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Abstract

We present an approach for lifelong/continual learning of convolutional neural
networks (CNN) that does not suffer from the problem of catastrophic forget-
ting when moving from one task to the other. We show that the activation maps
generated by the CNN trained on the old task can be calibrated using very few
calibration parameters, to become relevant to the new task. Based on this, we
calibrate the activation maps produced by each network layer using spatial and
channel-wise calibration modules and train only these calibration parameters for
each new task in order to perform lifelong learning. Our calibration modules intro-
duce significantly less computation and parameters as compared to the approaches
that dynamically expand the network. Our approach is immune to catastrophic
forgetting since we store the task-adaptive calibration parameters, which contain
all the task-specific knowledge and is exclusive to each task. Further, our approach
does not require storing data samples from the old tasks, which is done by many
replay based methods. We perform extensive experiments on multiple benchmark
datasets (SVHN, CIFAR, ImageNet, and MS-Celeb), all of which show substan-
tial improvements over state-of-the-art methods (e.g., a 29% absolute increase in
accuracy on CIFAR-100 with 10 classes at a time). On large-scale datasets, our
approach yields 23.8% and 9.7% absolute increase in accuracy on ImageNet-100
and MS-Celeb-10K datasets, respectively, by employing very few (0.51% and
0.35% of model parameters) task-adaptive calibration parameters.

1 Introduction

Humans are adept at continual/lifelong learning of multiple tasks in a sequence, while not forgetting
the knowledge acquired from earlier tasks when subjected to new learning tasks. Unfortunately, deep
neural networks do not have such an inherent property. It has been well-recognized that deep neural
networks suffer from the problem of catastrophic forgetting [1], e.g., in a categorization task, the
network performance on the previously trained categories tends to fall drastically as if the network
has “forgotten” those categories of data.

Continual learning [2, 3] involves training the network in such a way that it can continually learn from
tasks that arrive sequentially and add to its existing knowledge base instead of replacing knowledge
about the older tasks. A trivial solution to this is to simply store all the data from all the tasks as and
when they arrive so that whenever a new task arrives, we can train the network on all the previous
task data and the current task data. However, deep learning is used in many diverse applications,
where storing such a large amount of data is not feasible. Therefore, an incrementally trained model
must be able to learn from new tasks that arrive sequentially by only training on that task and still
retain the knowledge gained from the previous task without having to re-train on all the previously
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seen data. Finally, we should obtain a model that performs well for all the sequentially added tasks.
Solving this problem will make deep learning models much more human-like.

In addition to preserving the knowledge of the old tasks, lifelong learning models must also leverage
this knowledge to help in learning new tasks. This is referred to as forward transfer. When training
on a new task, if the network drastically forgets knowledge from the older tasks, then it is said to
be a plastic network. On the other hand, if a network gives so much importance to the older tasks
that it is unable to properly learn the new task, then it is said to be a stable network. Too much
stability or plasticity will be harmful to this problem. Therefore, for lifelong learning (which we will
occasionally interchangeably refer to as continual/incremental learning in the rest of the exposition)
to be successful, a stability-plasticity balance must be maintained.

The following objectives are important for any lifelong learning algorithm: 1) the network should
exhibit zero or near-zero catastrophic forgetting; 2) in the attempt to achieve this, the method
performance should not fall significantly on the continual learning task; 3) the number of parameters
and computations in the network should not increase significantly; and 4) the network should be able
to perform forward knowledge transfer from old tasks to the new ones. Even when one achieves zero
catastrophic forgetting, this does not trivially lead to good performance. For example, some existing
methods such as Piggyback [4] and others [5, 6] do not suffer from catastrophic forgetting but suffer
from performance degeneration and hence fail as per the second objective. On the other hand, some
methods [7, 5, 8] increase the network size significantly and hence fail the third objective. To the best
of our knowledge, none of the existing methods satisfy all of the above objectives.

