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Abstract

Variational mutual information (MI) estimators are widely used in unsupervised
representation learning methods such as contrastive predictive coding (CPC). A
lower bound on MI can be obtained from a multi-class classification problem,
where a critic attempts to distinguish a positive sample drawn from the underlying
joint distribution from (m− 1) negative samples drawn from a suitable proposal
distribution. Using this approach, MI estimates are bounded above by logm,
and could thus severely underestimate unless m is very large. To overcome this
limitation, we introduce a novel estimator based on a multi-label classification
problem, where the critic needs to jointly identify multiple positive samples at the
same time. We show that using the same amount of negative samples, multi-label
CPC is able to exceed the logm bound, while still being a valid lower bound of
mutual information. We demonstrate that the proposed approach is able to lead to
better mutual information estimation, gain empirical improvements in unsupervised
representation learning, and beat a current state-of-the-art knowledge distillation
method over 10 out of 13 tasks.

1 Introduction

Learning efficient representations from data with minimal supervision is a critical problem in machine
learning with significant practical impact [37, 12, 38, 41, 6]. Representations obtained using large
amounts of unlabeled data can boost performance on downstream tasks where labeled data is scarce.
This paradigm is already successful in a variety of domains; for example, representations trained on
large amounts of unlabeled images can be used to improve performance on detection [55, 18, 9].

In the context of learning visual representations, contrastive objectives based on variational mutual
information (MI) estimation are among the most successful ones [49, 3, 13, 40, 47]. One such
approach, named Contrastive Predictive Coding (CPC, [49]), obtains a lower bound to MI via a
multi-class classification problem. In CPC, a critic is generally trained to distinguish a pair of
representations from two augmentations of the same image (positive), apart from (m − 1) pairs
of representations from different images (negative). The representation network is then trained to
increase the MI estimates given by the critic. This brings together the two representations from the
positive pair and pushes apart the two representations from the negative pairs.

It has been empirically observed that factors leading to better MI estimates, such as training for more
iterations and increasing the complexity of the critic [9, 10], can generally result in improvements
over downstream tasks. In the context of CPC, increasing the number of negative samples per positive
sample (i.e. increasing m) also helps with downstream performance [53, 18, 9, 47]. This can be
explained from a mutual information estimation perspective that CPC estimates are upper bounded
by logm, so increasing m could reduce bias when the actual mutual information is much higher [35].
However, due to constraints over compute, memory and data, there is a limit to how many negative
samples we can obtain per positive sample.
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In this paper, we propose generalizations to CPC that can increase the logm bound without additional
computational costs, thus decreasing bias. We first generalize CPC through by re-weighting the
influence of positive and negative samples in the underlying the classification problem. This increases
the logm bound and leads to bias reduction, yet the re-weighted CPC objective is no longer guaranteed
to be a lower bound to mutual information.

To this end, we introduce multi-label CPC (ML-CPC) which poses mutual information estimation as
a multi-label classification problem. Instead of identifying one positive sample for each classification
task (as in CPC), the critic now simultaneously identifies multiple positive samples that come from
the same batch. We prove for ML-CPC that under certain choices of the weights, we can increase
the logm bound and reduce bias, while guaranteeing that the new objective is still lower bounded
by mutual information. This provides an practical algorithm whose upper bound is close to the
theoretical upper limit by any distribution-free, high-confidence lower bound estimators of mutual
information [36].

Re-weighted ML-CPC encompasses a range of mutual information lower bound estimators with dif-
ferent bias-variance trade-offs, which can be chosen with minimal impact on the computational costs.
We demonstrate the effectiveness of re-weighted ML-CPC over CPC empirically on several tasks,
including mutual information estimation, knowledge distillation and unsupervised representation
learning. In particular, ML-CPC is able to beat the current state-of-the-art method in knowledge
distillation [47] on 10 out of 13 distillation tasks for CIFAR-100.

