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Abstract

Local feature frameworks are difficult to learn in an end-to-end fashion, due
to the discreteness inherent to the selection and matching of sparse keypoints.
We introduce DISK (DIScrete Keypoints), a novel method that overcomes these
obstacles by leveraging principles from Reinforcement Learning (RL), optimizing
end-to-end for a high number of correct feature matches. Our simple yet expressive
probabilistic model lets us keep the training and inference regimes close, while
maintaining good enough convergence properties to reliably train from scratch. Our
features can be extracted very densely while remaining discriminative, challenging
commonly held assumptions about what constitutes a good keypoint, as showcased
in Fig. 1, and deliver state-of-the-art results on three public benchmarks.

1 Introduction

Local features have been a key computer vision technology since the introduction of SIFT [20], en-
abling applications such as Structure-from-Motion (SfM) [1, 15, 36], SLAM [27], re-localization [23],
and many others. While not immune to the deep learning “revolution”, 3D reconstruction is one of
the last bastions where sparse, hand-crafted solutions remain competitive with or outperform their
dense, learned counterparts [37, 34, 16]. This is due to the difficulty of designing end-to-end methods
with a differentiable training objective that corresponds well enough with the downstream task.

While patch descriptors can be easily learned on predefined keypoints [38, 39, 25, 40, 13], joint
detection and matching is harder to relax in a differentiable manner, due to its computational
complexity. Given two imagesA andB with feature sets FA and FB , matching them isO(|FA|·|FB |).
As each image pixel may become a feature, the problem quickly becomes intractable. Moreover, the
“quality” of a given feature depends on the rest, because a feature that is very similar to others is less
distinctive, and therefore less useful. This is hard to account for during training.

We address this issue by bridging the gap between training and inference to fully leverage the
expressive power of CNNs. Our backbone is a network that takes images as input and outputs
keypoint ‘heatmaps’ and dense descriptors. Discrete keypoints are sampled from the heatmap, and
the descriptors at those locations are used to build a distribution over feature matches across images.
We then use geometric ground truth to assign positive or negative rewards to each match, and perform
gradient descent to maximize the expected reward E

∑
(i,j)∈MA↔B

r(i↔ j), where MA↔B is the
set of matches and r is per-match reward. In effect, this is a policy gradient method [44].

Probabilistic relaxation is powerful for discrete tasks, but its applicability is limited by the fact that
the expected reward and its gradients usually cannot be computed exactly. Therefore, noisy Monte
Carlo approximations have to be used instead, which harms convergence. We overcome this difficulty
by careful modeling that yields analytical expressions for the gradients. As a result, we can benefit
from the expressiveness of policy gradient, narrowing the gap between training and inference and
ultimately outperforming state-of-the-art methods, while still being able to train models from scratch.
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(a) Upright Root-SIFT [20, 2] (b) DISK (ours)
179k landmarks, 22.3 observations/landmark 190k landmarks, 30.0 observations/landmark

Figure 1: SIFT vs. DISK in SfM. We reconstruct “Sacre Coeur” from 1179 images [16] with
COLMAP. For Upright Root-SIFT (left) and DISK (right) we show a point cloud and one image with
its keypoints. Landmarks, and their respective keypoints, are drawn in blue. Keypoints which do
not create landmarks are drawn in red. Our features can be extracted (and create associations) on
seemingly textureless regions where SIFT fails to, producing more landmarks with more observations.

Our contribution therefore is a novel, end-to-end-trainable approach to learning local features that
relies on policy gradient. It yields considerably more accurate matches than earlier methods, and this
results in better performance on downstream tasks, as illustrated in Fig. 1 and Sec. 4.

2 Related Work

The process of extracting local features usually involves three steps: finding a keypoint, estimating
its orientation, and computing a description vector. In traditional methods such as SIFT [20] or
SURF [4], this involves many hand-crafted heuristics. The first wave of local features involving
deep networks featured descriptors learned from patches extracted on SIFT keypoints [48, 14, 38]
and some of their successors, such as HardNet [25], SOSNet [40], and LogPolarDesc [13], are still
state-of-the-art. Other learning-based methods focus on keypoints [42, 35, 18] or orientations [47], or
merge the two notions entirely [8].

