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Abstract

We study the reinforcement learning problem in the setting of finite-horizon
episodic Markov Decision Processes (MDPs) with S states, A actions, and episode
length H . We propose a model-free algorithm UCB-ADVANTAGE and prove that
it achieves Õp

?
H2SAT q regret where T “ KH and K is the number of episodes

to play. Our regret bound improves upon the results of [Jin et al., 2018] and
matches the best known model-based algorithms as well as the information theo-
retic lower bound up to logarithmic factors. We also show that UCB-ADVANTAGE
achieves low local switching cost and applies to concurrent reinforcement learning,
improving upon the recent results of [Bai et al., 2019].

1 Introduction

Reinforcement learning (RL) [Burnetas and Katehakis, 1997] studies the problem where an agent
aims to maximize its accumulative rewards through sequential decision making in an unknown
environment modeled by Markov Decision Processes (MDPs). At each time step, the agent observes
the current state s and interacts with the environment by taking an action a and transits to next state
s1 following the underlying transition model.

There are mainly two types of algorithms to approach reinforcement learning: model-based and
model-free learning. Model-based algorithms learn a model from the past experience and make
decision based on this model while model-free algorithms only maintain a group of value functions
and take the induced optimal actions. Because of these differences, model-free algorithms are usually
more space- and time-efficient compared to model-based algorithms. Moreover, because of their
simplicity and flexibility, model-free algorithms are popular in a wide range of practical tasks (e.g.,
DQN [Mnih et al., 2015], A3C [Mnih et al., 2016], TRPO [Schulman et al., 2015a], and PPO
[Schulman et al., 2017]). On the other hand, however, it is believed that model-based algorithms may
be able to take the advantage of the learned model and achieve better learning performance in terms
of regret or sample complexity, which has been empirically evidenced by Deisenroth and Rasmussen
[2011] and Schulman et al. [2015a]. Much experimental research has been done for both types of
the algorithms, and given that there has been a long debate on their pros and cons that dates back
to [Deisenroth and Rasmussen, 2011], a natural and intriguing theoretical question to study about
reinforcement learning algorithms is that –
Question 1. Is it possible that model-free algorithms achieve as competitive learning efficiency as
model-based algorithms, while still maintaining low time and space complexities?
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Towards answering this question, the recent work by Jin et al. [2018] formally defines that an RL
algorithm is model-free if its space complexity is always sublinear relative to the space required
to store the MDP parameters, and then proposes a model-free algorithm (which is a variant of the
Q-learning algorithm [Watkins, 1989]) that achieves the first

?
T -type regret bound for finite-horizon

episodic MDPs in the tabular setting (i.e., discrete state spaces). However, there is still a gap of
factor

?
H between the regret of their algorithm and the best model-based algorithms. In this work,

we close this gap by proposing a novel model-free algorithm, whose regret matches the optimal
model-based algorithms, as well as the information theoretic lower bound. The results suggest that
model-free algorithms can learn as efficiently as model-based ones, giving an affirmative answer to
Question 1 in the setting of episodic tabular MDPs.

1.1 Our Results
Main Theorem. We propose a novel variant of the Q-learning algorithm, UCB-ADVANTAGE. We
then prove the following main theorem of the paper.

Theorem 1. For T greater than some polynomial of S, A, and H , and for any p P p0, 1q, with
probability p1 ´ pq, the regret of UCB-ADVANTAGE is bounded by RegretpT q ď Õp

?
H2SAT q,

where poly-logarithmic factors of T and 1{p are hidden in the Õp¨q notation.

Compared to the Õp
?
H3SAT q regret bound of the UCB-Bernstein algorithm in [Jin et al., 2018],

UCB-ADVANTAGE saves a factor of
?
H , and matches the information theoretic lower bound of

Ωp
?
H2SAT q in [Jin et al., 2018] up to logarithmic factors. The regret of UCB-ADVANTAGE is at

the same order of the best model-based algorithms such as UCBVI [Azar et al., 2017] and vUCQ
[Kakade et al., 2018].1 However, the time complexity before time step T is OpT q and the space
complexity is OpSAHq for UCB-ADVANTAGE. In contrast, both UCBVI and vUCQ uses ÕpTS2Aq
time and OpS2AHq space.