2 Contrastive Predictive Coding and Mutual Information

In representation learning, we are interested in learning a (possibly stochastic) network h : X → Y
that maps some data x ∈ X to a compact representation h(x) ∈ Y . For ease of notation, we
denote p(x) as the data distribution, p(x,y) as the joint distribution for data and representations
(denoted as y), p(y) as the marginal distribution of the representations, and X,Y as the random
variables associated with data and representations. The InfoMax principle [32, 4, 13] for learning
representations considers variational maximization of the mutual information I(X;Y ):

I(X;Y ) := E(x,y)∼p(x,y)

[
log

p(x,y)

p(x)p(y)

]
(1)

A variety of mutual information estimators with different bias-variance trade-offs have been proposed
for representation learning [39, 48, 3, 40]. Contrastive predictive coding (CPC, also known as
InfoNCE [49]), poses the MI estimation problem as an m-class classification problem. Here, the goal
is to distinguish a positive pair (x,y) ∼ p(x,y) from (m− 1) negative pairs (x,y) ∼ p(x)p(y). If
the optimal classifier is able to distinguish positive and negative pairs easily, it means x and y are
tied to each other, indicating high mutual information.

For a batch of n positive pairs {(xi,yi)}ni=1, the CPC objective is defined as1:

L(g) := E

[
1

n

n∑
i=1

log
m · g(xi,yi)

g(xi,yi) +
∑m−1
j=1 g(xi,yi,j)

]
(2)

for some positive critic function g : X × Y → R+, where the expectation is taken over n positive
pairs (xi,yi) ∼ p(x,y) and n(m− 1) negative pairs (xi,yi,j) ∼ p(x)p(y).

2.1 CPC is a lower bound to mutual information

Oord et al. [49] interpreted the CPC objective as a lower bound to MI, but only proved the case for a
lower bound approximation of CPC, where a term containing −E[log g] is replaced by − logE[g];
so their arguments alone cannot prove that CPC is a lower bound of mutual information. Poole et
al. [40] proved a lower bound argument for the objective where m = n and negative samples are tied
to other positive samples in the same batch. To bridge the gap between theory (that CPC instantiates
InfoMax) and practice (where negative samples can be chosen independently from positive samples
of the same batch, such as MoCo [18]), we present another proof for the general CPC objective as

1We suppress the dependencies on n and m in L(g) (and in subsequent objectives) for conciseness.
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presented in L(g). First, we show the following result for variational lower bounds of KL divergences
between general distributions where batches of negative samples are used to estimate the divergence.
Then, as mutual information is a KL divergence between two specific distributions, the lower bound
argument for CPC simply follows.
Theorem 1. For all probability measures P,Q over sample space X such that P � Q, the following
holds for all functions r : X → R+ and integers m ≥ 2:

DKL(P‖Q) ≥ Ex∼P,y1:m−1∼Qm−1

[
log

m · r(x)

r(x) +
∑m−1
i=1 r(yi)

]
. (3)

Proof. In Appendix A, using the variational representations of f -divergences [39] and Prop. 1.

The argument about CPC being a lower bound to MI is simply a corollary of the above statement
where P is p(x,y) (joint) and Q is p(x)p(y) (product of marginals); we state the claim below.
Corollary 1. ∀n ≥ 1,m ≥ 2, ∀g : X × Y → R+, the following is true: L(g) ≤ I(X;Y ).

Therefore, one can train g and h to maximize L(g) (recall that L depends on h via y = h(x)), which
is guaranteed to be lower than I(X;Y ) in expectation.

2.2 CPC is an estimator with high bias

For finite m, since g(xi,yi) appears in both the numerator and denominator of Equation (2) and g
is positive, the density ratio estimates can be no larger than m, and the value of L(g) is thus upper
bounded by logm [49]. While this is acceptable for certain low dimensional scenarios, this can lead
to high-bias if the true mutual information is much larger than logm. In fact, the required m can
be unacceptable in high dimensions since MI can scale linearly with dimension, which means an
exponential number of negative samples are needed to achieve low bias.

For example, if X and Y are 1000-dimensional random variables where the marginal distribution
for each dimension is standard Gaussian, and for each dimension d, Xd and Yd has a correlation of
0.2, then the mutual information I(X;Y ) is around 20.5, which means that m has to be greater than
4 × 108 in order for CPC estimates to approach this value. In comparison, state-of-the-art image
representation learning methods use a m that is around 65536 and representation dimensions between
128 to 2048 [53, 18, 9] due to batch size and memory limitations, as one would need a sizeable batch
of positive samples in order to apply batch normalization [24].