Transfer learning is a technique for transferring knowledge from one dataset/domain/network to
another [9]. It enables utilizing the knowledge gained from training the network on the source dataset
to help in training the network better on the target dataset and also help converge faster. The intuition
behind transfer learning is that the initial layers of the network typically learn to extract basic features
common to both source and target datasets, such as edges and corners of an object (in image-based
data). However, based on this idea, if we directly train the network on a new task, it will override the
older parameter weights that had been learned for the older task, resulting in catastrophic forgetting.
In order to prevent this, we can freeze the entire network that has been trained on the older task and
only train extra network layers for each new task. This will eliminate catastrophic forgetting while
promoting knowledge transfer from the initial task to the later task using the frozen network. However,
adding extra network layers for each new task is not a scalable solution when the number of tasks is
large. A more desirable approach would be to learn a small number of (re)calibration parameters to
modify the intermediate activations produced by the frozen network to make them relevant to the new
task. This will have no catastrophic forgetting and also only cause a very insignificant increase in
network size per task.

We propose a novel method to address the lifelong learning problem in convolutional neural networks
(CNNs) based on the above idea, aimed at accomplishing all of the aforementioned objectives. We
focus on maximum re-use of features generated by the CNN trained on the first task to obtain
features for images in the subsequent tasks. We achieve this by performing spatial and channel-wise
calibration of the intermediate activation-maps according to the task that is currently being learned.
Specifically, our method involves training a CNN-based base module for the first task and training a
set of calibration parameters for every intermediate activation map generated by the base module
for all subsequent tasks. Except for the first task, task-adaptive calibration parameters are the only
trainable parameters. Moreover, the calibration parameters of the previous task also serve as good
initial weights for learning the calibration parameters of the new task. Since our approach re-uses the
CNN trained on the old task for the new tasks, forward knowledge transfer is achieved. During testing,
when the task is changed, we simply change the calibration parameters. This ensures no catastrophic
forgetting for the previous tasks and an insignificant increase of parameters and computation per task
compared to other dynamic network-based continual learning methods [5, 10, 11, 12, 13, 14]. Our
proposed method is described in detail in Sec 2.2. We perform extensive experiments on several
benchmark datasets and perform various ablation experiments to validate our approach.

To summarize, our major contributions are as follows:

• We propose a novel method of lifelong learning for convolutional neural networks, which
involves (re)calibrating the activation maps generated by the network trained on older tasks
to produce features relevant to the newer tasks.
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Figure 1: Calibration module (CM) containing the spatial calibration module (SCM) and channel-
wise calibration module (CCM) that are applied sequentially to the activation maps. Here ⊕ and ⊗
represent element-wise addition and channel-wise multiplication operation respectively.

• We empirically show that our method introduces a very small number of parameters com-
pared to other dynamic network-based lifelong learning methods.

• We experimentally show that our method performs significantly better than existing, state-
of-the-art lifelong learning methods.

2 Proposed Method

2.1 Problem Setting

We consider the task incremental classification setting [7], where new tasks with new sets of classes
are sequentially provided to the network. Let the total number of tasks be K, each having U new
classes. The objective is to train a network in this setting such that the final network performs well on
the new tasks as well as on the old tasks without any performance loss.

2.2 Method Overview

As mentioned earlier, we propose a lifelong learning approach for convolutional neural networks
called Calibrating CNNs for Lifelong Learning (CCLL). It is designed to effectively re-use the
features learned by the network, trained on the initial task, and efficiently (re)calibrate them, using
a very small number of calibration parameters, in order to make them relevant to the new tasks.
Our method requires task-labels during test time in order to identify which task-adaptive calibration
parameters to use for re-calibrating the convolutional layer outputs.