One of the main technical ingredients of UCB-ADVANTAGE is to incorporate a novel update rule
for the Q-function based on the proposed reference-advantage decomposition. More specifically,
we propose to view the optimal value function V ˚ as V ˚ “ V ref ` pV ˚ ´ V refq, where V ref , the
reference component, is a comparably easier learned approximate of V ˚ and the other component
pV ˚ ´ V refq is referred to as the advantage part. Based on this decomposition, the new update rule
learns the corresponding parts of the Q-function using carefully designed (and different) subsets of
the collected data, so as to minimize the deviation, maximize the data utilization, and reduce the
estimation variance.

Another highlight of UCB-ADVANTAGE is the use of the stage-based update framework which
enables an easy integration of the new update rule (as above) and the standard update rule. In such a
framework, the visits to each state-action pair are partitioned into stages, which are used to design
the trigger and subsets of data for each update.

Implications. An extra benefit of the stage-based update framework is to ensure the low frequency
of policy switches of UCB-ADVANTAGE, stated as follows.

Theorem 2. The local switching cost of UCB-ADVANTAGE is bounded by OpSAH2 log T q.

While one may refer to Appendix C for the details of the theorem, the notion of local switching cost
for RL is recently introduced and studied by Bai et al. [2019], where the authors integrate a lazy
update scheme with the UCB-Bernstein algorithm [Jin et al., 2018] and achieve Õp

?
H3SAT q regret

and OpSAH3 log T q local switching cost. In contrast, our result improves in both metrics of regret
and switching cost.

Our results also apply to concurrent RL, a research direction closely related to batched learning and
learning with low switching costs, stated as follows.

Corollary 3. Given M parallel machines, the concurrent and pure exploration version of UCB-
ADVANTAGE can compute an ε-optimal policy in ÕpH2SA`H3SA{pε2Mqq concurrent episodes.

1Both Azar et al. [2017] and Kakade et al. [2018] assume equal transition matrices P1 “ P2 “ ¨ ¨ ¨ “ PH .
In this work, we adopt the same setting as in, e.g., [Jin et al., 2018] and [Bai et al., 2019], where P1, P2, . . . , PH

can be different. This adds a factor of
?
H to the regret analysis in [Azar et al., 2017] and [Kakade et al., 2018].
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In contrast, the state-of-the-art result [Bai et al., 2019] uses ÕpH3SA`H4SA{pε2Mqq concurrent
episodes. When M “ 1, Corollary 3 implies that the single-threaded exploration version of UCB-
ADVANTAGE uses ÕpH3SA{ε2q episodes to learn an ε-optimal policy. In Appendix C, we provide a
simple ΩpH3SA{ε2q-episode lower bound for the sample complexity, showing the optimality up to
logarithmic factors.

1.2 Additional Related Works

Regret Analysis for RL. Since our results focus on the tabular case, we will not mention most
of the results on RL for continuous state spaces. For the tabular setting, there are plenty of recent
works on model-based algorithms under various settings (e.g., [Jaksch et al., 2010, Agrawal and
Jia, 2017, Azar et al., 2017, Ouyang et al., 2017, Fruit et al., 2019, Simchowitz and Jamieson, 2019,
Zanette and Brunskill, 2019, Zhang and Ji, 2019]). The readers may refer to [Jin et al., 2018] for more
detailed review and comparison. In contrast, fewer model-free algorithms are proposed. Besides [Jin
et al., 2018], an earlier work [Strehl et al., 2006] implies that T 4{5-type regret can be achieved by a
model-free algorithm.

Variance Reduction and Advantage Functions. Variance reduction techniques via reference-
advantage decomposition is used for faster optimization algorithms [Johnson and Zhang, 2013].
The technique is also recently applied to pure exploration in learning discounted MDPs [Sidford
et al., 2018b,a]. However, since Sidford et al. [2018b,a] assume the access to a simulator and UCB-
ADVANTAGE is completely online, our update rule and data partition design is very different. Our
work is also the first for regret analysis in RL.

