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Abstract

The rapid evolution of Graph Neural Networks (GNNs) has led to a growing
number of new architectures as well as novel applications. However, current
research focuses on proposing and evaluating specific architectural designs of
GNNs, such as GCN, GIN, or GAT, as opposed to studying the more general design

space of GNNs that consists of a Cartesian product of different design dimensions,
such as the number of layers or the type of the aggregation function. Additionally,
GNN designs are often specialized to a single task, yet few efforts have been made
to understand how to quickly find the best GNN design for a novel task or a novel
dataset. Here we define and systematically study the architectural design space
for GNNs which consists of 315,000 different designs over 32 different predictive
tasks. Our approach features three key innovations: (1) A general GNN design

space; (2) a GNN task space with a similarity metric, so that for a given novel
task/dataset, we can quickly identify/transfer the best performing architecture; (3)
an efficient and effective design space evaluation method which allows insights
to be distilled from a huge number of model-task combinations. Our key results
include: (1) A comprehensive set of guidelines for designing well-performing
GNNs; (2) while best GNN designs for different tasks vary significantly, the
GNN task space allows for transferring the best designs across different tasks; (3)
models discovered using our design space achieve state-of-the-art performance.
Overall, our work offers a principled and scalable approach to transition from
studying individual GNN designs for specific tasks, to systematically studying
the GNN design space and the task space. Finally, we release GraphGym, a
powerful platform for exploring different GNN designs and tasks. GraphGym
features modularized GNN implementation, standardized GNN evaluation, and
reproducible and scalable experiment management.

1 Introduction

The field of Graph Neural Network (GNN) research has made substantial progress in recent years.
Notably, a growing number of GNN architectures, including GCN [16], GraphSAGE [6], and GAT
[31], have been developed. These architectures are then applied to a growing number of applications,
such as social networks [39, 46], chemistry [13, 44], and biology [52]. However, with this growing
trend several issues emerge, which limit further development of GNNs.

Issues in GNN architecture design. In current GNN literature, GNN models are defined and
evaluated as specific architectural designs. For example, architectures, such as GCN, GraphSAGE,
GIN and GAT, are widely adopted in existing works [3, 4, 28, 41, 48, 37]. However, these models are
specific instances in the GNN design space consisting of a cross product of design dimensions. For
example, a GNN model that changes the aggregation function of GraphSAGE to a summation, or
adds skip connections [8] across GraphSAGE layers, is not referred to as GraphSAGE model, but it
could empirically outperform it in certain tasks [32]. Therefore, the practice of only focusing on a
specific GNN design, rather than the design space, limits the discovery of successful GNN models.

Issues in GNN evaluation. GNN models are usually evaluated on a limited and non-diverse set of
tasks, such as node classification on citation networks [15, 16, 31]. Recent efforts use additional

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



tasks to evaluate GNN models [3, 10]. However, while these new tasks enrich the evaluation of GNN
models, challenging and completely new tasks from various domains always emerge. For example,
novel tasks such as circuit design [50], SAT generation [47], data imputation [45], or subgraph
matching [40] have all been recently approached with GNNs. Such novel tasks do not naturally
resemble any of the existing GNN benchmark tasks and thus, it is unclear how to design an effective
GNN architecture for a given new task. This issue is especially critical considering the large design
space of GNNs and a surge of new GNN tasks, since re-exploring the entire design space for each
new task is prohibitively expensive.

Issues in GNN implementation. A platform that supports extensive exploration over the GNN
design space, with unifies implementation for node, edge, and graph-level tasks, is currently lacking,
which is a major factor that contributes to the above-mentioned issues.

Present work. Here we develop and systematically study a general design space of GNNs over
a number of diverse of tasks1. To tackle the above-mentioned issues, we highlight three central
components in our study, namely GNN design space, GNN task space, and design space evaluation:
(1) The GNN design space covers important architectural design aspects that researchers often
encounter during GNN model development. (2) The GNN task space with a task similarity metric
allows us to identify novel tasks and effectively transfer GNN architectural designs between similar
tasks. (3) An efficient and effective design space evaluation allows insights to be distilled from a huge
number of model-task combinations. Finally, we also develop GraphGym2, a platform for exploring
different GNN designs and tasks, which features modularized GNN implementation, standardized
GNN evaluation, and reproducible and scalable experiment management.