These methods attack a single element of this process. Others have developed end-to-end-trainable
pipelines [45, 10, 29, 11, 31] that can optimize the whole process and, hopefully, improve per-
formance. However, they either use inexact approximations to the true objective [10, 31], break
differentiability [29] or make big assumptions, such as extrema in descriptor space making good
features [11].

Three recent approaches are attempting to bridge the gap between training and inference in a
spirit close to ours. GLAMpoints [41] seeks to estimate homographies between retinal images and
use Reinforcement Learning (RL) methods to find keypoints that are correctly matched by SIFT
descriptors. Since matching is deterministic, Q-learning can be used to regress for the expected
reward of each keypoint, rather than optimize directly in policy space. Using hand-crafted descriptors
and only addressing the detection problem was motivated by domain-specific requirements of strong
rotation equivariance, which most learned models lack. While it makes sense in the specific scenario
it was developed for, it limits what the method can do. Similarly, [9] also uses handcrafted descriptors
and learns to predict the probability that each pixel would be successfully matched with those. Their
approach therefore inherits many of the limitations of GLAMpoints.

Reinforced Feature Points [6] address the more difficult issue of learning with a general non-
differentiable objective for the purpose of camera pose estimation, with RANSAC in the loop.
Unfortunately, supervising all detection and matching decisions with a single reward means that this
approach suffers from weak training signal, an endemic RL problem, and has to rely on pre-trained
models from [10] that can only be fine-tuned. Our method can be seen as a relaxation of their
approach, where we train for a surrogate objective: finding many correct feature matches. This allows
for substantially more robust training from scratch and yields better downstream results.
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3 Method

Given images A and B, our goal is first to extract a set of local features FA and FB from each
and then match them to produce a set of correspondences MA↔B . To learn how to do this through
reinforcement learning, we redefine these two steps probabilistically. Let P (FI |I, θF ) be a dis-
tribution over sets of features FI , conditional on image I and feature detection parameters θF ,
and P (MA↔B |FA, FB , θM ) be a distribution over matches between features in images A and B,
conditional on features FA, FB , and matching parameters θM . Calculating P (MA↔B |A,B, θ)
and its derivatives requires integrating the product of these two probabilities over all possible
FA, FB , which is clearly intractable. However, we can estimate gradients of expected reward
∇θ EMA↔B∼P (MA↔B |A,B,θ)R(MA↔B) via Monte Carlo sampling and use gradient ascent to maxi-
mize that quantity.

Feature distribution P (FI |I, θF ). Our feature extraction network is based on a U-Net [32], with
one output channel for detection and N for description. We denote these feature maps as K and D,
respectively, from which we extract features F = {K,D}. We pick N=128, for a direct comparison
with SIFT and nearly all modern descriptors [20, 25, 21, 40, 13, 31].

The detection map K is subdivided into a grid with cell size h × h, and we select at most one
feature per grid cell, similarly to SuperPoint [10]. To do so, we crop the feature map corresponding
to cell u, denoted Ku, and use a softmax operator to normalize it. Our probabilistic framework
samples a pixel p in cell u with probability Ps(p|Ku) = softmax(Ku)p. This detection proposal
p may still be rejected: we accept it with probability Pa(acceptp|Ku) = σ(Ku

p), where Ku
p is

the (scalar) value of the detection map K at location p in cell u, and σ is a sigmoid. Note that
Ps(p|Ku) models relative preference across a set of different locations, whereas Pa(acceptp|Ku)
models the absolute quality for location p. The total probability of sampling a feature at pixel
p is thus P (p|Ku) = softmax(Ku)p · σ(Ku

p). Once feature locations {p1, p2, ...} are known,
we associate them with the l2-normalized descriptors at this location, yielding a set of features
FI = {(p1,D(p1)), (p2,D(p2)), ...}. At inference time we replace softmax with arg max, and σ
with the sign function. This is again similar to [10], except that we retain the spatial structure and
interpret cell Ku in both a relative and an absolute manner, instead of creating an extra reject bin.

Match distribution P (MA↔B |FA, FB , θM ). Once feature sets FA and FB are known, we compute
the l2 distance between their descriptors to obtain a distance matrix d, from which we can generate
matches. In order to learn good local features it is crucial to refrain from matching ambiguous points
due to repeated patterns in the image. Two solutions to this problem are cycle-consistent matching
and the ratio test. Cycle-consistent matching enforces that two features be nearest neighbours of each
other in descriptor space, cutting down on the number of putative matches while increasing the ratio
of correct ones. The ratio test, introduced by SIFT [20], rejects a match if the ratio of the distances
between its first and second nearest neighbours is above a threshold, in order to only return confident
matches. These two approaches are often used in conjunction and have been shown to drastically
improve results in matching pipelines [5, 16], but they are not easily differentiable.