The use of advantage functions have also witnessed much success for RL in practice. For example, in
A3C [Mnih et al., 2016], the advantage function is defined to be Advps, aq :“ Qπps, aq ´ V πpsq,
and helps to reduce the estimation variance of the policy gradient. Similar definitions can also be
found in other works such as [Sutton et al., 2000], Generalized Advantage Estimation [Schulman
et al., 2015b] and Dueling DQN [Wang et al., 2015]. In comparison, our advantage function is defined
on the states instead of the state-action pairs.

2 Preliminaries

We study the setting of episodic MDPs where an MDP is described by pS,A, H, P, rq. Here, S ˆA
is the state-action space, H is the length of each episode, P is the transition probability matrix and r
is the deterministic reward function2. Without loss of generality, we assume that rhps, aq P r0, 1s for
all s, a, h. During each episode, the agent observes the initial state s1 which may be chosen by an
oblivious adversary (i.e., the adversary may have the access to the algorithm description used by the
agent but does not observe the execution trajectories of the agent3).

During each step within the episode, the agent takes an action ah and transits to sh`1 according to
Php¨|sh, ahq. The agent keeps running for H steps and then the episode terminates.

A policy4 π is a mapping from S ˆ rHs to A. Given a policy π, we define its value function and
Q-function as

V πh psq “ E

«

H
ÿ

h1“h

rh1psh1 , πh1psh1qq
ˇ

ˇ

ˇ
sh “ s, sh1`1 „ Ph1p¨|sh1 , πh1psh1qq

ff

,

Qπhps, aq “ rhps, aq ` Php¨|s, aq
JV πh`1 “ rhps, aq ` Ps,a,hV

π
h`1.

As boundary conditions, we define V πH`1psq “ QπH`1ps, aq “ 0 for any π, s, a. Also note that, for
simplicity, throughout the paper, we use xy to denote xT y for two vectors of the same dimension and
use Ps,a,h to denote Php¨|s, aq.

2Our results generalize to stochastic reward functions easily.
3Another adversary model is the the stronger adaptive adversary who may observe the execution trajectories

and select the initial states based on the observation. While it is possible that a more careful analysis of our
algorithm also works for the adaptive adversary, we do not make any effort verifying this statement. We also
note that previous works such as [Jin et al., 2018, Bai et al., 2019] do not explicitly define their adversary models
and it is not clear whether their analysis works for the adaptive adversary.

4In this work, we mainly consider deterministic policies since the optimal value function can be achieved by
a deterministic policy.
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The optimal value function is then given by V ˚h psq “ supπ V
π
h psq and Q˚hps, aq “ rhps, aq `

Ps,a,hV
˚
h`1 for any ps, aq P S ˆA, h P rHs.

The learning problem consists of K episodes, i.e, T “ KH steps. Let sk1 be the state given to the
agent at the beginning of the k-th episode, and let πk be the policy adopted by the agent during the
k-th episode. To goal is to minimize the total regret at time step T which is defined as follows,

RegretpT q :“
K
ÿ

k“1

`

V ˚1 ps
k
1q ´ V

πk
1 psk1q

˘

. (1)

3 The UCB-ADVANTAGE Algorithm

In this section, we introduce the UCB-ADVANTAGE algorithm. We start by reviewing the Q-learning
algorithms proposed in [Jin et al., 2018]. Recall that Jin et al. [2018] selects the learning rate
αt “

H`1
H`t , and sets the weights αit “ αiΠ

t
j“i`1p1´ αjq for the i-th samples out of the a total of t

data points, for any state-action pair. Note that αit is roughly ΘpH{tq for the indices i P rH´1
H ¨ t, ts

and vanishes quickly when i ! H´1
H ¨ t. As a result, their update process is roughly equivalent to

using the latest 1
H fraction of samples to update the value function for any state-action pair. Next,

we introduce our stage-based update framework, which shares much similarity with the process
discussed above. However, our framework enjoys simpler analysis and enables easier integration of
the two update rules which will be explained afterwards.