GNN design space. We define a general design space of GNNs that considers intra-layer design,
inter-layer design and learning configuration. The design space consists of 12 design dimensions,
resulting in 315,000 possible designs. Our purpose is thus not to propose the most extensive GNN
design space, but to demonstrate how focusing on the design space can enhance GNN research. We
emphasize that the design space can be expanded as new design dimensions emerge in state-of-the-art
models. Our overall framework is easily extendable to new design dimensions. Furthermore, it can
be used to quickly find a good combination of design choices for a specific novel task.

GNN task space. We propose a task similarity metric to characterize relationships between different
tasks. The metric allows us to quickly identify promising GNN designs for a brand new task/dataset.
Specifically, the similarity between two tasks is computed by applying a fixed set of GNN architectures
to the two tasks and then measuring the Kendall rank correlation [1] of the performance of these
GNNs. We consider 32 tasks consisting of 12 synthetic node classification tasks, 8 synthetic graph
classification tasks, and 6 real-world node classification and 6 graph classification tasks.

Design space evaluation. Our goal is to gain insights from the defined GNN design space, such as
“Is batch normalization generally useful for GNNs?” However, the defined design and task space lead
to over 10M possible combinations, prohibiting a full grid search. Thus, we develop a controlled

random search evaluation procedure to efficiently understand the trade-offs of each design dimension.

Based on these innovations, our work provides the following key results: (1) A comprehensive set of
guidelines for designing well-performing GNNs (Sec. 7.3). (2) While best GNN designs for different
tasks/datasets vary significantly, the defined GNN task space allows for transferring the best designs
across tasks (Sec. 7.4). This saves redundant algorithm development efforts for highly similar GNN
tasks, while also being able to identify novel GNN tasks which can inspire new GNN designs. (3)

Models discovered from our design space achieve state-of-the-art performance on a new task from
the Open Graph Benchmark [10] (Sec. 7.5).

Overall, our work suggests a transition from studying specific GNN designs for specific tasks to
studying the GNN design space, which offers exciting opportunities for GNN architecture design.
Our work also facilitates reproducible GNN research, where GNN models and tasks are precisely
described and then evaluated using a standardized protocol. Using the proposed GraphGym platform
reproducing experiments and fairly comparing models requires minimal effort.

1Project website with data and code: http://snap.stanford.edu/gnn-design
2https://github.com/snap-stanford/graphgym
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Figure 1: Overview of the proposed GNN design and task space. (a) A GNN design space consists
of 12 design dimensions for intra-layer design, inter-layer design and learning configuration. (b) We
apply a fixed set of “anchor models” to different tasks/datastes, then use the Kendall rank correlation
of their performance to quantify the similarity between different tasks. This way, we build the GNN
task space with a proper similarity metric. (c) The best GNN designs for tasks A, B, C. Notice that
tasks with higher similarity share similar designs, indicating the efficacy of our GNN task space.

2 Related Work

Graph Architecture Search. Architecture search techniques have been applied to GNNs [5, 51].
However, these works only focus on the design within each GNN layer instead of a general GNN
design space, and only evaluate the designs on a small number of node classification tasks.

Evaluation of GNN Models. Multiple works discuss approaches for making fair comparison between
GNN models [3, 4, 28]. However, these models only consider some specific GNN designs (e.g., GCN,
GAT, GraphSAGE), while our approach extensively explores the general design space of GNNs.

Other graph learning models. We focus on message passing GNNs due to their proven performance
and efficient implementation over various GNN tasks. There are alternative designs of graph learning
models [18–20, 48], but their design spaces are different from GNNs and are less modularized.

Transferable Architecture Search. The idea of transferring architecture search results across tasks
has been studied in the context of computer vision tasks [43, 53]. Meta-level architecture design
has also been studied in [23, 27, 36, 49], with the assumption that different tasks follow the same
distribution (e.g., variants of ImageNet dataset [2]). These approaches often make an assumption that
a single neural architecture may perform well on all tasks, which fits well for tasks with relatively low
variety. However, due to the great variety of graph learning tasks, such assumption no longer holds.

