two methods. The idea is to plot, for each value of ∆, the fraction of
values ∆i that are ∆ or higher. This shows how often a given inference method improves on another
by a given magnitude ∆.

We start from a simple ADVI baseline model and consider changes in a single algorithmic component
one by one in Figures 2 to 9. Next, we compare the full "path" of beneficial components to ADVI in
Figure 1. Finally, we perform an ablation study removing individual algorithmic components from
the final best system in Figure 10. We conduct three independent trials for all of our experiments.
For space, the path and ablation study show only a single trial in the main text, with others in the
supplement. We also conduct additional experiments in Appendix B including comparisons between
diagonal and full-rank Gaussian VI and more comparisons of different gradient estimators.
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3 Optimization in BBVI

Most uses of black-box VI make optimization choices on a model-specific basis. A notable exception
to this is the ADVI [21], which we use as our baseline. ADVI is integrated into Stan, a state-of-the-art
probabilistic programming framework for defining statistical models with latent variables [4]. This
makes ADVI one of the most widely available black-box VI algorithms. There are four key ideas: (1)
to automatically transform the support of constrained random variables to an unconstrained space
(2) to approximate the resulting unconstrained posterior with a Gaussian variational distribution,
(3) to estimate the gradient of the ELBO using the reparameterization trick and (4) to do stochastic
optimization with a fully-automated step-size procedure.

In all cases, we use the idea of transformation to unconstrained domain unchanged (1). In the rest of
this section, we consider modifications to optimization ideas (3,4). In the next section, we consider
generalization beyond Gaussians (2).

3.1 ADVI step size search

ADVI uses a novel decreasing step-size scheme based on a base step-size η (we review this in
Appendix D). In short, for each η ∈ {0.01, 0.1, 1, 10, 100}, optimization is run for a small number of
iterations, and the value that provides the highest final ELBO value when estimated on a fresh batch
of samples is used. We use a batch of fresh 500 samples after 200 iterations. It is not clear to what
degree results after a small number of iterations can give a realistic picture of how optimization will
look after a large number of iterations. To test this, we propose a straightforward alternative that
simply runs different steps more exhaustively.

3.2 Comprehensive step search ¸
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Figure 2: Using comprehensive step-
size search provides significant gain of
1 nat on almost 20% of the models (high
variability is due to ADVI).

We perform optimization using Adam [17], and we com-
prehensively search for the Adam step-size η in the range
0.1
D [1, B−1, B−2, B−3, B−4], where D is the number of la-

tent dimensions of the model and B is a decay constant; we
use B = 4. For each step size in this range, we optimize
for a fixed number of iterations while keeping the step size
constant. The number of iterations is constrained only by the
sampling/computational budget of a user; we use 30,000 itera-
tions for each step-size choice. Finally, we select the parameters
from the step size that led to the best average-objective, aver-
aged over the entire optimization trace. We found this to be a
more robust indicator of performance than estimating the final
ELBO using a smaller batch of fresh samples (see Appendix F
for discussion).

Figure 2 shows that the comprehensive search provides a signif-
icant improvement of 10 nats or more on a small fraction of the
models (both schemes in the figure use the closed-form entropy
estimator from Equation (2)).

3.3 Gradient Estimation

Most black-box VI methods are based on the reparameterization trick. Suppose that qε is a fixed
distribution and zφ(ε) a function such that if ε ∼ qε then zφ(ε) ∼ qφ. Then, if H(φ) is the entropy of
qφ, the gradient of Equation (1) can be written as

∇φL(φ) = E
qε(ε)

[∇φ log p(zφ(ε), x)] +∇φH(φ). (2)

The gradient can be estimated by drawing a single ε (or a minibatch). In some cases (e.g., Gaussians)
H is computed in closed form, so the above equation can be used unchanged; this is estimator used
in ADVI. Alternatively,∇H can also be estimated using the reparameterization trick, using either of

4



∇φH(φ) = E
qε(ε)
∇φ log qφ(zφ(ε))︸ ︷︷ ︸

"Full" estimator

= E
qε(ε)

(∇φ log qθ(zφ(ε)))θ=φ︸ ︷︷ ︸
"STL" estimator

. (3)

The second option, known as STL estimator [33], "holds φ constant" under the gradient. This is valid
since Eqφ(z)∇φ log qφ(z) = 0.
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Figure 3: Adding STL to Gaussian VI
is consistently helpful across the mod-
els and hurts only in minority of cases.