Stages and Stage-Based Update Framework. For any triple ps, a, hq, we divide the samples re-
ceived for the triple into consecutive stages. The length of each stage roughly increases exponentially
with the growth rate p1` 1{Hq. More specifically, we define e1 “ H and ei`1 “

X

p1` 1
H qei

\

for
all i ě 1, standing for the length of the stages. We also let L :“ t

řj
i“1 ei|j “ 1, 2, 3, . . . u be the set

of indices marking the ends of the stages.

Now we introduce the stage-based update framework. For any ps, a, hq triple, we update Qhps, aq
when the total visit number of ps, a, hq the end of the current stage (in other word, the total visit
number occurs in L). Only the samples in the latest stage will be used in this update. Using the
language of [Jin et al., 2018], for any total visit number t in the pj`1q-th stage, our update framework
is equivalent to setting the weight distribution to be αit “ e´1

j ¨ I ri in the j-th stages.

We note that the definition of stages is with respect to the triple ps, a, hq. For any fixed pair of k and
h, let pskh, a

k
hq be the state-action pair at the h-th step during the k-th episode of the algorithm. We

say that pk, hq falls in the j-th stage of ps, a, hq if and only if ps, aq “ pskh, a
k
hq and the total visit

number of pskh, a
k
hq after the k-th episode is in p

řj´1
i“1 ei,

řj
i“1 eis.

One benefit of our stage-based update framework is that it helps to reduce the number of the updates
to the Q-function, leading to less local switching costs, which is recently also studied by Bai et al.
[2019], where the authors propose to apply a lazy update scheme to the algorithms in Jin et al.
[2018]. The lazy update scheme uses an exponential triggering sequence with a growth rate of
p1` 1{p2HpH ` 1qqq, which is more conservative than the growth rate of stage lengths in our work.
As a result, our algorithm saves an H factor in the switching cost compared to [Bai et al., 2019].

More importantly, our stage-based update framework, compared to the algorithms in [Jin et al., 2018],
(in our opinion) simplifies the analysis, makes it easier to integrate the standard update rule and the
one based on the reference-advantage decomposition. Both update rules are used in our algorithm,
and we now discuss them separately.

The Standard Update Rule and its Limitation. The algorithms in [Jin et al., 2018] uses the
following standard update rule,

Qhps, aq Ð Ps,a,hVh`1

Ź

` rhps, aq ` b, (2)

where b is the exploration bonus, and Ps,a,hVh`1

Ź

is the empirical estimate of Ps,a,hVh`1. We also
adopt this update rule in our algorithm. However, a crucial restriction is that the earlier samples
collected, the more deviation one would expect between the Vh`1 learned at that moment and the
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true value. To ensure that these deviations do not ruin the whole estimate, we have to require that
Ps,a,hVh`1

Ź

only uses the samples acquired from the last stage. This means that we can only estimate
the Ps,a,hVh`1 term using about 1{H fraction of the obtained data, and we note that this is also the
reason of the extra

?
H occurred in the UCB-Bernstein algorithm by Jin et al. [2018].

Reference-Advantage Decomposition and the Advantage-Based Update Rule. We now intro-
duce the reference-advantage decomposition, which is the key to reducing the extra

?
H factor.

At a high level, we aim at first learning a quite accurate estimation of the optimal value function
V ˚ and denote it by the reference value function V ref . The accuracy is controlled by an error
parameter β which is quite small but independent of T or K. In other words, we wish to have
V ˚h psq ď V ref

h psq ď V ˚h psq ` β for all s and h, and for the purpose of simple explanation, we
set β “ 1{H at this moment; in our algorithm, β can be any value that is less than

a

1{H while
independent of T or K.