Our network consists of three types of modules: base module E, task-adaptive calibration modules
CM t

i , and task-specific classification modules Ct. The base module is a convolutional neural network
with N layers (L1 to LN ) and parameters θE . Each layer i ∈ [1, N ] produces an output activation
map M t

i , where t refers to the task t. We add a calibration module (CM) after each layer of the
base module. The calibration module CM t

i is added after the ith layer of the base module for task t.
Each calibration module consists of a spatial calibration module (SCM) followed by a channel-wise
calibration module (CCM), as shown in Fig. 1. The spatial calibration module learns weights to
calibrate each point in the activation maps while the channel-wise calibration module learns weights
to calibrate each channel of the activation maps. The output of the ith layer of the base module is fed
to the ith calibration module, which feeds its output to the (i+ 1)th layer of the base module.

Assume M t
i to be of size H ×W × C, where H , W , and C denotes height, width, and number of

channels, respectively. Let Φti be the SCM operator added after the ith layer of the base module for
task t. The spatial calibration module uses group convolution with 3 × 3 kernel size, the number
of groups equal to C

α with each group having α channels. The output of Φti will also be of size
H ×W × C, representing the spatial calibration weights. Therefore, the SCM operator can be
described as the function Φti : RH×W×C −→ RH×W×C

Φti(M
t
i ) = GCONVα(M t

i ) (1)

where GCONVα represents group convolution with the number of groups equal to C
α .
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Figure 2: Our proposed architecture for lifelong learning. The top architecture is for the first task
t = 1 and bottom architecture is for all the subsequent tasks t > 1. L1 − LN represent the layers of
the base module. The calibration module CM t

i calibrates the ith layer output M t
i to produce M t∗∗

i

that is given as an input to the i+ 1th layer. After the first task, for all the subsequent tasks, the base
module is frozen and its layers are not trainable and are marked in gray color with hatched pattern.

The calibration weights will get added element-wise to M t
i to give the spatially calibrated activation

maps M t∗
i . The spatially calibrated activation maps M t∗

i are given as input to the channel-wise
calibration module. M t∗

i is obtained as

M t∗
i = Φti(M

t
i )⊕M t

i (2)
where ⊕ represents the element-wise addition operation.

Let ξti be the CCM operator added after the SCM operator for the ith layer of the base module for
task t as shown in Fig. 1. The channel-wise calibration module first performs global average pooling
(GAP) on M t∗

i . This produces an output of size 1× 1× C. The channel-wise calibration module
performs group convolution with kernel size 1× 1, the number of groups equal to C

β with each group
having β channels, on the output of the global average pooling operation. This is followed by a
sigmoid activation function that again produces an output size of 1 × 1 × C which represents the
channel-wise calibration weights. Therefore, the CCM operator can be described as the function
ξti : RH×W×C −→ [0, 1]1×1×C

ξti(M
t∗
i ) = σ(BN(GCONVβ(GAP (M t∗

i )))) (3)

where GCONVβ represents group convolution with the number of groups equal to C
β , BN represents

batch normalization, and σ represents the sigmoid activation function.

Each of the calibration weights gets multiplied to the corresponding channel of M t∗
i to produce the

final calibrated activation maps M t∗∗
i for the ith layer. M t∗∗

i can be obtained as

M t∗∗
i = ξti(M

t∗
i )⊗M t∗

i (4)
where ⊗ represents the channel-wise multiplication operation.

Therefore, we can describe the overall calibration process as a combination of Eqs. 2 and 4 (Fig. 1)

M t∗∗
i = CM t

i (M
t
i ) = ξti(Φ

t
i(M

t
i )⊕M t

i )⊗ (Φti(M
t
i )⊕M t

i ) (5)

where CM t
i is the task t calibration module added after the ith layer of the base module.

For the first task, we train the base module, the calibration modules, and the classification module.
For the subsequent tasks t > 1, we keep the base module weights θE as frozen and only train the
task-adaptive calibration modules CM t

i for all i ∈ [1, N ], and the task-specific classification module
Ct. In this way, we adapt features relevant to the new task from the base module using the calibration
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modules. We train the network only on the classification loss using cross-entropy loss, and we do not
use the distillation loss or task exemplar replay/rehearsal. The full architecture is shown in Fig. 2.