2.3 Re-weighted Contrastive Predictive Coding

Under the computational limitations imposed by m (i.e., we cannot obtain too many negative samples
per positive sample), we wish to develop generalizations to CPC that reduce bias while still being
lower bounds to the mutual information. We do not consider other types of estimators such as
MINE [3] or NWJ [39] because they would exhibit high variance on the order of O(eI(X;Y )) [44],
and thus are much less stable to optimize.

One possible approach is to decrease the weights of the positive sample when calculating the sum in
the denominator; this leads to the following objective, called α-CPC:

Lα(g) := E

[
1

n

n∑
i=1

log
m · g(xi,yi)

αg(xi,yi) + m−α
m−1

∑m−1
j=1 g(xi,yi,j)

]
(4)

where the positive sample is weighted by α and negative samples are weighted by m−α
m−1 . The purpose

of adding weights to negative samples is to make sure the the weights sum to m, like in the original
case where each sample has weight 1 and there are m samples in total. Clearly, the original CPC
objective is a special case when α = 1.

On the one hand, Lα(g) is now upper bounded by log m
α , which is larger than logm when α ∈ (0, 1).

Thus, α-CPC has the potential to reduce bias when logm is much smaller than I(X;Y ). On the
other hand, when we set a smaller α, the variance of the estimator becomes larger, and the objective
Lα(g) becomes more difficult to optimize [21, 22]. Therefore, selecting an appropriate α to balance
the bias-variance trade-off is helpful for optimization of the objective in practice.
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However, it is now possible for Lα(g) to be larger than I(X;Y ) as the number of classes m grows to
infinity, so optimizing Lα(g) does not necessarily recover a lower bound to mutual information. We
illustrate this via the following example (more details in Appendix C).
Example 1. Let X,Y be two binary r.v.s such that Pr(X = 1, Y = 1) = Pr(X = 0, Y = 0) = 0.5.
Then I(X;Y ) = log 2 ≈ 0.69. However, when α = 0.5 and n = m = 3, we can analytically
compute Lα(g) ≈ 0.72 ≥ I(X;Y ) for g(x, y) = 1 if x = y and near 0 otherwise.

3 Multi-label Contrastive Predictive Coding

While α-CPC could be useful empirically, we lack a principled way to select proper values of α as
Lα(g) may no longer be a lower bound to mutual information. In the following sections, we propose
an approach that allows us to achieve both, i.e., for all α in a certain range (that only depends on n and
m), we can achieve an upper bound of log m

α while ensuring that the objective is still a lower bound
on mutual information. This allows us to select different values of α to reflect different preferences
over bias and variance, all while keeping the computational cost identical.

We consider solving a “nm-class, n-label” classification problem, where given n positive samples
and n(m− 1) negative samples yj,k ∼ p(y) , we wish to jointly identify the top-n samples that are
most likely to be the positive ones. Concretely, this has the following objective function:

J(g) := E

[
1

n

n∑
i=1

log
nm · g(xi,yi)∑n

j=1 g(xj ,yj) +
∑n
j=1

∑m−1
k=1 g(xj ,yj,k)

]
(5)

where the expectation is taken over the n positive samples (xi,yi) ∼ p(x,y) for i ∈ [n] and the
n(m−1) negative samples yj,k ∼ p(y) for j ∈ [n], k ∈ [m−1]. We call this multi-label contrastive
predictive coding (ML-CPC), since the classifier now needs to predict n positive labels from nm
options at the same time, instead of 1 positive label from m options as in traditional CPC (performed
for n times for a batch size of n).

Distinctions from CPC Despite its similarity compared to CPC (both are based on classification),
we note that the multi-label perspective is fundamentally different from the CPC paradigm in three
aspects, and cannot be treated as simply increasing the number of negative samples.

1. The ML-CPC objective value depends on the batch size n, whereas the CPC objective does not.
2. In CPC the positive pair and negative pairs share a same element (xi in Eq.(2) where the positive

sample is (xi,yi)), whereas in ML-CPC the negative pairs no longer have such restrictions; this
could be useful for smaller datasets D when the number of possible negative pairs increases from
O(|D|) to O(|D|2).