Figure 3 compares the results of the STL estimator to a closed-
form entropy. The STL estimator is usually preferred. We give
a more comprehensive comparison of estimators in Figure 12
(supplement).

3.4 Intialization

Initialization can have a major influence on convergence. ADVI
initializes to a standard Gaussian. A natural alternative for Gaus-
sian or Elliptical variational distributions is to use Laplace’s
method to initialize parameters [10, 11]. This method uses
black-box optimization to find ẑ to maximize log p(z, x), com-
putes the hessian of log p at ẑ and then sets qφ(z) to be the
Gaussian whose log-density matches the local curvature of
log p(ẑ, x). While Laplace’s method is intuitive, it could con-
ceivably be harmful, e.g. by providing an initialization that
leads to a worse local optima.

To the best of our knowledge, there are no existing studies of these initialization schemes. Figure 14
(supplement) uses the previous comprehensive step search and compares the results of adding
Laplace’s initialization (LI). A similar fraction of models are helped and harmed by the change.

4 Enriched Variational Families

4.1 Monte Carlo Objectives

VI tries to approximate p(z|x) with qφ(z). If the approximation is inexact, Monte Carlo meth-
ods can often improve it. Burda et al. [3] introduced the "importance-weighted" ELBO (IW-
ELBO) to use in place of the conventional ELBO when training a latent-variable model. This is
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∆ := Method (3a) - Method (1) (nats)

0

0.2

0.4

0.6

0.8

1

F
ra

c.
m

o
de

ls
w

it
h

∆
im

pr
ov

em
en

t
or

m
or

e

Colors denote independent trials

Figure 4: IW-sampling greatly im-
proves the results of Gaussian VI.

LM (φ) = E
qφ(z1)···qφ(zM )

[
log

1

M

M∑
m=1

p(x, zm)

qφ(zm)

]
≤ log p(x). (4)

Here, z1 . . . zM are iid samples from qφ(z). This reduces to the
standard ELBO when M = 1. The IW-ELBO increases with
M and approaches log p(x) asymptotically.

The IW-ELBO is a measure of the accuracy of self-normalized
importance sampling on p using qφ as a proposal distribution.
Define qM,φ to be the distribution that results from drawing M
samples from qφ and then selecting one in proportion to the self-
normalized importance weights p(zm, x)/q(zm). Then, LM is
a relaxation of the ELBO defined between qM,φ and the target p
[1, 7, 25]. Alternatively, LM can be seen as a traditional ELBO
between distributions that augment qM,φ and p [10].

For posterior approximation, importance weighting can be ap-
plied in two ways.

1. Importance-weighted sampling. For any distribution, importance-weighting can be applied
at test time to improve the quality of the posterior approximation. We know this because
LM (φ) ≥ L(φ) and thus KL[qM,φ(z)‖p(z|x)] ≤ KL[qφ(z)‖p(z|x)] [10]. This should not be
seen as a metric for evaluating φ. Rather, it is an algorithmic component of inference, since it
yields different samples that are actually closer to the posterior [11].
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2. Importance-weighted training. To find the parameters φ, one can optimize the IW-ELBO. The
idea is that if one intends to perform importance-weighted sampling, this directly optimizes for
parameters φ that will perform well at this task. That is, optimizing the IW-ELBO implicitly
makes qM,φ(z) close to p(z|x).

Figure 4 shows the results of adding importance-weighted sampling to the previous model, with
M = 10. This produces a significant benefit of 1 nat or more on 30% of models and never hurts. This
also comes at a minimal computational cost since there is no modification of the training procedure.
Considerations in importance-weighted training are a bit subtle and discussed next.

4.2 Importance-weighted training
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Figure 5: Adding IW-training to IW-
sampling offers no clear advantage with
Gaussians.