Through an ablation experiment, we show that if we do not train the base module at all and only
train the calibration parameters for each task, the network performance is hurt drastically. Therefore,
in our method, transfer of knowledge occurs from the first task to the later tasks using the base
module (that is only trained on the first task). Through another ablation experiment, we show that
if we use the calibration parameter weights of the previous task as the initial weights for training
the calibration parameters for the next task, we get better results than training the task adaptive
calibration parameters from scratch for each task. This also shows that forward transfer of knowledge
is happening from previous tasks to the next task.

The task-adaptive calibration parameters are stored. During testing, depending on the task-label, the
corresponding task-adaptive calibration parameters are used, and classification is performed. Since
our calibration module is light-weight, the number of extra parameters introduced per task and the
increase in the total number of computations are not significant. Therefore, our proposed method is a
very efficient lifelong learning method with no catastrophic forgetting.

3 Related Work

Continual learning methods can be broadly divided into three types: regularization-based, memory-
based, and dynamic-network-expansion-based methods.

Regularization based Methods: These methods use regularization techniques to ensure that the
network outputs do not change drastically while training on new tasks, so that the old task knowledge
is preserved to some extent. The method described in [15] uses knowledge distillation to achieve the
above goal. In [16, 17], the authors make use of distillation loss in addition to modified classification
techniques suited to continual learning. The learning rate is decreased in [18] for the parameters
that are important to the older tasks. In a similar spirit, [19] employs intelligent synapses that
use task-relevant knowledge to store new task information while minimizing the loss of old task
knowledge. Our method does not need to use regularization loss since it does not suffer from
catastrophic forgetting.

Memory based Approaches: These methods store old task data or data representatives that are used
during training for new tasks, so that catastrophic forgetting is reduced for older tasks (prototype
rehearsal/replay). In [16], the authors use exemplar-based prototype rehearsal along with distillation
to tackle forgetting. A similar approach is applied to a cross-dataset setting in [20]. The works
in [21, 22, 23] focus on brain-inspired short and long-term memory with sleep phases. A custom
architecture is used in [21, 23] to produce pseudo samples for the older tasks to be used for prototype
rehearsal. Pseudo sample-based rehearsal is also used in [24], by making use of a generator and
discriminator for generating such samples. In [25], the authors store the old task representative data
and the class-specific statistics of those tasks for an improved prototype rehearsal. Optimization-based
meta-learning with experience replay is used in [26]. Our method does not store any data from the
previous tasks and, therefore, does not need any dedicated memory for storing task exemplars. We
only store very few task-adaptive calibration parameters for new tasks.

Dynamic Network Methods: These methods dynamically modify the network to deal with training
on new tasks, usually by network expansion. The method described in [5] creates a new neural
network for each new task with lateral connections to the old task networks for forward knowledge
transfer. A hierarchical expansion of the network is carried out in [10] to perform classification
for both coarse super-classes, which have similar classes clustered together and full classification
within the super-class. In [11], the authors use a tournament selection genetic algorithm to choose
a subset of pathways through the network for the tasks, and they re-use relevant pathways for new
tasks. The work in [12] selectively re-trains and dynamically expands the network for new tasks
with only relevant neurons and also splits and duplicates neurons. In [27], the authors perform a
weighted update on the network according to the episodic memory gradient. Reinforcement learning
is used in [13] to decide the number of neurons to add for each new task. The method described
in [14] predicts how much network weights to re-use and how much extra parameters to add for
each new task. A random path selection methodology is proposed in [7] for faster convergence. It
also uses a distillation procedure with exemplar-based rehearsal to provide a significant boost to
the incremental learning performance. Network expansion for new tasks is kept limited in [8], and
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network parameters are demarcated as shared and task-specific. The weights of the task-specific
model are generated based on the task identity in [6].

The dynamic network methods have been shown to be among the most successful ones for lifelong
learning, albeit the number of parameters in such methods can quickly become very large. Our feature
map re-calibration based approach is motivated by dynamic methods but requires significantly less
storage and computation, as we show through our experiments.