For starters, let us first assume that we have the access to the dreamed V ref reference function
as stated above. Now we write V ˚ “ V ref ` pV ˚ ´ V refq, and refer to the second term as the
advantage compared to the reference values5. Now theQ-function can be updated using the following
advantage-based rule,

Qhps, aq Ð Ps,a,hV
ref
h`1

Ź

` Ps,a,hpVh`1 ´ V
ref
h`1q

Ź

` rhps, aq ` b, (3)

where b is the exploration bonus, and both Ps,a,hV
ref
h`1

Ź

and Ps,a,hpVh`1 ´ V
ref
h`1q

Ź

are empirical
estimates of Ps,a,hV ref

h`1 and Ps,a,hpVh`1 ´ V
ref
h`1q (respectively) based on the observed samples. We

still have to require that Ps,a,hpVh`1 ´ V
ref
h`1q

Ź

uses the samples only from the last stage so as to limit
the deviation error due to Vh`1 in the earlier samples.

Fortunately, thanks to the reference-advantage decomposition, and since that V is learned based
on V ref and approximates V ˚ even better than V ref , we have that }Vh`1 ´ V ref

h`1}8 ď β “ 1{H
holds for all samples, which suffices to offset the weakness of using only 1{H of the total data, and
helps to learn an accurate estimation of the second term. On the other hand, for the first term in the
Right-Hand-Side of (3), since V ref is fixed and never changes, we are able to use all the samples
collected to conduct the estimation, without suffering any deviation. This means that the first term
can also be estimated with high accuracy.

The discussion till now has assumed that the reference value vector V ref is known. To remove this
assumption, we note that β is independent of T , therefore a natural hope is to learn V ref using sample
complexity also almost independent of T , incurring regret only in the lower order terms. However,
since it is not always possible to learn the value function of every state (especially the ones almost
not reachable), we need to integrate the learning for reference vector into the main algorithm, and
much technical effort is made to enable the analysis for the integrated algorithm.

Description of the Algorithm. UCB-ADVANTAGE is described in Algorithm 1, where c1, c2, and
c3 are large enough positive universal constants so that concentration inequalities may be applied
in the analysis. Besides the standard quantities such as Qhps, aq, Vhpsq, and the reference value
function V ref

h , the algorithm keeps seven types of accumulators to facilitate the update to the Q- and
value functions: accumulators Nhps, aq and Ňhps, aq are used to keep the total visit number and the
number of visits only counting the current stage to ps, a, hq, respectively. Three types of intra-stage
accumulators are used for the samples in the latest stage; they are reset at the beginning of each stage
and updated at every time step as follows (note that short-hands are defined for succinct presentation
of the Q-function update rule in (9)):

µ̌ :“ µ̌hpsh, ahq
`
Ð Vh`1psh`1q ´ V

ref
h`1psh`1q; υ̌ :“ υ̌hpsh, ahq

`
Ð Vh`1psh`1q; (4)

σ̌ :“ σ̌hpsh, ahq
`
Ð pVh`1psh`1q ´ V

ref
h`1psh`1qq

2. (5)
Finally, the following two types of global accumulators are used for the samples in all stages,

µref :“ µref
h psh, ahq

`
Ð V ref

h`1psh`1q; σref :“ σref
h psh, ahq

`
Ð pV ref

h`1psh`1qq
2. (6)

5Interestingly, one might argue that the term should rather be called “disadvantage” as it is always non-
positive. We choose the name “advantage” to highlight the similarity between our algorithm and many empirical
algorithms in literature. See Section 1.2 for more discussion.
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Algorithm 1 UCB-ADVANTAGE

Initialize: set all accumulators to 0; for all ps, a, hq P S ˆ A ˆ rHs, set Vhpsq Ð H ´ h ` 1;
Qhps, aq Ð H ´ h` 1; V ref

h ps, aq Ð H;
for episodes k Ð 1, 2, . . . ,K do

observe s1;
for hÐ 1, 2, . . . ,H do

Take action ah Ð arg maxaQhpsh, aq, and observe sh`1.
Update the accumulators via n :“ Nhpsh, ahq

`
Ð 1, ň :“ Ňhpsh, ahq

`
Ð 1, and (4), (5), (6).

if n P L {Reaching the end of the stage and update triggered} then
{Set the exploration bonuses, update the Q-function and the value function}

bÐ c1

b

σref{n´pµref{nq2

n ι` c2

b

σ̌{ň´pµ̌{ňq2

ň ι` c3p
Hι
n `

Hι
ň `

Hι
3
4

n
3
4
` Hι

3
4

ň
3
4
q; (7)

bÐ 2
b

H2

ň ι; (8)