3 Preliminaries

Here we outline the terminology used in this paper. We use the term design to refer to a concrete
GNN instantiation, such as a 5-layer GraphSAGE. Each design can be characterized by multiple
design dimensions such as the number of layers L 2 {2, 4, 6, 8} or the type of aggregation function
AGG 2 {MAX, MEAN, SUM}, where a design choice is the actual selected value in the design
dimension, such as L = 2. A design space consists of a Cartesian product of design dimensions. For
example, a design space with design dimensions L and AGG has 4 ⇥ 3 = 12 possible designs. A
GNN can be applied to a variety of tasks, such as node classification on Cora [26] dataset or graph
classification on ENZYMES dataset [14], constituting a task space. Applying a GNN design to a task
is referred to as an experiment. An experiment space covers all combinations of designs and tasks.
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4 Proposed Design Space for GNNs

Next we propose a general design space for GNNs, which includes three crucial aspects of GNN
architecture design: intra-layer design, inter-layer design and learning configuration. We use the
following principles when defining the design space: (1) covering most important design dimensions
that researchers encounter during model development; (2) including as few design dimensions as
possible (e.g., we drop model-specific design dimensions such as dimensions for attention modules);
(3) considering modest ranges of options in each design dimension, based on reviewing a large body
of literature and our own experience. Our purpose is not to propose the most extensive design space,
but to demonstrate how focusing on the design space can help inform GNN research.

Intra-layer design. GNN consists of several message passing layers, where each layer could have
diverse design dimensions. As illustrated in Figure 1(a), the adopted GNN layer has a linear layer,
followed by a sequence of modules: (1) batch normalization BN(·) [12]; (2) dropout DROPOUT(·)
[29]; (3) nonlinear activation function ACT(·), where we consider RELU(·) [21], PRELU(·) [7] and
SWISH(·) [24]; (4) aggregation function AGG(·). Formally, the k-th GNN layer can be defined as:

h(k+1)
v = AGG

⇣n
ACT

⇣
DROPOUT

�
BN(W(k)h(k)

u + b(k))
�⌘

, u 2 N (v)
o⌘

where h(k)
v is the k-th layer embedding of node v, W(k),b(k) are trainable weights, and N (v) is the

local neighborhood of v. We consider the following ranges for the design dimensions:
Batch Normalization Dropout Activation Aggregation

True, False False, 0.3, 0.6 RELU, PRELU, SWISH MEAN, MAX, SUM

Inter-layer design. Having defined a GNN layer, another level of design is how these layers are
organized into a neural network. In GNN literature, the common practice is to directly stack multiple
GNN layers [16, 31]. Skip connections have been used in some GNN models [6, 17, 38], but have not
been systematically explored in combination with other design dimensions. Here we investigate two
choices of skip connections: residual connections SKIP-SUM [8], and dense connections SKIP-CAT
that concatenate embeddings in all previous layers [11]. We further explore adding Multilayer
Perceptron (MLP) layers before/after GNN message passing. All these design alternatives have
been shown to benefit performance in some cases [42, 44]. In summary, we consider these design
dimensions:

Layer connectivity Pre-process layers Message passing layers Post-precess layers

STACK, SKIP-SUM, SKIP-CAT 1, 2, 3 2, 4, 6, 8 1, 2, 3

Training configurations. Optimization algorithm plays an important role in GNN performance. In
GNN literature, training configurations including batch size, learning rate, optimizer type and training
epochs often vary a lot. Here we consider the following design dimensions for GNN training:

Batch size Learning rate Optimizer Training epochs

16, 32, 64 0.1, 0.01, 0.001 SGD, ADAM 100, 200, 400

5 Proposed Task Space for GNNs

One of our key insights is that the design space of GNN should be studied in conjunction with the

task space, because different tasks may have very different best-performing GNN designs (Figure
1(c)). Here, explicitly creating the task space is challenging because researchers can apply GNNs
to an ever increasing set of diverse tasks and datasets. Thus, we develop techniques to measure and
quantify the GNN task space, rather than restricting ourselves to a fixed taxonomy of GNN tasks. To
validate our approach, we collect 32 diverse GNN tasks as illustrative examples, but our approach is
general and can be applied to any other novel GNN task.