4 Experiments

4.1 Datasets

We perform experiments on the SVHN [28], CIFAR [29], ImageNet [30], and MS-Celeb-10K [31]
datasets. In the case of SVHN, which has 10 classes, we group 2 consecutive classes to get 5 tasks,
and we incrementally train on the five tasks. We perform experiments on CIFAR-100 with 10 tasks
where each task contains 10 classes. For split CIFAR-10/100 experiments, we use all the classes
of CIFAR-10 for the first task and randomly choose 5 tasks of 10 classes each from CIFAR-100.
So we have 6 tasks for this setting. In the case of ImageNet-100, we use the subset proposed by
[16] containing 100 classes, and we group them into 10 tasks of 10 classes each. In the case of
MS-Celeb-10K, we use the subset of MS-Celeb consisting of 10000 classes [32], and we group them
into 10 tasks of 1000 classes each.

4.2 Implementation Details

For SVHN and CIFAR-100 experiments, we use the ResNet-18 architecture. For split CIFAR-10/100
experiments, we use the ResNet-18 and ResNet-32 architectures. In the above experiments, we train
the network for 150 epochs for each task with the initial learning rate equal to 0.01, and we multiply
the learning rate by 0.1 at the 50,100 and 125 epochs. We also perform experiments with the LeNet
architecture [33] on CIFAR-100. We train the network for 100 epochs for each task with the initial
learning rate equal to 0.01, and we multiply the learning rate with 0.5 at the 20,40,60 and 80 epochs.

For ImageNet-100 experiments, we use the ResNet-18 architecture. We train the network for 150
epochs for each task with the initial learning rate equal to 0.01, and we multiply the learning rate by
0.1 at the 50,100 and 125 epochs. For MS-Celeb-10K experiments, we use the ResNet-18 architecture.
We train the network for 70 epochs for each task with the initial learning rate equal to 0.01, and
we multiply the learning rate by 0.1 at the 20,40 and 60 epochs. We use the SGD optimizer in all
our experiments. In all cases, we run experiments for 5 random task orders and report the average
accuracy.

We refer to our model as CCLL<α, β>, where α and β are the number of channels per group in
the group convolution used in the spatial calibration module and channel-wise calibration module,
respectively. We found that using β > 1 does not significantly improve the performance of our model.
Therefore, in all our experiments, we set β = 1.

4.3 Experiments on Small-Scale Datasets

SVHN: Table 1 reports the experimental results on the SVHN dataset. From the results, we can
see that our method CCLL<1,1> outperforms existing state-of-the-art methods significantly. CCLL
achieves an absolute increase of about 9.3% over RPS [7].

CIFAR-100: For CIFAR-100 incremental learning tasks using 10 classes at a time, we compare our
CCLL method with multiple state-of-the-art approaches: Learning without Forgetting (LwF) [15],
Synaptic Intelligence (SI) [19], Elastic Weight Consolidation (EWC) [18], Incremental Classifier and
Representation Learning (iCARL) [16] and Random Path Selection (RPS) [7]. Figure 3 shows the
comparison of our method with the above-mentioned methods. We use ResNet-18 architecture in
these experiments as used in [7]. From the graphs, we can see that our CCLL method performs better
than all existing methods. Our CCLL<1,1> model outperforms RPS [7] by an absolute margin of
26% for the 10 classes per task. Our CCLL<4,1> model outperforms RPS [7] by an absolute margin
of 29% for the 10 classes per task setting. As seen in Fig. 3, our method consistently performs better
than all other methods as more tasks are seen. Therefore, our approach provides enough capacity for
the network to learn new tasks.
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Figure 3: Experimental results on CIFAR-100
dataset with tasks containing 10 classes. ‘∗’ de-
note memory based approaches.

Figure 4: Increase in model parameters with
number of tasks.

Table 1: Experimental results on SVHN dataset
with ResNet-18 architecture. We report the aver-
age accuracy of 5 tasks (A5). ‘∗’ denote memory
based approaches.