Qhpsh, ahq Ð mintrhpsh, ahq `
υ̌

ň
` b, rhpsh, ahq `

µref

n
`
µ̌

ň
` b, Qhpsh, ahqu; (9)

Vhpshq Ð max
a

Qhpsh, aq; (10)

Ňhpsh, ahq, µ̌hpsh, ahq, υ̌hpsh, ahq, σ̌hpsh, ahq Ð 0; {Reset intra-stage accumulators}
end if
if
ř

aNhpsh, aq “ N0 then V ref
h pshq Ð Vhpshq; {Learn the reference value function}

end for
end for

All accumulators are initialized to 0 at the beginning of the algorithm.

The algorithm sets ιÐ logp 2
p q (where p is the parameter for the failure probability) and β Ð 1?

H
.

We also set N0 :“ c4SAH
5ι

β2 for a large enough universal constant c4 ą 0, denoting the number of
visits needed for each state to learn a β-accurate reference value.

By the definition of the accumulators, the first two expressions in mint¨u in (9) respectively corre-
spond to update rules (2) and (3), where b and b̄ are the respective exploration bonuses. The bonuses
are set in a way that both expressions can be shown to upper bound Q˚ in the desired event. The
update (9) also makes sure that the learned Q-function is non-increasing as the algorithm proceeds.

4 The Analysis (Proof of Theorem 1)

Let Nk
h ps, aq, Ň

k
h ps, aq, Q

k
hps, aq, V

k
h psq and V ref,k

h psq respectively denote the values of Nhps, aq,
Ňhps, aq, Qhps, aq, Vhpsq and V ref

h psq at the beginning of k-th episode. In particular, NK`1
h ps, aq

denotes the number of visits of ps, a, hq after all K episodes are done.

To facilitate the proof, we need a few more notations. For each k and h, let nkh be the total number of
visits to pskh, a

k
h, hq prior to the current stage with respect to the same triple. Let ňkh be the number of

visits to pskh, a
k
h, hq during the stage immediately before the current stage. We let lkh,i denote the index

of the i-th episode among the nkh episodes defined above. Also let ľkh,i be the index of the i-th episode
among the ňkh episodes defined above. When h and k are clear from the context, we omit the two

letters and use li and ľi for short. We use µref,k
h , µ̌kh, ν̌kh , σref,k

h , σ̌kh, bkh and b
k

h to denote respectively
the values of µref , µ̌, υ̌, σref , σ̌, b and b in the computation of Qkhps

k
h, a

k
hq in (9).

Recall that the value functionQhps, aq is non-increasing as the algorithm proceeds. On the other hand,
we claim in the following proposition that Qhps, aq upper bounds Q˚hps, aq with high probability.

Proposition 4. Let p P p0, 1q. With probability at least p1 ´ 4T pH2T 3 ` 3qqp, it holds that
Q˚hps, aq ď Qk`1

h ps, aq ď Qkhps, aq for any s, a, h, k.
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The proof of Proposition 4 involves some careful application of the concentration inequalities for
martingales and is deferred to Appendix B.

4.1 Learning the Reference Value Function

As mentioned before, we hope to get an accurate estimate of V ˚ as the reference value function.
Similar to the proof of Lemma 2 in [Dong et al., 2019], we show in the following lemma (the proof of
which deferred to Appendix B) that we can learn a good reference value for each state with bounded
sample complexity. Also note that while it is possible to improve the upper bound in Lemma 5 via
more refined analysis, the current form is sufficient to prove our main theorem.
Lemma 5. Conditioned on the successful events of Proposition 4, for any ε P p0, Hs, with probability
p1´ Tpq it holds that for any h P rHs,

řK
k“1 I

“

V kh ps
k
hq ´ V

˚
h ps

k
hq ě ε

‰

ď OpSAH5ι{ε2q .