Our solution is to relax cycle-consistent matching. Conceptually, we draw forward (A�B) matches
for features FA,i from categorical distributions defined by the rows of distance matrix d, and reverse
(A�B) matches for features FB,j from distributions based on its columns. We declare FA,i to match
FB,j if both the forward and reverse matches are sampled, i.e., if the samples are consistent. The
forward distribution of matches is given by PA�B(j|d, i) = softmax (−θMd(i, ·))j , where θM is
the single parameter, the inverse of the softmax temperature. PA�B is analogously defined by dT .

It should be noted that, given features FA and FB , the probability of any particular match can
be computed exactly: P (i ↔ j) = PA�B(i|d, j) · PA�B(j|d, i). Therefore, as long as reward
R factorizes over matches as R(MA↔B) =

∑
(i,j)∈MA↔B

r(i ↔ j), given FA and FB , we can
compute exact gradients ∇D,θM ER(MA↔B), without resorting to sampling. This means that the
matching step does not contribute to the overall variance of gradient estimation, unlike in [6], which
we believe to be key to the good convergence properties of our model. Finally, one can also replace
our matching relaxation with a non-probabilistic loss like in [25]. While it may be superior for
descriptors alone, our solution upholds the probabilistic interpretation of the pipeline, making the
hyperparameters (λtp, λfp, λkp) easy to tune and naturally integrating with the gradient estimation in
keypoint detection.
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Figure 2: Non-Maxima Suppression vs Grid-based sampling. We demonstrate the benefits of
replacing the 1-per-cell sampling approach used during training with simple NMS at inference time.
For a small region of an image (left), marked by the red box, we show the features chosen through
NMS (middle) and the ‘heatmap’ K (right), overlaid by the grid. Notice how maxima can be cut by
cell boundaries. Keypoints are sorted by “score” and color-coded: the top third are drawn in red, the
next third in orange, and the rest in yellow. Each cell contains at most two very salient (red) features.

Reward function R(MA↔B). As stated above, if the reward R(MA↔B) can be factorized as a sum
over individual matches, the formulation of P (MA↔B |FA, FB , θM ) allows for the use of closed-form
formulas while training. For this reason we use a very simple reward, which rewards correct matches
with λtp points and penalizes incorrect matches with λfp points. Let’s assume we have ground-truth
poses and pixel-to-pixel correspondences in the form of depth maps. We declare a match correct
if depth is available at both pA,i and pB,j , and both points lie within ε pixels of their respective
reprojections. We declare a match plausible if depth is not available at either location, but the epipolar
distance between the points is less than ε pixels, in which case we neither reward nor penalize it. We
declare a match incorrect in all other cases.

Gradient estimator. With R factorized over matches and P (i↔ j|FA, FB , θM ) given as a closed
formula, the application of the basic policy gradient [44] is fairly simple: with FA, FB sampled from
their respective distributions P (FA|A, θF ), P (FB |B, θF ) we have

∇θ E
MA↔B

R(MA↔B) = E
FA,FB

∑
i,j

[P (i↔ j|FA, FB , θM ) · r(i↔ j) · ∇θΓij ] , (1)

where Γij = logP (i↔ j|FA, FB , θM ) + logP (FA,i|A, θF ) + logP (FB,j |B, θF ).

The summation above is non-exhaustive, missing the case of i not being matched with any j: since
we award non-matches 0 reward, they can be safely ommited from the gradient estimator. Having a
closed formula for P (i↔ j|FA, FB , θM ) along with R being a sum over individual matches allows
us to compute the sum in equation 1 exactly, which in the general case of REINFORCE [44] would
have to be replaced with an empirical expectation over sampled matches, introducing variance in the
gradient estimates. In our formulation, the only sources of gradient variance are due to mini-batch
effects and approximating the expectation w.r.t. choices of FA, FB with an empirical sum.