3. The optimal critic for CPC is g? = c(x) · p(x,y)/(p(x)p(y)), where c is any positive function
of x [35]. In ML-CPC, different x values are tied within the same batch, so the optimal critic for
ML-CPC is g? = c · p(x,y)/(p(x)p(y)), where c is a positive constant. As a result, ML-CPC
reduces the amount of optimal solutions, and forces the similarity of any positive pair to be higher
than that of any negative pair, unlike CPC where the positive pair only needs to have higher
similarity than any negative pairs with the same x.

Computational cost of ML-CPC To compute CPC with a batch size of n, one would need nm
critic evaluations and compute n sums in the denominator, each over a different set of m evaluations.
To compute ML-CPC, one needs nm critic evaluations, and compute 1 sum over all nm evaluations.
Therefore, ML-CPC has almost the same computational cost compared to CPC which is O(mn). We
perform a similar analysis in Appendix A to show that evaluating the gradients of the objectives also
has similar costs, so ML-CPC is computationally as efficient as CPC.

3.1 Re-weighted Multi-label Contrastive Predictive Coding

Similar to α-CPC, we can modify the multi-label objective J(g) by re-weighting the critic predictions,
which results in the following objective called α-ML-CPC:

Jα(g) := E

[
1

n

n∑
i=1

log
nm · g(xi,yi)

α
∑n
j=1 g(xj ,yj) + m−α

m−1
∑n
j=1

∑m−1
k=1 g(xj ,yj,k)

]
(6)
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Figure 1: MI estimates with CPC and ML-CPC under different α.

For α ∈ (0, 1), we down-weight the positive critic outputs by α and up-weight the negative critic
outputs by m−α

m−1 (similar to α-CPC). Setting a smaller α has the potential to reduce bias, since the
upper bound of logm is changed to log m

α , which is larger when α ∈ (0, 1). In contrast to α-CPC,
Jα(g) is now guaranteed to be a lower bound of mutual information for a wide range of α, as we
show in the following statements. Similar to the case of CPC, we first show a more general argument,
for which the weighted ML-CPC is a special case.
Theorem 2. For all probability measures P,Q over sample space X such that P � Q, the following
holds for all functions r : X → R+, integers n ≥ 1,m ≥ 2, and real numbers α ∈ [ m

n(m−1)+1 , 1]:

DKL(P‖Q) ≥ Ex1:n∼Pn,yi,1:m−1∼Qm−1

[
1

n

n∑
i=1

log
mn · r(xi)

α
∑n
j=1 r(xj) + m−α

m−1
∑m−1
k=1 r(yj,k)

]
. (7)

Proof. In Appendix A, using the variational representations of f -divergences [39] and Prop. 2.

The above theorem extends existing variational lower bound estimators of KL divergences (that are
generally interpreted as binary classification [46, 39]) into a family of lower bounds that can be
interpreted as multi-label classification. The argument about re-weighted ML-CPC being a lower
bound to MI is simply a corollary where P is p(x,y) and Q is p(x)p(y); we state the claim below.
Corollary 2. ∀n ≥ 1,m ≥ 2, define αm,n = m

n(m−1)+1 . If α ∈ [αm,n, 1], then ∀g : X × Y → R+,

Jα(g) ≤ I(X;Y ) (8)

The above theorem shows that for an appropriate range of α values, the objective Jα(g) is still
guaranteed to be a variational lower bound to mutual information, like the original CPC objective.
Selecting α within this range results in estimators with different bias-variance trade-offs. Here, a
smaller α could lead to low-bias high-variance estimates; this achieves a similar effect to increasing
the number of classes m to nearly m/α, but without the actual additional computational costs that
comes with obtaining more negative samples in CPC.

Illustrative example We consider the case of X,Y being binary and equal random variables in
Example 1, where I(X;Y ) = log 2 ≈ 0.69, the optimal critic g is known, and both Lα(g) and Jα(g)
can be computed in closed-form for any α and g in O(m) time (details in Appendix C). We plot the
CPC (Eq.(4)) and ML-CPC (Eq.(6)) objectives with different choices of α and m in Figure 1. The
estimates of ML-CPC when α ≥ αm,n are lower bounds to the ground truth MI, which indeed aligns
with our theory.

Furthermore, in Figure 2 we illustrate the bias-variance trade-offs for CPC and αm,n-ML-CPC as
we vary the number of classes m (for simplicity, we choose n = m). Despite having slightly higher
variance in the estimates, αm,n-ML-CPC has significantly less bias than CPC, which suggests that
it is helpful in cases where lower bias is preferable than lower variance. In practice, the user could
select different values of α to indicate the desired trade-off, all without having to change the number
of negative samples and increase computational costs.