Optimizing Equation (4) requires a gradient estimator. The
most obvious estimator is

∇LM (φ) = E
qε(ε1)···qε(εM )

M∑
m=1

ŵm∇φ log
p(zφ(εm), x))

qφ(zφ(εm))
, (5)

where ŵm = wm∑M
l=1 wl

for wm =
p(x,zφ(εm))
qφ(zφ(εm)) . However, Rain-

forth et al. [28] point out that the signal-to-noise-ratio of this
gradient estimator scales as 1/

√
M , suggesting optimization

will struggle when M is large. To circumvent this problem,
Tucker et al. [37] introduced the "doubly reparameterized gra-
dient estimator" (DReG), which does not suffer from the same
issue. This is based on the representation of

∇LM (φ) = E
qε(ε1)···qε(εM )

M∑
m=1

(ŵm)2∇φ log
p(zφ(εm), x))

qθ(zφ(εm))

∣∣∣∣∣
θ=φ

.

(6)

Intuitively, the idea is that since θ is φ "held constant" under differentiation, the variance is reduced.
The difference of the above two estimators is analogous to the difference of the two estimators of the
entropy gradient in Equation (3).

We found the DReG out-performed the estimator from Equation (5); using it added 1 nat of im-
provement to almost 30% of the models (see Figure 13, supplement). However, the benefits are not
consistent when compared to IW-sampling alone. Figure 5 shows the performance decays on around
20% of models. Thus, when keeping evaluations of log p fixed at our budget, better performance
results from training the regular ELBO with the STL estimator and then using IW-sampling only.

4.3 Normalizing Flows
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Figure 6: Substituting flows for Gaus-
sians improves half of the models by 1
nat or more.

Normalizing flows construct a flexible class of densities by
applying a sequence of invertible transformations to a simple
base density. Rezende and Mohamed [31] first introduced
normalizing flows in the specific context of approximating
distributions for VI; they have since been studied in a much
more general context (e.g., for density estimation [9, 19, 13]).

The main idea is to transform a base density qε(ε) using a dif-
feomorphism Tφ. The variable z = Tφ(ε) has the distribution

qφ(z) = qε(ε)|det∇Tφ(ε)|−1 (7)

= qε(T
−1
φ (z))|det∇T−1φ (z)|. (8)

Typically, T is chosen as a sequence of transforms, each of
which is parameterized by a neural network. These trans-
forms are designed so that the determinant of the Jacobian
|det∇Tφ(ε)| can be computed efficiently.
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We use real-NVP–a coupling-based flow [9] with 10 successive transformations, each determined
by a fully-connected network with 2 hidden layers each with 32 hidden units (see Appendix E for
full details). Figure 6 shows the results of using normalizing flows instead of Gaussians on the
benchmark. Since there is no closed-form entropy, these results estimate it using the middle estimator
from Equation (3). This yields a significant improvement of 1 nat or more on around half of models.
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Figure 7: Using the STL estimator for
flows (instead of the “full” estimator)
is typically helpful and gives huge im-
provements on a minority of models.

Depending on the gradient estimator used, the inverse of Tφ
may or may not be needed. This issue is somewhat subtle. In
general, to evaluate the density qφ at an arbitrary point requires
computing the inverse T−1φ which may be inefficient [16, 6].
While the ELBO in Equation (1) requires evaluating the density
log qφ it is only done on a point sampled from qφ. This means
this can be done using only Tφ–by first sampling ε and then
transforming to z there is no need to explicitly compute an in-
verse. Similarly, if one is to estimate the gradient of the entropy
using the "full" estimator (middle equation in Equation (3)),
only Tφ is needed. However, the estimator that drops the score
term (right equation in Equation (3)) is typically lower variance.
The natural way to do this is to first sample from qφ, and then,
in a second independent step, evaluate the sample at parame-
ters θ = φ that are held constant under differentiation. In this
second step, the sample is treated as an arbitrary point so that
derivatives will only flow to the sampling part of the algorithm.
This requires the inverse T−1φ .