Methods SVHN (A5)
GEM∗ [34] 75.61%
RPS∗ [7] 88.91%
CCLL<1,1> (Ours) 98.20%

Table 2: Experimental results on CIFAR-100
with LeNet architecture.

Methods Capacity Accuracy
STL [8] 1000% 63.75%
L2T [8] 100% 48.73%
EWC [18] 100% 53.72%
P&C [35] 100% 53.54%
PGN [5] 171% 54.90%
DEN [12] 181% 57.38%
RCL [13] 181% 55.26%
APD [8] 135% 60.74%
CCLL<1,1> (Ours) 100.7% 63.71%
CCLL_BN<1,1> (Ours) 101.6% 71.52%

In Table 1, we compare CCLL with GEM [34] that uses task labels during testing as in our method.
In Fig. 3, we compare CCLL with LwF [15], EWC [18] and SI [19]. We modify these methods to
use task labels during testing for a fair comparison. For the sake of completeness, we additionally
compare our approach with different continual learning setting approaches. We compare our approach
with replay/memory-based (with/without task labels) approaches such as iCaRL [16], and others.
These methods store old task data (additional information) that are used while training for new tasks
in order to reduce catastrophic forgetting for older tasks. Note that our method does not store any data
from the previous tasks and, therefore, does not need any dedicated memory to store task exemplars.

Increase in Parameters: Figure 4 shows the comparison of the growth of model parameters with
tasks in the task incremental setting with ResNet-18 architecture. The results indicate that for
Progressive Nets [5], the number of parameters increases quadratically with the tasks and has
932.84M parameters after 10 tasks [7]. The rate of growth of parameters is lower for RPSNet [7],
but the model still has around 72.26M parameters after 10 tasks. iCARL [16] has around 21.3M
parameters after 10 tasks. Our method shows a very insignificant growth of parameters, and the total
number of parameters after 10 tasks is also the lowest at 11.8M.

Table 2 reports experimental results for the CIFAR-100 10 classes per task setting on the LeNet
architecture. We use the same LeNet architecture (20-50-800-500) as used in [8]. We use task labels
during testing for all the methods in Table 2 for a fair comparison. The results indicate that our model
CCLL<1,1> performs better than all existing state-of-the-art methods by a significant margin. The
APD [8] network has 35% more parameters than the base LeNet network compared to only 0.7%
more in our case. We also provide the result for CCLL_BN<1,1>, which is CCLL<1,1> with batch
normalization layers added to the LeNet architecture.

Split CIFAR-10/100: Figure 5 shows the results for split CIFAR-10/100 task settings using ResNet-
32. We compare our model CCLL<1,1> with HNET [6], which is the state-of-the-art for this dataset.
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Figure 5: Experimental results on split CIFAR-
10/100 using ResNet-32. The reported accuracy
for each task is the average of all accuracy values
up to that task. SF is a setting where the base
module has not been trained at all, and we only
train the calibration parameters for each task. SC
is a setting where the calibration modules are
trained from scratch for each task.

Figure 6: Experimental results on split CIFAR-
10/100 using ResNet-32 to check for catastrophic
forgetting. The values reported are the achieved
accuracy for each task when the network is
trained on that task (marked as during) and af-
ter the network has been trained on all the tasks
(marked as after).