5.1 Quantitative Task Similarity Metric

Issues in existing task taxonomy. GNN tasks have been categorized either by dataset domains
such as biological or social networks, or by the prediction types such as node or graph classifica-
tion. However, these taxonomies do not necessarily imply transferability of GNN designs between
tasks/datasets. For example, two tasks may both belong to node classification over social networks,
but different types of node features could result in different GNN designs performing best.
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Proposed task similarity metric. We propose to quantitatively measure the similarity between tasks,
which is crucial for (1) transferring best GNN designs or design principles across tasks that are
similar, and (2) identifying novel GNN tasks that are not similar to any existing task, which can
inspire new GNN designs. The proposed task similarity metric consists of two components: (1)

selection of anchor models and (2) measuring the rank distance of the performance of anchor models.

Selection of anchor models. Our goal is to find the most diverse set of GNN designs that can reveal
different aspects of a given GNN task. Specifically, we first sample D random GNN designs from
the design space. Then, we apply these designs to a fixed set of GNN tasks, and record each GNN’s
average performance across the tasks. The D designs are ranked and evenly sliced into M groups,
where models with median performance in each group are selected. Together, these M selected GNN
designs constitute the set of anchor models, which are fixed for all further task similarity computation.

Measure task similarity. Given two distinct tasks, we first apply all M anchor models to these tasks
and record their performance. We then rank the performance of all M anchor models for each of
the tasks. Finally, we use Kendall rank correlation [1] to compute the similarity score between the
rankings of the M anchor models, which is reported as task similarity. When T tasks are considered,
rank distances are computed for all pairs of tasks. Overall, the computation cost to compare T GNN
tasks is to train and evaluate M ⇤ T GNN models. We show that M = 12 anchor models is sufficient
to approximate the task similarity computed with all the designs in the design space (Figure 5(b)).

Our approach is fully general as it can be applied to any set of GNN tasks. For example, in binary
classification ROC AUC score can be used to rank the models, while in regression tasks mean square
error could be used. Our task similarity metric can even generalize to non-predictive tasks, e.g.,
molecule generation [44], where the drug-likeness score of the generated molecular graphs can be
used to rank different GNN models.

5.2 Collecting Diverse GNN Tasks

To properly evaluate the proposed design space and the proposed task similarity metric, we collect a
variety of 32 synthetic and real-world GNN tasks/datasets. Our overall principle is to select medium-
sized, diverse and realistic tasks, so that the exploration of GNN design space can be efficiently
conducted. We focus on node and graph level tasks; results for link prediction are in the Appendix.

Synthetic tasks. We aim to generate synthetic tasks with diverse graph structural properties, features,
and labels. We use two families of graphs prevalent in the real-world small-world [33] and scale-free
graphs [9], which have diverse structural properties, measured by a suite of graph statistics. We
consider a local graph statistic Average Clustering Coefficient C, and a global graph statistic, Average
Path Length L. We generate graphs to cover the ranges C 2 [0.3, 0.6] and L 2 [1.8, 3.0]. We create
an 8x8 grid over these two ranges, and keep generating each type of random graphs until each bin in
the grids have 4 graphs. In all, we have 256 small-world graphs and 256 scale-free graphs.

We consider four types of node features: (1) constant scalar, (2) one-hot vectors, (3) node clustering
coefficients and (4) node PageRank score [22]. We consider node-level labels including node
clustering coefficient and node PageRank score, and graph-level labels, such as average path length.
We exclude the combination where features and labels are the same. We perform binning over these
continuous labels into 10 bins and perform 10-way classification. Altogether, we have 12 node
classification tasks and 8 graph classification tasks. All the tasks are listed as axes in Figure 5(a).

Real-world tasks. We include 6 node classification benchmarks from [26, 28], and 6 graph classifi-
cation tasks from [14]. The tasks are also listed as axes in Figure 5(a).

6 Evaluation of GNN Design Space

The defined design space and the task space lead to over 10M possible combinations, prohibiting the
full grid search. To overcome this issue, we propose an efficient and effective design space evaluation
technique, which allows insights to be distilled from the huge number of model-task combinations.
As summarized in Figure 2, our approach is based on a novel controlled random search technique.
Here the computational budgets for all the models are controlled to ensure a fair comparison.