It should also be noted that our formulation does not provide the feature extraction network with any
supervision other than through the quality of matches those features participate in, which means that
a keypoint which is never matched is considered neutral in terms of its value. This is a very useful
property because keypoints may not be co-visible across two images, and should not be penalized
for it as long as they do not create incorrect associations. On the other hand, this may lead to many
unmatchable features on clouds and similar non-salient structures, which are unlikely to contribute to
the downstream task but increase the complexity in feature matching. We address this by imposing
an additional, small penalty on each sampled keypoint λkp, which can be thought of as a regularizer.

Inference. Once the models have been trained we discard our probabilistic matching framework in
favor of a standard cycle-consistency check, and apply the ratio test with a threshold found empirically
on a validation set. Another consideration is that our method is confined to a grid, illustrated in Fig. 2.
This has two drawbacks. Firstly, it can sample at most one feature per cell. Secondly, each cell is
blind to its neighbours. Our method may thus select two contiguous pixels as distinct keypoints. At
inference time we can work around this issue by applying non-maxima suppression on the feature map
K, returning features at all local maxima. This addresses both issues at the cost of a misalignment
between training and inference, which is potentially sub-optimal. We discuss this further in Sec. 4.4.
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4 Experiments

We first describe our specific implementation and the training data we rely on. We then evaluate our
approach on three different benchmarks, and present two ablation studies.

Training data. We use a subset of the MegaDepth dataset [19], from which we choose 135 scenes
with 63k images in total. They are posed with COLMAP, a state-of-the-art SfM framework that
also provides dense depth estimates we use to establish pixel-to-pixel correspondences. We omit
scenes that overlap with the test data of the Image Matching Challenge (Sec. 4.1), and apply a simple
co-visibility heuristic to sample viable pairs of images. See the supplementary material for details.

Feature extraction network. We use a variation of the U-Net [32] architecture. Our model has
4 down- and up-blocks which consist of a single convolutional layer with 5 × 5 kernels, unlike
the standard U-Net that uses two convolutional layers per block. We use instance normalization
instead of batch normalization, and PReLU non-linearities. Our models comprise 1.1M parameters,
with a formal receptive field of 219 × 219 pixels. Training and inference code is available at
https://github.com/cvlab-epfl/disk.

Optimization. Although the matching stage has a single learnable parameter, θM , we found that
gradually increasing it with a fixed schedule works well, leaving just the feature extraction network to
be learned with gradient descent. Since the training signal comes from matching features, we process
three co-visible images A, B and C per batch. We then evaluate the summation part of equation 1 for
pairs A↔ B, A↔ C, B ↔ C and accumulate the gradients w.r.t. θ. While matching is pair-wise,
we obtain three image pairs per image triplet. By contrast, two pairs of unrelated scenes would
require four images. Our approach provides more matches while reducing GPU memory for feature
extraction. We rescale the images such that the longer edge has 768 pixels, and zero-pad the shorter
edge to obtain a square input; otherwise we employ no data augmentation in our pipeline. Grid cells
are square, with each side h = 8 pixels.

Rewards are λtp = 1, λfp = −0.25 and λkp = −0.001. Since a randomly initialized network tends to
generate very poor matches, the quality of keypoints is negative on average at first, and the network
would cease to sample them at all, reaching a local maximum reward of 0. To avoid that, we anneal
λfp and λkp over the first 5 epochs, starting with 0 and linearly increasing to their full value at the end.

We use a batch of two scenes, with three images in each. Since our model uses instance normalization
instead of batch normalization, it is also possible to accumulate gradients over multiple smaller
batches, if GPU memory is a bottleneck. We use ADAM [17] with learning rate of 10−4. To pick
the best checkpoint, we evaluate performance in terms of pose estimation accuracy in stereo, with
DEGENSAC [7]. Specifically, every 5k optimization steps we compute the mean Average Accuracy
(mAA) at a 10o error threshold, as in [16]: see Sec. 4.1 and the appendix for details.

Finally, our method produces a variable number of features. To compare it to others under a fixed
feature budget, we subsample them by their “score”, that is, the value of heatmap K at that location.