By Lemma 5 with ε set to β, the fact that V k is non-increasing in k and the definition of N0, we have
the following corollary.
Corollary 6. Conditioned on the successful events of Proposition 4 and Lemma 5, for every state s
we have that nkhpsq ě N0 ùñ V ˚h psq ď V ref,k

h psq ď V ˚h psq ` β.

4.2 Regret Analysis with Reference-Advantage Decomposition

We now prove Theorem 1. We start by replacing p by p{polypH,T q so that we only need to show
the desired regret bound with probability p1 ´ polypH,T q ¨ pq. The proof in this subsection will
also be conditioned on the successful events in Proposition 4 and Lemma 5, so that the regret can be
expressed as

RegretpT q “
K
ÿ

k“1

`

V ˚1 ps
k
1q ´ V

πk
1 psk1q

˘

ď

K
ÿ

k“1

`

V k1 ps
k
1q ´ V

πk
1 psk1q

˘

. (11)

Define δkh :“ V kh ps
k
hq´V

˚
h ps

k
hq and ζkh :“ V kh ps

k
hq´V

πk
h pskhq. Note that when Nk

h ps
k
h, a

k
hq P L, we

have that nkh “ Nk
h ps

k
h, a

k
hq and ňkh “ Ňk

h ps
k
h, a

k
hq. Following the update rules (9) and (10), we have

that6

V kh ps
k
hq ď I

“

nkh “ 0
‰

H ` rhps
k
h, a

k
hq `

µref,k
h

nkh
`
µ̌kh
ňkh
` bkh

“ I
“

nkh “ 0
‰

H ` rhps
k
h, a

k
hq `

1

nkh

nkh
ÿ

i“1

V ref,li
h`1 ps

li
h`1q `

1

ňkh

ňkh
ÿ

i“1

`

V ľih`1psľi,h`1q ´ V
ref,ľi
h`1 psľi,h`1q

˘

` bkh.

Together with the Bellman equation V πkh pskhq “ rhps
k
h, a

k
hq ` Pskh,akh,hV

πk
h`1, we have that

ζkh “ V kh ps
k
hq ´ V

πk
h pskhq

ď I
“

nkh “ 0
‰

H `
1

nkh

nkh
ÿ

i“1

V ref,li
h`1 ps

li
h`1q `

1

ňkh

ňkh
ÿ

i“1

`

V ľih`1psľi,h`1q ´ V
ref,ľi
h`1 psľi,h`1q

˘

` bkh ´ Pskh,akh,hV
πk
h`1

ď I
“

nkh “ 0
‰

H `
1

nkh

nkh
ÿ

i“1

Pskh,akh,hV
ref,li
h`1 `

1

ňkh

ňkh
ÿ

i“1

Pskh,akh,hpV
ľi
h`1 ´ V

ref,ľi
h`1 q

` 2bkh ´ Pskh,akh,hV
πk
h`1 (12)

“ I
“

nkh “ 0
‰

H ` Pskh,akh,h
` 1

nkh

nkh
ÿ

i“1

V ref,li
h`1 ´

1

ňkh

ňkh
ÿ

i“1

V ref,ľi
h`1

˘

6Here we define 0{0 to be 0 so that forms such as 1

nk
h

řnkh
i“1 Xi are treated as 0 if nk

h “ 0.
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` Pskh,akh,h
` 1

ňkh

ňkh
ÿ

i“1

pV ľih`1 ´ V
˚
h`1q

˘

` Pskh,akh,hpV
˚
h`1 ´ V

πk
h`1q ` 2bkh

ď I
“

nkh “ 0
‰

H `
1

ňkh

ňkh
ÿ

i“1

δľih`1 ´ δ
k
h`1 ` ζ

k
h`1 ` ψ

k
h`1 ` ξ

k
h`1 ` φ

k
h`1 ` 2bkh

loooooooooooooooomoooooooooooooooon

Λkh`1

, (13)

where letting V REF be the final reference vector (i.e., V REF :“ V ref,K`1), and 1j be the j-th
canonical basis vector (i.e., p0, . . . , 0, 1, 0, . . . , 0q where the only 1 is located at the j-th entry), we
define

ψkh`1 :“
1

nkh

nkh
ÿ

i“1

Pskh,akh,hpV
ref,li
h`1 ´ V REF

h`1 q, ξkh`1 :“
1

ňkh

ňkh
ÿ

i“1

pPskh,akh,h ´ 1
s
ľi
h`1

qpV ľih`1 ´ V
˚
h`1q,

φkh`1 :“ pPskh,akh,h ´ 1skh`1
qpV ˚h`1 ´ V

πk
h`1q.