Controlled random search. Figure 2 illustrates our approach. Suppose we want to study whether
adding BatchNorm (BN) is generally helpful for GNNs. We first draw S random experiments from
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GNN Design Space GNN Task Space
BatchNorm Activation … Message layers Layer Connectivity Task level dataset

True relu … 8 skip_sum node CiteSeer
False relu … 8 skip_sum node CiteSeer
True relu … 2 skip_cat graph BZR
False relu … 2 skip_cat graph BZR

…
True prelu … 4 stack graph scale free
False prelu … 4 stack graph scale free

Experimental Results
Val. Accuracy Design Choice Ranking

0.75 1
0.54 2
0.88 1 (a tie)
0.86 1 (a tie)

0.89 1
0.36 2

(a) Controlled Random Search (c) Ranking Analysis(b) Rank Design Choices by Performance

Figure 2: Overview of the proposed evaluation of GNN design space. (a) A controlled random
search technique is used to study the effect of BatchNorm. (b) We rank the design choice of
BN = TRUE and FALSE by their performance in each setup, where a tie is reached if the performances
are close. (c) Insights on different design choices can be obtained from the distribution of the rankings.

the 10M possible model-task combinations, all with BN = TRUE. We set S = 96 so that each task
has 3 hits on average. We then alter these 96 setups to have BN = FALSE while controlling all

the other dimensions (Figure 2(a)). We rank the design choices of BN 2 [TRUE, FALSE] within
each of the 96 setups by their performance (Figure 2(b)). To improve the robustness of the ranking
results, we consider the case of a tie, if the performance difference falls within ✏ = 0.02. Finally, we
collect the ranking over the 96 setups, and analyze the distribution of the rankings (Figure 2(c)). In
our experiment, BN = TRUE has an average rank of 1.15, while the average rank of BN = FALSE
is 1.44, indicating that adding BatchNorm to GNNs is generally helpful. This controlled random
search technique can be easily generalized to design dimensions with multiple design choices. Our
approach cuts the number of experiments by over 1,000 times compared with a full grid search: a full
evaluation of all 12 design choices over 32 tasks only takes about 5 hours on 10 GPUs.

Controlling the computational budget. To ensure fair comparisons, we additionally control the
number of trainable parameters of GNNs for all experiments in our evaluation. Specifically, we use
a GNN with a stack of 1 pre-processing layer, 3 message passing layers, 1 post-processing layer
and 256 hidden dimensions to set the computational budget. For all the other GNN designs in the
experiments, the number of hidden dimensions is adjusted to match this computational budget.

7 Experiments

7.1 GraphGym: Platform for GNN Design

We design GraphGym, a novel platform for exploring GNN designs. We believe GraphGym can
greatly facilitate the research field of GNNs. Its highlights are summarized below.

Modularized GNN implementation. GraphGym’s implementation closely follows the proposed
general GNN design space. Additionally, users can easily import new design dimensions to
GraphGym, such as new types of GNN layers or new connectivity patterns across layers. We
provide an example of using ATTENTION as a new intra-layer design dimension in the Appendix.

Standardized GNN evaluation. GraphGym provides a standarized evaluation pipeline for GNN
models. Users can select how to split the dataset (e.g., customized split or random split, train/val split
or train/val/test split), what metrics to use (e.g., accuracy, ROC AUC, F1 score), and how to report
the performance (e.g., final epoch or the best validation epoch).

Reproducible and scalable experiment management. In GraphGym, any experiment is precisely
described by a configuration file, so that results can be reliably reproduced. Consequently, (1)

sharing and comparing novel GNN models require minimal effort; (2) algorithmic advancement
of the research field can be easily tracked; (3) researchers outside the community can get familiar
with advanced GNN designs at ease. Moreover, GraphGym has full support for parallel launching,
gathering and analyzing thousands of experiments. The analyses in this paper can be automatically
generated by running just a few lines of code.

7.2 Experimental Setup

We evaluate the proposed GNN design space (Section 4) over the GNN task space (Section 5), using
the proposed evaluation techniques (Section 6). For all the experiments in Sections 7.3 and 7.4, we
use a consistent setup, where results on three random 80%/20% train/val splits are averaged, and the
validation performance in the final epoch is reported. Accuracy is used for multi-way classification
and ROC AUC is used for binary classification. For graph classification tasks the splits are always
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Figure 3: Ranking analysis for GNN design choices in all 12 design dimensions. Lower is better.
A tie is reached if designs have accuracy / ROC AUC differences within ✏ = 0.02.

inductive (tested on unseen graphs); for node classification tasks over multi-graph datasets, the split
can either be inductive or transductive (tested on unseen nodes on a training graph), where we select
the transductive setting to diversify the tasks. More details are provided in the Appendix.