4.1 Evaluation on the 2020 Image Matching Challenge (IMC) [16] – Table 1, Figures 3 and 4

The Image Matching Challenge provides a benchmark that can be used to evaluate local features for
two tasks: stereo and multi-view reconstruction. For the stereo task, features are extracted across
every pair of images and then given to RANSAC, which is used to compute their relative pose. The
multiview task uses COLMAP to generate SfM reconstructions from small subsets of 5, 10, and 25
images. The differentiating factor for this benchmark is that both tasks are evaluated downstream, in
terms of the quality of the reconstructed poses, which are compared to the ground truth, by using
the mean Average Accuracy (mAA) up to a 10-degree error threshold. While this requires carefully
tuning components extraneous to local features, such as RANSAC hyperparameters, it measures
performance on real problems, rather than intermediate metrics.

Hyperparameter selection. We rely on a validation set of two scenes: “Sacre Coeur” and “St.
Peter’s Square”. We resize the images to 1024 pixels on the longest edge, generate cycle-consistent
matches with the ratio test, with a threshold of 0.95. For stereo we use DEGENSAC [7], which
outperforms vanilla RANSAC [16], with an inlier threshold of 0.75 pixels.
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Up to 2048 features/image Up to 8000 features/image
Task 1: stereo Task 2: Multiview Task 1: stereo Task 2: Multiview

Method NM NI mAA(10o) NM NL TL mAA(10o) NM NI mAA(10o) NM NL TL mAA(10o)
Upright Root-SIFT 194.0 112.3 0.3986 199.3 1341.7 4.09 0.5623 525.4 358.9 0.5075 542.9 4404.6 4.38 0.6792
Upright L2-Net 174.1 117.1 0.4192 179.8 1361.3 4.23 0.5968 657.3 435.7 0.5450 395.5 3603.8 4.38 0.6849
Upright HardNet 274.0 152.7 0.4609 201.3 1467.9 4.31 0.6354 791.7 527.6 0.5728 509.1 4250.4 4.55 0.7231
Upright GeoDesc 235.8 132.7 0.4136 161.1 1287.3 4.24 0.5837 598.9 409.9 0.5267 458.6 4146.8 4.41 0.7044
Upright SOSNet 265.6 171.2 0.4505 194.0 1442.3 4.31 0.6359 752.9 508.4 0.5738 464.4 3988.6 4.52 0.7129
Upright LogPolarDesc 296.8 162.2 0.4567 211.9 1553.4 4.33 0.6370 821.7 543.2 0.5510 505.4 4414.1 4.52 0.7109

SuperPoint 292.8 126.8 0.2964 169.3 1184.3 4.34 0.5464 – – – – – – –
LF-Net 191.1 106.5 0.2344 196.7 1385.0 4.14 0.5141 – – – – – – –
D2-Net (SS) 505.7 188.4 0.1813 513.1 2357.9 3.39 0.3943 1258.2 482.3 0.2228 1278.7 5893.8 3.62 0.4598
D2-Net (MS) 327.8 134.8 0.1355 337.6 2177.3 3.01 0.3007 1028.6 470.6 0.2506 1054.7 6759.3 3.39 0.4751
R2D2 273.6 213.9 0.3346 280.8 1228.4 4.29 0.6149 1408.8 842.2 0.4437 739.8 4432.9 4.59 0.6832

Submission #609 439.7 270.0 0.4690 280.4 1489.6 4.69 0.6812 – – – – – – –
Submission #578 439.5 246.6 0.4542 331.6 1621.7 4.57 0.6741 – – – – – – –
Submission #599 227.4 129.5 0.4507 176.6 1209.6 4.44 0.6609 – – – – – – –

Submission #611 – – – – – – – 945.4 622.1 0.5887 899.1 6086.2 4.65 0.7513
Submission #613 – – – – – – – 934.9 624.1 0.5873 964.8 6350.7 4.64 0.7495
Submission #625 – – – – – – – 945.4 605.1 0.5878 899.1 6095.8 4.65 0.7485

DISK (#708 & #709) 514.2 404.2 0.5132 527.5 2428.0 5.55 0.7271 1621.9 1238.5 0.5585 1663.8 7484.0 5.92 0.7502
∆ (%) +1.7 +49.7 +9.4 +2.8 +3.0 +18.3 +6.7 +15.1 +47.1 -5.4 +30.1 +10.7 +27.3 -0.1

Table 1: Image Matching Challenge results. The primary metric is (mAA), the mean Average
Accuracy in pose estimation, up to 10o. We also report (NM) the number of matches (given to
RANSAC for stereo, and to COLMAP for multiview). For stereo, we also report (NI) the number of
RANSAC inliers. For multiview, we also report (NL) number of landmarks (3D points), and (TL)
track length (observations per landmark). The top 3 results are highlighted in red, green and blue.