HNET uses task labels during testing, as does our method. We use the same ResNet-32 architecture
as used in [6]. The results indicate that our method CCLL<1,1> performs significantly better than
HNET and achieves an absolute improvement of 5.7% in the final accuracy. We also provide results
for ablation experiments in this setting. We perform ablation for two types of settings - SF (Scratch
Freeze) and SC (Scratch Calibration). From the results, we see that the CCLL_SF_SC model performs
very badly on the lifelong learning experiment. This is because the calibration parameters are very
few and are not enough to learn the tasks properly on their own. This is by design since we do
not want to increase the parameters of the network by using heavy calibration modules and instead
rely on knowledge transfer from a trained base module. This means that knowledge transfer does
happen from our base module that has been trained on the first task and is vital to our model’s
performance. The results also indicate that the CCLL_SC model performs badly. This means that
forward knowledge transfer also happens when we use the calibration weights of the previous task
as the initial values of the calibration parameters for the next task and is also vital to our model’s
performance. This is why we also train the calibration modules for the first task. Figure 6 shows that
both CCLL<1,1> and HNET [6] eliminate catastrophic forgetting. But our method achieves higher
performance than HNET on the same ResNet-32 architecture. This shows that HNET suffers from
performance degeneration, as can be seen from the task-1 (CIFAR-10) accuracy1 achieved using
ResNet-32.

Table 3: Experimental results on split CIFAR-10/100 incre-
mental setup using the ResNet-18 architecture. We report the
average accuracy of the 6 tasks (A6), % increase in network
parameters per task and % increase in total computation. 3
and 7 refer to presence and absence respectively.
α SCM CCM % Params. ↑ per task % FLOPS ↑ Accuracy (A6)
0 7 7 0.0% 0.0% 67.06%
0 7 3 0.1286% 0.0009% 87.85%
1 3 7 0.3857% 0.9955% 89.06%
1 3 3 0.5143% 0.9964% 89.58%
2 3 3 0.9000% 1.9919% 89.94%
4 3 3 1.6715% 3.9829% 90.45%
8 3 3 3.2144% 7.9650% 90.99%

Table 3 reports the experimental re-
sults for split CIFAR-10/100 task
settings using ResNet-18. We per-
form ablation experiments to vali-
date the components of our method.
The results indicate that removing
the spatial calibration module from
CCLL<1,1> reduces the final accu-
racy by around 1.7% absolute value.
Removing the channel calibration
module also hurts the performance
of our model. Removing both SCM
and CCM from CCLL<1,1> reduces
the final accuracy by over 22% absolute value. Therefore, both SCM and CCM are important for
our method. The results indicate that using α values greater than 1 leads to better performance, with
α equal to 8, showing an absolute increase of about 1.4% over α equal to 1. But we also note that
higher α values lead to a higher number of parameters and computations.

1https://keras.io/zh/examples/cifar10_resnet/
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Table 4: Large-scale lifelong learning experiments on ImageNet and MS-Celeb datasets. Both have
10 tasks, and the reported accuracy for each task is the average of all accuracies up to that task. ‘∗’
denote memory based approaches.

Datasets Methods 1 2 3 4 5 6 7 8 9 Final

ImageNet-100/10 LwF [15] 99.3 95.2 85.9 73.9 63.7 54.8 50.1 44.5 40.7 36.7
iCaRL∗ [16] 99.3 97.2 93.5 91.0 87.5 82.1 77.1 72.8 67.1 63.5
RPSnet∗ [7] 100.0 97.4 94.3 92.7 89.4 86.6 83.9 82.4 79.4 74.1
CCLL<1,1> 99.8 99.0 99.2 98.6 98.4 98.5 98.2 97.7 97.8 97.9+23.8

MS-Celeb-10K/10 iCaRL∗ [16] 94.2 93.7 90.8 86.5 80.8 77.2 74.9 71.1 68.5 65.5
RPSnet∗ [7] 92.8 92.0 92.3 90.8 86.3 83.6 80.0 76.4 71.8 65.0
BiC∗ [32] 95.9 96.7 96.7 96.2 95.4 94.5 93.4 91.9 90.2 88.0
CCLL<1,1> 98.3 97.9 97.7 97.7 97.8 97.8 97.7 97.7 97.7 97.7+9.7