With real-NVP flows, both the forward and reverse transform are efficient, so the second estimator
from Equation (3) can be used. Figure 7 compares the results of substituting this estimator instead. In
many cases, the results are much the same. However, in a significant minority of models, the new
estimator yields enormous improvements.

4.4 Importance Weighting with Normalizing Flows

0 1 2 3 4 5

∆ := Method (4c) - Method (4b) (nats)

0

0.2

0.4

0.6

0.8

1

F
ra

c.
m

o
de

ls
w

it
h

∆
im

pr
ov

em
en

t
or

m
or

e

Colors denote independent trials

Figure 8: Adding IW-sampling to
normalizing flows can significantly im-
prove some of the models and never
hurts.

Importance weighting and normalizing flows can be applied
together. The ideas in Section 4.1 are not specific to Gaussian
densities. In the first experiment, we take the same optimization
scheme used above, and apply importance weighted sampling
only (with no change to the optimization procedure). As shown
in Figure 8, this change never hurts, provides small improv-
ments for most models, and provides large improvements on
a minority of models. Since this again comes at a minimal
cost (extra work is only needed in the sampling stage) it is very
worthwhile.

One can also explicitly optimize the IW-ELBO. Figure 9 demon-
strates that adding IW-training provides large benefits on a few
models but hurts performance by 1 nat or more for almost 10%
of the cases. These observations mirror the effect observed for
Gaussians in Figure 5.

We now arrive at our best method: train normalizing flows
with a regular ELBO objective using the lower-variance STL
gradient and then add importance sampling only during inference. This is easily the go-to black-box
VI strategy when we fix a budget for log p evaluations.

5 Experiments

Using Stan with auto-diff packages: Our experiments are based on a set of models (described
in Table 1 in supplement) from the Stan Model library [36, 35]. In order to test our VI variants,
we designed a simple interface to use Stan models with VI algorithms implemented in Autograd, a
Python automatic differentiation library [22] (refer to Appendix C for more details)
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Architectures: For normalizing flow methods, we use real-NVP flow with 10 coupling layers with
a fixed base architecture for all models. Complete details are present in Appendix E.

For experiments that use a full-rank Gaussian variational family, we parameterize the mean µ and the
Cholesky factor L of the covariance matrix Σ, such that Σ = LL>. Parameters are initialized to a
standard normal when LI is not used.

Laplace’s Initialization: We use SciPy’s BFGS optimize routine to maximize log p(z, x) over z
to get ẑ; we optimize for 2000 iterations (with default settings for other hyper-parameters) [38]. At ẑ,
we compute the Hessian matrix H using two-point finite differences with ε = 10−6. To use LI, we
set µ = ẑ, and set L such that LL> = (−H)−1.
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Figure 9: Adding IW-training to IW-
sampling offers little advantage with
flows.

Training procedure: To maintain a fair “oracle complexity"
in terms of evaluations of log p, each gradient estimate averages
over a batch of independent gradient estimates, such that there
are always 100 total evaluations of log p in each iteration. To
use Figure 9 as an example, IW-training method averages 10
different copies of the DReG estimator at each iteration (M =
10), and IW-sampling method averages 100 different copies of
STL estimator (can be viewed as M = 1). For all experiments,
we use the comprehensive step-size search scheme mentioned
in Section 3. Wherever importance weighting is used (sampling
or training), M = 10

Replicating ADVI: For a fair comparison, we re-implement
ADVI optimization in our own framework (refer to Appendix D
for more details). In our preliminary experiments found that the
performance matched the PyStan version for the same hyper-
parameter settings.

Metric: To compare the performances, we use a fresh batch of 10,000 samples. Again, to maintain a
fair “oracle complexity”, we use 10,000 samples irrespective of the M used for importance weighting.
To use Figure 10 as an example, when we ablate IW-sampling, we average 10,000 copies of ELBO
estimate whereas the “Best model” uses the 1,000 copies of the IW-ELBO estimate (M=10).

Results: We provide the complete tables of results with final-metric values from the independent
trails in Appendix H in the supplement.