Results. We extract DISK features for the nine test scenes, for which the ground truth is kept private,
and submit them to the organizers for processing. The challenge has two categories: up to 2k or 8k
features per image. We participate in both. We report the results in Table 1, along with baselines taken
directly from the leaderboards, computed in [16]. We consider several descriptors on DoG keypoints:
RootSIFT [20, 2] L2-Net [39], HardNet [25], GeoDesc [22], SOSNet [40] and LogPolarDesc [13].
For brevity, we show only their upright variants, which perform better than their rotation-sentitive
counterparts on this dataset. For end-to-end methods, we consider SuperPoint [10], LF-Net [29],
D2-Net [11], and R2D2 [31]. All of these methods use DEGENSAC [7] as a RANSAC variant for
stereo, with their optimal hyperparameters. We also list the top 3 user submissions for each category,
taken from the leaderboards on June 5, 2020 (the challenge concluded on May 31, 2020).

On the 2k category, we outperform all methods by 9.4% relative in stereo, and 6.7% relative in
multiview. On the 8k category, averaging stereo and multiview, we outperform all baselines, but place
slightly below the top three submissions. Our method can find many more matches than any other,
easily producing 2-3x the number of RANSAC inliers or 3D landmarks. Our features used for the
2k category are a subset of those used for 8k, which indicates a potentially sub-optimal use of the
increased budget, which may be solved training with larger images or smaller grid cells. We show
qualitative images in Figs. 3 and 4. Further results are available in the supplementary material.

Note that we only compare with submissions using the built-in feature matcher, based on the l2
distance between descriptors, instead of neural-network based matchers [46, 49, 33], which combined
with state-of-the-art features obtain the best overall results. Even so, DISK places #2 below only
SuperGlue [33] on the 2k category, outperforming all other solutions using learned matchers.

Rotation invariance. We observe our models break under large in-plane rotations, which is to be
expected. We evaluate their performance with an additional test using synthetic data. We pick 36
images randomly from the IMC 2020 validation set, match them with their copies, rotated by θ, and
calculate the ratio of correct matches, defined as those below a 3-pixel reprojection threshold. In
Fig. 6 we report it for different state-of-the-art methods that, like ours, bypass orientation detection,
and overlay a histogram of the differences in in-plane rotation in the dataset. We find that DISK is
exceptionally robust to the range of rotations it was exposed to, and loses performance outside of this
range, suggesting that failure modes such as in Fig. 3 can be remedied with data augmentation.

4.2 Evaluation on HPatches [3] – Fig. 5

HPatches contains 116 scenes with 6 images each. These scenes are strictly planar, containing
only viewpoint or illumination changes (not both), and use homographies as ground truth. Despite
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Figure 3: Stereo results on the Image Matching Challenge (2k features). Top: DoG w/ Upright
HardNet descriptors [25]. Bottom: DISK. We extract cycle-consistent matches with optimal parame-
ters and feed them to DEGENSAC [7]. We plot the resulting inliers, from green to yellow if they
are correct (0 to 5 pixels in reprojection error), in red if they are incorrect (above 5), and in blue if
ground truth depth is not available. Our approach can match many more points and produce more
accurate poses. It can deal with large changes in scale (4th and 5th columns) but not in rotation (6th
column), which is discussed further in section 4.1 and Fig. 6.

Figure 4: Multiview results on the Image Matching Challenge (8k features). Top: DoG w/
Upright HardNet descriptors [25]. Bottom: DISK. COLMAP is used to reconstruct the “London
Bridge” scene with 25 images. We show three of them and draw their keypoints, in blue if they
are registered by COLMAP, and red otherwise. Our method generates evenly distributed features,
producing 76% more landmarks with 30% more observations per landmark than HardNet. Keypoints
on water or trees have low scores and are rare among the top 2k features, but appear more often when
taking 8k. This suggests that our method can reach near-optimal performance on a small budget.
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Num. Num. Viewp. Illum. Both

Method Features Matches AUC(5px) AUC(5px) AUC(5px)