We include the pseudo-code and a PyTorch implementation to α-ML-CPC in Appendix B.

4 Related Work

Contrastive methods for representation learning The general principle of contrastive methods
for representation learning encourages representations to be closer between “positive” pairs and
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Figure 2: Bias-variance trade-offs for different m. Lower is better.

further between “negative” pairs, which has been applied to learning representations in various
domains such as images [19, 53, 18, 9], words [37, 12], graphs [50] and videos [17]. Commonly
used objectives include the logistic loss [37], margin triplet loss [42], the noise contrastive estimation
loss [16] and other objectives based on variational lower bounds of mutual information, such as
MINE [3] and CPC [49]. CPC-based approaches have gained much recent interest due to its superior
performance in downstream tasks compared to other losses such as the logistic and margin loss [9].

Variational mutual information estimators Estimating mutual information from samples is chal-
lenging [36, 54]. Most variational approaches to mutual information estimation are based on the
Fenchel dual representation of f -divergences [39, 43], where a critic function is trained to learn the
density ratio p(x,y)/(p(x)p(y)). These approaches mostly vary in terms of how the critics are
modeled and optimized [2, 40], and exhibit different bias-variance trade-offs from these choices.

CPC would tend to underestimate the density ratio (since it is capped at m) and generally requires
O(eI(X;Y )) samples to achieve low bias; MINE [3] (based on the Donsker-Varadhan inequality [14])
is a biased estimator and requires O(eI(X;Y )) samples to achieve low variance [44, 43]. Poole et
al. [40] proposed an estimator that interpolates between two types of estimators, allowing for certain
bias-variance trade-offs; this is relevant to our proposed re-weighted CPC in the sense that positive
samples are down-weighted, but an additional baseline model is required during training. Through
ML-CPC, we introduce a family of unbiased mutual information lower bound estimators, and reflect
a wide range of bias-variance trade-offs without using more negative samples.

Relevance to the limitations of mutual information lower bound estimators Furthermore, we
note that ML-CPC is upper bounded by log(n(m−1) + 1) for the smallest possible α, which appears
to be very close to (but smaller than) the general upper limit of O(log nm) that can be achieved
by any distribution-free high-confidence lower bound on mutual information for nm samples [36].
However, we note that the assumptions in [36] are slightly different to our settings, in the sense that
they assumed complete access to the distribution p(x,y) and only required samples from p(x)p(y),
whereas we have to estimate p(x,y) from the samples as well; and the amount of samples we obtain
from p(x)p(y) is n(m− 1) instead of nm. We hypothesize that we can reach the theoretical limit
with a method derived from ML-CPC, but leave it as an interesting future direction.

Re-weighted softmax loss Generalizations to the softmax loss have been proposed in which
different weights are assigned to different classes or samples [33, 34, 51], which are commonly
used with regularization [7]. When the dataset has extremely imbalanced classes, higher weights are
given to classes with less frequency [21, 22, 52] or classes with less effective samples [11]. Cao et
al. [8] investigate re-weighting approaches that encourages large margins to the decision boundary
for minority classes; such a context is also studied for detection [31] and segmentation [25] where
class imbalance exists. Our work introduce re-weighting approaches to the context of unsupervised
representation learning (where class labels do not exist in the traditional sense), where we aim for
flexible bias-variance trade-offs in contrastive mutual information estimators.

5 Experiments

We evaluate our proposed methods on mutual information estimation, knowledge distillation and
unsupervised representation learning. To ensure fair comparisons are made, we only make adjust-
ments to the training objective, and keep the remaining experimental setup identical to that of the
baselines. We describe details to the experimental setup in Appendix C. Our code is available at
https://github.com/jiamings/ml-cpc.
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Figure 3: Mutual information estimation with CPC and ML-CPC with different choices of α.

5.1 Mutual Information Estimation

Setup We first consider mutual information estimation between two correlated Gaussians of 20
dimensions, following the setup in [40, 44] where the ground truth mutual information is known and
increases by 2 every 4k iterations, for a total of 20k iterations. We evaluate CPC and ML-CPC with
different choices of α (ranging from 1.0 to 0.0001, which might not guarantee that they are lower
bounds to mutual information) under two types of critic, named joint [3] and separable [49]. We use
m = n = 128 in our experiments.