5.1 Path Study
¸
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Ablate Flows
Ablate IW sampling

Ablate STL
Best model–(4c)

Figure 10: Ablation Study: Remov-
ing flows has a strong impact; removing
STL or IW-sampling has a lesser impact
on the performance.

We summarize the useful algorithmic changes in a path-study
by comparing against the common ADVI baseline. Figure 1
presents results from independent trial (see Figure 15 in supple-
ment for full results). Across the trials, we see that with each
step in the path performance improves, and the final strategy
provides significant improvement of 1 nat or more on at least
50% of the models.

5.2 Ablation Study

We analyze the performance of the “best” variational approach
by taking away each of it’s components individually. Figure 10
presents the ablation study for an independent trial (see Fig-
ure 16 in supplement for full results). Across the trials, each
component is complementary–they add to the other and the
combination performs the best.
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6 Discussion

Related work. Fjelde et al. [14] develop a software package (Bijector.jl) for bijective variable
transformation that works independent of the computational framework. As a demonstration, they
use normalizing flows to relax the mean-field assumption; they add coupling layers on top of a
learnable diagonal Gaussian. However, the aim of our work is different–we examine the efficacy of
recent inference ideas for automating black-box VI. Parallel to our work, Webb et al. [39] improved
automatic inference by extending ADVI with normalizing flows. In comparison, our analysis
goes beyond flows and studies the interaction of various algorithmic components, and our careful
experimental framework provides several valuable insights (see observations in Section 1.)

General comments. We choose ELBO/IW-ELBO to compare different VI methods. Several works
have reported an empirical correlation between the ELBO improvements with improvements in
test-likelihoods (see [23, Appendix, Table 3, 4, and 5]; [5, Figure 4]; [24, Figure 4].) and accuracy of
posterior moments (see [10, Figure 6]; [11, Figure 7, and Figure 9 to 22]).) We expect our methods
to follow similar correlations for ELBO improvements.

In our initial experiments, the performance correlated well with the number of flow layers and the
number of hidden units; however, we do not aim to find the best possible flow. We use a reasonably
generic real-NVP flow that allows for efficient forward and inverse; efficient inverse affords for the
use of STL/DReG gradient. The use of better flow variants and optimal architectures can hopefully
improve on our work.

Computations costs. Trade-offs exist between the improvement in performance and the compu-
tational costs we are prepared to entertain. With more computing resources, better performance is
possible.

A comprehensive step-search scheme can be done in parallel. Adding Laplace Initialization requires
one to solve a maximization problem beforehand. Adding Importance Weighting training, with a fixed
“Oracle budget” for querying log p, may seem to be relatively inexpensive; however, the posterior
inference scales linearly in M .

Normalizing flows require more memory and computation. The parameters for full rank Gaussian
scale quadratically in the number of dimensions and scale linearly for coupling-based models we
consider; flows involve large constants and are expectedly slower for lower-dimensional models.
Further, using the DReG or STL calculation comes at an additional cost for normalizing flows due to
a second pass of T−1φ (see Section 4.3 for details.)

Conclusions. This paper provides clear empirical evidence that systematically combining recent
advances can achieve a robust inference scheme. Using step-search instead of ADVI’s heuristic
step selection and using normalizing flows instead of full-rank Gaussian is immensely helpful; the
STL/DReG gradient consistently outperforms other available options; using Importance Weighted
sampling is an almost always beneficial post-hoc step. Under the fixed sample budget, we did not
find Importance Weighted training and Laplace’s initialization to be consistently helpful. We hope
that lessons from our work can help both researchers and practitioners.

Broader Impact

Automatically inferring hidden variables in these models is a challenge to date. Our approach and
observations can prove instrumental for researchers in various fields–epidemiologists, ecologists,
political scientists, social scientists, experimental psychologists, and others. While some other
inference methods may perform better for a particular model, our ideas provide a formidable baseline.

Our framework combines several ideas–for a practitioner, this can make diagnosing the source of
sub-optimality tricky. While it is possible to conduct comprehensive searches for hyper-parameters,
the ability to do so hinges on access to adequate computation resources.
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