HesAff/RootSIFT 6710.1 2851.7 0.552 0.491 0.523
HAN/HardNet++ 3860.8 1960.0 0.564 0.573 0.568
DELF 4590.0 1940.3 0.132 0.898 0.501
SuperPoint 1562.6 883.4 0.535 0.650 0.590
Reinforced FP — — 0.563 0.680 0.621
LF-Net 500.0 177.5 0.439 0.538 0.487
D2-Net (SS) 5965.1 2495.9 0.326 0.499 0.409
D2-Net (MS) 8254.5 2831.6 0.349 0.424 0.385
R2D2 4989.8 1846.4 0.580 0.647 0.613

DISK (2k) 2048.0 1024.2 0.642 0.740 0.689
DISK (8k) 7705.1 3851.8 0.648 0.752 0.698

Figure 5: Results on HPatches. On the left, we report Mean Matching Accuracy (MMA) at 10 pixel
thresholds. On the right, we summarize MMA by its AUC, up to 5 pixels. Results for RFP [6] were
kindly provided by the authors, which explains why keypoint/match counts are missing.

its limitations, it is often used to evaluate low-level matching accuracy. We follow the evaluation
methodology and source code from [11]. The first image on every scene is matched to the remaining
five, omitting 8 scenes with high-resolution images. Cyclic-consistent matches are computed, and
performance is measured in terms of the Mean Matching Accuracy (MMA), i.e., the ratio of matches
with a reprojection error below a threshold, from 1 to 10 pixels, and averaged across all image pairs.

We report MMA in Fig. 5, and summarize it by its Area under the Curve (AUC), up to 5 pixels.
Baselines include RootSIFT [20, 2] on Hessian-Affine keypoints [24], a learned affine region detector
(HAN) [26] paired with HardNet++ descriptors [25], DELF [28], SuperPoint [10], D2-Net [11],
R2D2 [31], and Reinforced Feature Points (RFP) [6]. For D2-Net we include both single- (SS) and
multi-scale (MS) models. We consider DISK with number of matches restricted to 2k and 8k, for a
fair comparison with different methods.

We obtain state-of-the-art performance on this dataset, despite the fact that our models are trained on
non-planar data without strong affine transformations. We use the same models and hyperparameters
used in the previous section to obtain 2k and 8k features, without any tuning. Our method is #1 on
the viewpoint scenes, followed by R2D2, and #2 on the illumination scenes, trailing DELF. Putting
them together, it outperforms its closest competitor, RFP, by 12% relative.

4.3 Evaluation on the ETH-COLMAP benchmark [37] – Table 2

This benchmark compiles statistics for large-scale SfM. We select three of the smaller scenes and
report results in Table 2. Baselines are taken from [6] and include Root-SIFT [20, 2], SuperPoint [10],
and Reinforced Feature Points [6]. We obtain more landmarks than SIFT, with larger tracks and a
comparable reprojection error. Note that this benchmark does not standardize the number of input
features, so we extract DISK at full resolution and take the top ∼12k keypoints in order to remain
comparable with SIFT. By comparison, a run on “Fountain” with no cap yields 67k landmarks.

4.4 Ablation studies and discussion

Supervision without depth. As outlined in Sec. 3, we use the strongest supervision signal available
to us, which are depth maps. Unfortunately, this means we only reward matches on areas with reliable
depth estimates, which may cause biases. We also experimented with a variant ofR that relies only on
epipolar constraints, as in a recent paper [43]. We evaluate both variants on the validation set of the
Image Matching Challenge and report the results in Table 3. Performance improves for multiview but
decreases for stereo. Qualitatively, we observe that new keypoints appear on textureless areas outside
object boundaries, probably due to the U-Net’s large receptive field (see appendix). Nevertheless,
this illustrates that DISK can be learned just as effectively with much weaker supervision.

Non-maximum suppression and grid size. The softmax-within-grid training time mechanism
models the relative importance of features under a constrained budget, in a differentiable way. It
can be replaced with an alternative solution, such as NMS, which we use at inference. In Table 4
we compare the training regime, where we sample at most one feature per grid cell, against the
inference regime, where we apply NMS on the heatmap. We report results in terms of pose mAA on
the validation set of the Image Matching Challenge in Table 4. For this experiment we removed the
budget limit and took all features provided by the model. This shows that this inference strategy is
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Scene Method NL TL εr