Results We illustrate the estimates and the ground truth MI in Figure 3. Both CPC and ML-CPC
estimates are bounded by logm when α = 1, which is no longer the case when we set smaller
values of α; however, as we decrease α, CPC estimates are no longer guaranteed to be lower bounds
to mutual information, whereas ML-CPC estimates still provide lower bound estimates in general.
Moreover, a reduction in α for ML-CPC reduces bias at the cost of increasing variance, as the problem
becomes more difficult with re-weighting. The time to compute 200 updates on a Nvidia 1080 Ti
GPU with the a PyTorch implementation is 1.15± 0.06 seconds with CPC and 1.14± 0.04 seconds
with ML-CPC, so the computational costs are indeed near identical.

5.2 Knowledge Distillation

Setup We apply re-weighted CPC and ML-CPC to knowledge distillation (KD, [20]), in which one
neural network model (teacher) transfers its knowledge to another model (student, typically smaller)
so that the student’s performance is higher than training from labels alone. Contrastive representation
distillation (CRD, [47]) is a state-of-the-art method that regularizes the student model so that its
features have higher mutual information with that of the teacher; CRD is implemented via a type of
noise contrastive estimation objective [16]. We replace this objective with CPC and ML-CPC, using
different choices of α that are fixed throughout training, and keeping the remaining hyperparameters
identical to the CRD ones in [47]. Two baselines are considered: the original KD objective in [20]
and the state-of-the-art CRD objective in [47], since other baselines [29, 1, 23, 26] are shown to have
inferior performance in general.

Results Following the procedure in [47], we evaluate over 13 different student-teacher pairs on
CIFAR-100 [30]. The student and teacher have the same type of architecture in 7 cases and different
types in 6 cases. We report top-1 test accuracy in Table 1 (same type) and Table 2 (different types),
where each case is the mean evaluation from 3 random seeds. We omit the standard deviation across
different random seeds of each setup to fit the table in the paper, but we note that deviation among
different random seeds is fairly small (at around 0.05 to 0.1 for most cases). While CPC and ML-CPC
are generally inferior to that of CRD when α = 1.0 (this aligns with the observation in [47]), they
outperform CRD in 10 out of 13 cases when a smaller α is selected.

To demonstrate the effect of improved performance of smaller α, we evaluate average top-1 accuracies
with α ∈ {0.01, 0.05, 0.1, 0.2, 0.5, 1.0} in Figure 4. Both CPC and ML-CPC are generally inferior
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Figure 4: Ablation studies for KD with CPC and ML-CPC at different values of α. Left: student and
teacher are of the same type. Right: student and teacher are from different types.

to CRD when α = 1.0 or 0.5, but as we select smaller values of α, they become superior to CRD
and reaches the highest values at around 0.01 to 0.05, with ML-CPC being slightly better. Moreover,
n = 64,m = 16384 so αm,n ≈ 0.015, which achieves the lowest bias while ensuring ML-CPC to
be a lower bound to MI. Thus this observation aligns with our claims on αm,n in Theorem 2.

Table 1: Top-1 test accuracy (%) of students networks on CIFAR100 where the student and teacher
networks are of the same type. (↑) and (↓) denotes superior and inferior performance relative to CRD.
Each result is the mean of 3 random runs. Lα and Jα denote α-CPC and α-ML-CPC.

Teacher WRN-40-2 WRN-40-2 resnet56 resnet110 resnet110 resnet32x4 vgg13
Student WRN-16-2 WRN-40-1 resnet20 resnet20 resnet32 resnet8x4 vgg8

Teacher 75.61 75.61 72.34 74.31 74.31 79.42 74.64
Student 73.26 71.98 69.06 69.06 71.14 72.50 70.36