7.3 Results on GNN Design Space Evaluation

Evaluation with ranking analysis. We apply the evaluation technique from Section 6 to each of the
12 design dimensions of the proposed design space, where 96 experimental setups are sampled for
each design dimension. Results are summarized in Figure 3, where in each subplot, rankings of each
design choice are aggregated over all the 96 setups via bar plot and violin plot. The bar plot shows
the average ranking across all the 96 setups (lower is better). An average ranking of 1 indicates the
design choice always achieves the best performance among other choices of this design dimension,
for all the 96 sampled setups. The violin plot indicates the smoothed distribution of the ranking of
each design choice over all the 96 setups. Given that tied 1st rankings commonly exist, violin plots
are very helpful for understanding how often a design choice is not being ranked 1st.

Findings on intra-layer design. Figure 3 shows several interesting findings for intra-layer GNN
design. (1) Adding BN is generally helpful. The results confirm previous findings in general neural
architectures that BN facilitates neural network training [12, 25]. (2) For GNNs, dropping out
node feature dimensions as a mean of regularization is usually not effective. We think that this is
because GNNs already involve neighborhood aggregation and are thus robust to noise and outliers.
(3) PRELU clearly stands out as the choice of activation. We highlight the novelty of this discovery,
as PRELU has rarely been used in existing GNN designs. (4) SUM aggregation is theoretically most
expressive [37], which aligns with our findings. In fact, we provide the first comprehensive and
rigorous evaluation that verifies SUM is indeed empirically successful.

Findings on inter-layer design. Figure 3 further shows findings for inter-layer design. (1) There
is no definitive conclusion for the best number of message passing layers. Take choices of 2 and 8
message passing layers, which perform best in very different tasks. (2) Adding skip connections is
generally favorable, and the concatenation version (SKIP-CAT) results in a slightly better performance
than SKIP-SUM. (3) Similarly to (1), the conclusions for the number of pre-processing layers and
post-processing layers are also task specific.

Findings on learning configurations. Figure 3 also shows findings for learning configurations. (1)

Batch size of 32 is a safer choice, as it has significantly lower probability mass of being ranked 3rd.
(2) Learning rate of 0.01 is also favorable, also because it has significantly lower probability mass of
being ranked 3rd. (3) ADAM is generally better than a naive SGD, although it is known that tuned
SGD can have better performance [35]. (4) More epochs of training lead to better performance.

Overall, the proposed evaluation framework provides a solid tool to rigorously verify GNN design

dimensions. By conducting controlled random search over 10M possible model-task combinations
(96 experiments per design dimension), our approach provides a more convincing guideline on GNN

designs, compared with the common practice that only evaluate a new design dimension on a fixed
GNN design (e.g., 5-layer, 64-dim, etc.) on a few graph prediction tasks (e.g., Cora or ENZYMES).
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Figure 4: Ranking analysis for GNN design choices over different GNN tasks. Lower is better.
Preferable design choices greatly vary across GNN tasks.

Additionally, we verify that our findings do not suffer from the problem of multiple hypothesis testing:
we find that 7 out of the 12 design dimensions have a significant influence on the GNN performance,
under one-way ANOVA [30] with Bonferroni correction [34] (p-value 0.05).

7.4 Results on the Efficacy of GNN Task Space

Condensed GNN design space. Based on the guidelines we discovered in Section 7.3, we fix several
design dimensions to condense the GNN design space. A condensed design space enables as to
perform a full grid search, which greatly helps at: (1) verifying if the proposed task space is indeed
informative for transferring the best GNN design across GNN tasks; (2) applying our approach to
larger-scale datasets to verify if it provides empirical benefits (Section 7.5). Specifically, we fix a
subset of design choices as shown in Table 7.3.