4.4 Experiments on Large-Scale Datasets

On large-scale datasets such as ImageNet and MS-Celeb, the lifelong learning problem is more
challenging compared to small-scale datasets. Table 4 shows the results for both ImageNet-100/10
and MS-Celeb-10K/10 settings. We modify LwF to use task labels during testing (same as our
method), while the other compared methods are replay/memory-based. The results indicate that
our method CCLL performs better than other state-of-the-art methods. Our method CCLL<1,1>
outperforms the closest competitor by 23.8% and 9.7% for ImageNet-100/10 and MS-Celeb-10K/10
settings respectively (top-5 accuracy). This margin is significant, especially when considering the
fact that these are large datasets. CCLL<1,1> on ImageNet dataset introduces only 0.51% more
parameters per task and 0.98% more FLOPS in the model. In case of the MS-Celeb-10K/10 dataset,
CCLL<1,1> introduces only 0.35% more parameters per task and 0.98% more FLOPS in the model.
Our results are very close to the upper-bound (learning on all the tasks jointly with task labels setting).
The upper-bounds on ImageNet-100/10 and MS-Celeb-10K/10 experiments are 98.8% and 98.4%
(final accuracy), respectively, which are very close to our reported results (Table 4).

4.5 Dependency of CCLL on the first task

Table 5: Experimental results on SVHN dataset with
ResNet-18. We report the average accuracy of 5 tasks
(A5). Calibration modules are trained for each task.

Base module setting Base module finetuned on SVHN (A5)
Trained from scratch Only on the first SVHN task 98.2%

Pre-trained on CIFAR-10 No task (Frozen for all) 97.9%
Pre-trained on CIFAR-10 Only on the first SVHN task 98.4%

To investigate the dependence of our model
on the choice of the first task, we run ex-
periments for 5 randomly chosen task or-
ders (with randomly chosen classes per task),
each with a different first task, and report the
average accuracies. As shown in Table 5,
on the datasets we experimented with, our
model seems fairly robust against the choice
of the first task. However, in general, the first chosen task must be large enough and diverse enough
to capture a robust and generalizable set of image characteristics (e.g., model filters). If the first task
has very few samples per class and/or very few classes, then the performance of CCLL may suffer.
Our method is based on re-calibrating the base module to learn new tasks instead of training the
full network on new tasks. Re-calibration needs a trained model. Therefore, a randomly initialized
(untrained) base module (SF setting as shown in Fig. 5) cannot be expected to work well for any task
by using re-calibration. The base module does not have to be trained on the first task and can instead
be pre-trained on another dataset. Table 5 shows that a base module pre-trained on CIFAR-10 can
be used to successfully perform incremental learning (97.9%) on SVHN using our method by only
training the calibration parameters for each SVHN task (CIFAR-10 is significantly different from
SVHN). In fact, if we also train the CIFAR-10 pre-trained base module on a randomly chosen first
SVHN task, then the incremental performance is even higher (98.4%). However, we do not use a
pre-trained base-module in any experiment.

5 Conclusion
We propose an efficient lifelong learning method for convolutional neural networks. Through our
experiments, we show that our approach outperforms all existing state-of-the-art methods and also
introduces a considerably fewer number of additional parameters per task. The model trained with
our approach shows no catastrophic forgetting. We also show that forward knowledge transfer plays
a vital role in the performance of our approach.
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Broader Impact

Our proposed lifelong learning method is very light-weight and shows no catastrophic forgetting. It
will help in improving the performance of models on existing lifelong learning based classification
problems. It can also be extended to other applications like image/video segmentation, object
detection. Since our method involves calibrating the outputs of the convolutional layers in the model,
researchers can use it to convert standard deep learning models to work in lifelong learning settings.
For example, a model trained to identify specific crop diseases can be easily extended to also identify
rare/new crop diseases restricted to a few regions. Since our approach shows an insignificant increase
in parameters, the models produced by our approach will also be more scalable than other methods
and thereby better for the deployment of lifelong learning models in light-weight end-user systems.
Therefore, both government and non-government entities can provide tailor-made AI services to
specific regions/communities in addition to the standard services. This method can be misutilized to
perform non-licensed extension to commercially available models. However, we can prevent this by
keeping the model architecture encrypted/hidden.
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