Here at Inequality (12) is implied by the successful event of martingale concentration (which is
implied by the successful event in the proof of Proposition 4, in particular, Inequality (45)). Inequality
(13) holds by the fact that V ref,k

h`1 ě V REF
h`1 for any k, h. Now we turn to bound

řK
k“1 ζ

k
h . Note that

K
ÿ

k“1

ζkh ď
K
ÿ

k“1

I
“

nkh “ 0
‰

H `
K
ÿ

k“1

p
1

ňkh

ňkh
ÿ

i“1

δ
ľkh,i
h`1q `

K
ÿ

k“1

pζkh`1 ` Λkh`1 ´ δ
k
h`1q. (14)

The first term in the RHS of p14q is bounded by
řK
k“1 Irnkh “ 0s ď SAH because nkh ě H when

Nk
h ps

k
h, a

k
hq ě H . We rewrite the second term as

K
ÿ

k“1

p
1

ňkh

ňkh
ÿ

i“1

δ
ľkh,i
h`1q “

K
ÿ

k“1

1

ňkh

K
ÿ

j“1

δjh`1

ňkh
ÿ

i“1

Irj “ ľkh,is “
K
ÿ

j“1

δjh`1

K
ÿ

k“1

1

ňkh

ňkh
ÿ

i“1

Irj “ ľkh,is. (15)

Let j ě 1 be a fixed episode. Note that
řňkh
i“1 Irj “ ľkh,is “ 1 if and only if psjh, a

j
hq “ ps

k
h, a

k
hq, and

pj, hq falls in the previous stage that pk, hq falls in. As a result, every k such that
řňkh
i“1 Irj “ ľkh,is “ 1

has the same ňkh which we denote byZj , and the set tk :
řňkh
i“1 Irj “ ľkh,is “ 1u has at most p1` 1

H qZj
elements. Therefore, for every j we have that

K
ÿ

k“1

1

ňkh

ňkh
ÿ

i“1

Irj “ ľkh,is ď 1`
1

H
. (16)

Because δkh`1 ď ζkh`1, combining (14), (15), and (16), we have that

K
ÿ

k“1

ζkh ď SAH2 ` p1`
1

H
q

K
ÿ

k“1

δkh`1 ´

K
ÿ

k“1

δkh`1 `

K
ÿ

k“1

ζkh`1 `

K
ÿ

k“1

Λkh`1

ď SAH2 ` p1`
1

H
q

K
ÿ

k“1

ζkh`1 `

K
ÿ

k“1

Λkh`1. (17)

Iterating the derivation above for h “ 1, 2, ¨ ¨ ¨ , H and we have that

K
ÿ

k“1

ζk1 ď O
´

SAH3 `

H
ÿ

h“1

K
ÿ

k“1

p1`
1

H
qh´1Λkh`1

¯

. (18)

We bound
řH
h“1

řK
k“1p1 `

1
H q

h´1Λkh`1 in the lemma below. The detailed proof is deferred to
Appendix B due to space constraints.
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Lemma 7. With probability at least p1´OpH2T 4pqq, it holds that

H
ÿ

h“1

K
ÿ

k“1

p1`
1

H
qh´1Λkh`1 “ O

´?
SAH2Tι`H

?
Tι logpT q ` S2A

3
2H8ιT

1
4

¯

. (19)

Combining Proposition 4, Lemma 5, (18) and Lemma 7, we conclude that with probability at least
p1´OpH2T 4pqq,

RegretpT q “
K
ÿ

k“1

ζk1 “ O
´?

SAH2Tι`H
?
Tι logpT q ` S2A

3
2H8ιT

1
4

¯

.

Broader Impact

This work is theoretical and a broader impact discussion is not applicable.
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