Table 1: Condensed GNN design space based on the analysis in Section 7.3
Activation BN Dropout Aggregation MP layers Pre-MP layers Post-MP layers Connectivity Batch LR Optimizer Epoch

PRELU True False MEAN, MAX, SUM 2,4,6,8 1,2 2,3 SKIP-SUM, SKIP-CAT 32 0.01 ADAM 400

Preferable design choices vary greatly across tasks. Following the approach in Section 7.3, we
use bar plots to demonstrate how the preferable GNN designs can significantly differ across different
tasks/datasets. As is shown in Figure 4, the findings are surprising: desirable design choices for
Aggregation, Message passing layers, layer connectivity and post-processing layers drastically vary
across tasks. We show the specification of the best GNN design for each of the tasks in the Appendix.

Building task space via the proposed task similarity metric. To further understand when prefer-
able designs can transfer across tasks, we follow the technique in Section 5 to build a GNN task
space for all 32 tasks considered in this paper. Figure 5(a) visualizes the task similarities computed
using the proposed metric. The key finding is that tasks can be roughly clustered into two groups: (1)

node classification over real-world graphs, (2) node classification over synthetic graphs and all graph
classification tasks. Our understanding is that tasks in (1) are node-level tasks with rich node features,
thus GNN designs that can better propagate feature information are preferred; in contrast, tasks in (2)
require graph structural information and thus call for different GNN designs.

Best GNN design can transfer to tasks with high similarity. We transfer the best model in one
task to another task, then compute the performance ranking of this model in the new task. We observe
a high 0.8 Pearson correlation between the performance ranking after task transfer and the similarity
of the two tasks in Figure 5(c), which implies that the proposed task similarity metric can indicate
how well a GNN design transfers to a new task. Note that this finding implies that finding a good
model in a new task can be highly efficient: computing task similarity only requires running 12
models, as opposed to a grid search over the full design space (315,000 designs).

Comparing best designs with standard GNN designs. To further demonstrate the efficacy of our
design space, we further compare the best designs in the condensed design space with standard GNN
designs. We implement standard GCNs with message passing layers {2, 4, 6, 8}, while using all the

other optimal hyper-parameters that we have discovered in Table 1. The best model in our design
space is better than the best GCN model in 24 out of 32 tasks. Concrete performance comparisons are
shown in the Appendix. We emphasize that the goal of our paper is not to pursue SOTA performance,
but to present a systematic approach for GNN design.

7.5 Case Study: Applying to a Challenging New Task ogbg-molhiv

Background. Our insights on GNN design space (Section 4) and task space (Section 5) can lead
to empirically successful GNN designs on challenging new tasks. Recall that from the proposed
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Task $

Task %

Task #: graph-
scalefree-const-path

Task $: node-
CoauthorPhysics

Target task: 
ogbg-molhiv

Best design 
in our design space (1, 8, 3, skipcat, sum) (1, 4, 2, skipcat, max) (2, 6, 3, skipcat, add)

Best design’s
performance 0.865 0.968 0.792

Previously reported SOTA N/A 0.930 0.771
Task Similarity 

with ogbg-molhiv 0.47 -0.61 1.0

Performance after 
transfer to ogbg-molhiv 0.785 0.736 N/A

(a) (b) (c) (d)

(e)

Figure 5: (a) Proposed similarity between all pairs of tasks computed using 12 anchor models, higher
value means higher similarity. We collect all pairs of tasks, and show: (b) the correlation between task
similarity computed using 12 anchor models versus using all 96 models; (c) the correlation between
task similarity versus the performance ranking of the best design in one task after transferred to
another task; (d) the correlation between task similarity with ogbg-molhiv versus the performance
ranking of the best model in one task after transferred to ogbg-molhiv; (e) the best design found in
a task with high measured similarity with ogbg-molhiv can achieves state-of-the-art performance.

GNN design space, we obtain a useful guideline (Section 7.3) that condenses the design space from
315,000 designs to just 96 designs; from the proposed GNN task space, we build a task similarity
metric where top GNN designs can transfer to tasks with high measured similarity (Section 7.4).