Fountain

Root-SIFT 15k 4.70 0.41
SP 31k 4.75 0.97

RFP 9k 4.86 0.87
DISK 18k 5.52 0.50

Herzjesu

Root-SIFT 8k 4.22 0.46
SP 21k 4.10 0.95

RFP 7k 4.32 0.82
DISK 11k 4.71 0.48

Root-SIFT 113k 5.92 0.58
South SP 160k 7.83 0.92
Building RFP 102k 7.86 0.88

DISK 115k 9.91 0.59

Table 2: Results on ETH-COLMAP [37].
We compare Root-SIFT [20], SuperPoint [10],
Reinforced Feature Points [6], and DISK.
We report: (NL) number of landmarks, (TL)
track length (average number of observations
per landmark), and (εr) reprojection error.
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Figure 6: Rotation invariance vs. rota-
tions in data. We report the ratio of correct
matches between a reference images and their
copies rotated by θ. Overlaid is a histogram
of relative image rotations in IMC2020-val.

2k features 8k features
Variant Stereo Multiview Stereo Multiview

Depth 0.7218 0.8325 0.7767 0.8628
Epipolar 0.7145 0.8465 0.7718 0.8749

Table 3: Ablation: match supervision. We com-
pare mAA on the Image Matching Challenge val-
idation set, for DISK models learned with pixel-
to-pixel supervision or epipolar constraints.

Variant Num. Num. Stereo Multiview
features matches mAA(100) mAA(100)

1-per-cell 5456.8 796.5 0.74774 0.84685

NMS 3×3 8434.6 1699.9 0.77833 0.86864
NMS 5×5 7656.0 1547.9 0.77657 0.87622
NMS 7×7 6423.4 1271.1 0.77070 0.85642
NMS 9×9 4946.2 942.0 0.75558 0.85362

Table 4: Ablation: NMS. We compare the fea-
ture selection strategy used for training (top) with
NMS at inference time. Here we use all detected
features, rather than subsample by score.

Grid
NMS 3×3 5×5 7×7 9×9

8×8 0.7751 0.7824 0.7778 0.7586
12×12 0.7576 0.7580 0.7502 0.7431
16×16 0.7213 0.7214 0.7120 0.6999

Table 5: Ablation: NMS vs grid size. We show
mAA vs. grid & NMS size on IMC2020-val,
capping the number of features to 2k.

clearly beneficial, despite departing from the training pipeline. In Table 5 we show how mAA varies
with grid size used for training. A smaller grid is beneficial in terms of performance but increases the
number of extracted features, leading to larger distance matrices and higher computational expense.

Feature duplication at grid edges. Experimentally, we observe that 19.9% of features from grid
selection (training) have a neighbour within 2 px, which likely corresponds to double detections.
This has three potential downsides. (1) Compute/memory is increased, due to unnecessarily large
matching matrices. (2) It rescales λkp w.r.t. its intuitive meaning. Imagine that some detections
are strictly duplicated: both forward and backward probabilities will “split in half”, but the total
probability of matching the two locations remains constant – this means that learning dynamics are
not impacted, other than λkp acting more strongly (on a larger number of detections). (3) In reality,
detections are close by, instead of duplicated, which may make the algorithm less spatially precise:
since duplication means a failure of the sparsity mechanism, we learn in a regime where imprecise
correspondences are more common than at inference, favoring shift-invariance in the descriptors
more than desired. The results DISK attains on HPatches, including at a 1-pixel error threshold, and
the very low reprojection error on the ETH-COLMAP benchmark, suggest that these do not pose a
significant problem for performance.

5 Conclusions and future work

We introduced a novel probabilistic approach to learn local features end to end with policy gradient.
It can easily train from scratch, and yields many more matches than its competitors. We demonstrate
state-of-the-art results in pose accuracy for stereo and 3D reconstruction, placing #1 in the 2k-
keypoints category of the Image Matching Challenge using off-the-shelf matchers. In future work we
intend to replace the match relaxation introduced in Sec. 3, with learned matchers such as [46, 33].

Acknowledgement. This research was partially funded by Google’s Visual Positioning System.
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Broader impact

There already are many applications that rely on keypoints, and although our method has the potential
to make them more effective, we do not expect new, specific issues arising from our research. As
all technology, it can also be used unethically. In this instance, use in visually guided missiles or
localizing photographs without user consent, further compromising privacy on the web, could be of
concern. More generally, all automation of data processing brings disproportionately larger gains
for established players with access to such data and resources, furthering the imbalance in global
competitiveness, despite the nominal openness of the research.
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