Setup. Specifically, we use ogbg-molhiv dataset [10], which appears to be very different from
the 32 tasks we have investigated: it is much larger (41K graphs vs. maximum 2K graphs), highly
imbalanced (1.4% positive labels) and requires out-of-distribution generalization (split by molecule
structure versus split at random). We use the train/val/test splits provided by the dataset, and report the
test accuracy in the final epoch. We match the model complexity of current state-of-the-art (SOTA)
model (with ROC AUC 0.771) [10], and follow their practice of training 100 epochs due to the high
computational cost; except for these, we follow all the design choices in the condensed GNN design
space (Section 7.3). We examine: (1) if the best model in the condensed design space can achieve
SOTA performance, (2) if the task similarity can guide transferring top designs without grid search.

Results. Regarding (1), in Figure 5(e) last column, we show that the best GNN discovered in our
condensed design space significantly outperforms existing SOTA (ROC AUC 0.792 versus 0.771).
As for (2), we first verify in Figure 5(d) that the proposed task similarity remains to be a reasonable
indicator of how well a top GNN design can transfer across tasks, and that out of the 32 tasks we
have investigated, we select tasks A and B, which have 0.47 and -0.61 similarity to ogbg-molhiv
respectively. We show in Figure 5(e) that although the best design for task B significantly outperforms
existing SOTA (accuracy 0.968 versus 0.930), after transferred to ogbg-molhiv it performs poorly
(AUC 0.736). In contrast, since task A has a high measured similarity, directly using the best design in
task A already significantly outperforms SOTA on ogbg-molhiv (ROC AUC 0.785 versus 0.771).

8 Conclusion

In this paper we offered a principled approach to building a general GNN design space and a GNN task

space with quantitative similarity metric. Our extensive experimental results showed that coherently
studying both spaces via tractable design space evaluation techniques can lead to exciting new
understandings of GNN models and tasks, saving algorithm development costs as well as empirical
performance gains. Overall, our work suggests a transition from studying individual GNN designs
and tasks to systematically studying a GNN design space and a GNN task space.
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Broader Impact

Impact on GNN research. Our work brings in many valuable mindsets to the field of GNN
research. For example, we fully adopt the principle of controlling model complexity when comparing
different models, which is not yet adopted in most GNN papers. We focus on finding guidelines /
principles when designing GNNs, rather than particular GNN instantiations. We emphasize that the
best GNN designs can drastically differ across tasks (the state-of-the-art GNN model on one task
may have poor performance on other tasks). We thus propose to evaluate models on diverse tasks
measured by quantitative similarity metric. Rather than criticizing the weakness of existing GNN
architectures, our goal is to build a framework that can help researchers understand GNN design
choices when developing new models suitable for different applications. Our approach serves as a
tool to demonstrate the innovation of a novel GNN model (e.g., in what kind of design spaces / task
spaces, a proposed algorithmic advancement is helpful), or a novel GNN task (e.g., showing that the
task is not similar to any existing tasks thus calls for new challenges of algorithmic development).

Impact on machine learning research. Our approach is in fact applicable to general machine
learning model design. Specifically, we hope the proposed controlled random search technique can
assist fair evaluation of novel algorithmic advancements. To show whether a certain algorithmic
advancement is useful, it is important to sample random model-task combinations, then investigate in
what scenarios the algorithmic advancement indeed improves the performance.

Additionally, the proposed task similarity metric can be used to understand similarities between
general machine learning tasks, e.g., classification of MNIST and CIFAR-10. Our ranking-based
similarity metric is fully general, as long as different designs can be ranked by their performance.

Impact on other research domains. Our framework provides an easier than ever support for experts
in other disciplines to solve their problems via GNNs. Domain experts only need to provide properly
formatted domain-specific datasets, then recommended GNN designs will be automatically picked
and applied to the dataset. In the fastest mode, anchor GNN models will be applied to the novel task
in order to measure its similarity with known GNN tasks, where the corresponding best GNN designs
have been saved. Top GNN designs in the tasks with high similarity to the novel task will be applied.
If computational resources permitted, a full grid search / random search over the design space can
also be easily carried out to the new task. We believe this pipeline can significantly lower the barrier
for applying GNN models, thus greatly promote the application of GNNs in other research domains.

Impact on the society. As is discussed above, given its clarity and accessibility, we are confident that
our general approach can inspire novel applications that are of high impact to the society. Additionally,
its simplicity can also provide great opportunities for AI education, where students can learn from
SOTA deep learning models and inspiring applications at ease.
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