KD 74.92 73.54 70.66 70.67 73.08 73.33 72.98
CRD 75.48 74.14 71.16 71.46 73.48 75.51 73.94

L1.0 75.42 (↓) 74.16 (↑) 71.32 (↑) 71.39 (↓) 73.57 (↑) 75.50 (↓) 73.60 (↓)
L0.1 75.69 (↑) 74.17 (↑) 71.48 (↑) 71.38 (↓) 73.66 (↑) 75.41 (↓) 73.61 (↓)
J1.0 75.39 (↓) 74.18 (↑) 71.28 (↑) 71.28 (↓) 73.58 (↑) 75.32 (↓) 73.67 (↓)
J0.05 75.64 (↑) 74.27 (↑) 71.33 (↑) 71.24 (↓) 73.57 (↑) 75.50 (↓) 74.01 (↑)
J0.01 75.83 (↑) 74.24 (↑) 71.50 (↑) 71.27 (↓) 73.90 (↑) 75.37 (↓) 73.95 (↑)

Table 2: Top-1 test accuracy (%) of students networks on CIFAR100 where the student and teacher
networks are from different types. (↑) and (↓) denotes superior and inferior performance relative to
CRD. Each result is the mean of 3 random runs. Lα and Jα denote α-CPC and α-ML-CPC.

Teacher vgg13 ResNet50 ResNet50 resnet32x4 resnet32x4 WRN-40-2
Student MobileNetV2 MobileNetV2 vgg8 ShuffleNetV1 ShuffleNetV2 ShuffleNetV1

Teacher 74.64 79.34 79.34 79.42 79.42 75.61
Student 64.60 64.60 70.36 70.50 71.82 70.50

KD 67.37 67.35 73.81 74.07 74.45 74.83
CRD 69.73 69.11 74.30 75.11 75.65 76.05

L1.0 69.24 (↓) 69.02 (↓) 73.66 (↓) 75.00 (↓) 75.93 (↑) 75.72 (↓)
L0.1 69.26 (↓) 69.33 (↑) 74.24 (↓) 75.34 (↑) 76.01 (↑) 76.12 (↑)
J1.0 68.92 (↓) 68.80 (↓) 73.65 (↓) 75.39 (↑) 75.88 (↑) 75.70 (↓)
J0.05 69.25 (↓) 70.04 (↑) 74.84 (↑) 75.51 (↑) 76.24 (↑) 76.03 (↑)
J0.01 69.25 (↓) 69.90 (↑) 74.81 (↑) 75.47 (↑) 76.04 (↑) 76.19 (↑)

5.3 Representation Learning

Setup Finally, we consider ML-CPC for unsupervised representation learning as a replacement to
CPC. We follow the experiment procedures in MoCo-v2 [10] (which used the CPC objective), where
negative samples are obtained from a key encoder that updates more slowly than the representation
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network. We use the “linear evaluation protocol” where the learned representations are evaluated
via the test top-1 accuracy when a linear classifier is trained to predict labels from representations.
Different from knowledge distillation, we do not have labels and fixed teacher representations, so the
problem becomes much more difficult and using small values of α alone will lead to high variance in
initial estimates which could hinder the final performance. To this end, we use a curriculum learning
[5] approach where we select α values from high to low throughout training: higher α has higher
bias, lower variance and easier to learn, whereas lower α has lower bias, higher variance and harder
to learn. For ML-CPC, we consider 4 types of geometrically decreasing schedules for α: fixed at
1.0; from 2.0 to 0.5; from 5.0 to 2.0; and from 10.0 to 0.1; so α = 1.0 for all cases when we reached
half of the training epochs. We use the same values for other hyperparameters as those used in the
MoCo-v2 CPC baseline (more details in Appendix C).

Results We show the top-1 accuracy of the learned representations under the linear evaluation
protocol in Table 3 for CIFAR10 and CIFAR100. While the original ML-CPC objective (denoted as
J1.0 → J1.0) already outperforms the CPC baseline in most cases, we observe that using a curriculum
from easy to hard objective has the potential to further improve performance of the representations.
Notably, the J10.0 → J0.1 schedule improves the performance on both datasets by almost 2.5 percent
when trained for 200 epochs, which demonstrates its effectiveness when the number of epochs used
during training is limited.

Table 3: Top-1 accuracy of unsupervised representation learning under the linear evaluation protocol.

(a) CIFAR-10

Epochs 200 500 1000

L1.0 83.28 89.31 91.20

J1.0 → J1.0 83.61 (↑) 89.43 (↑) 91.48 (↑)
J2.0 → J0.5 84.31 (↑) 89.47 (↑) 91.43 (↑)
J5.0 → J0.2 85.52 (↑) 89.85 (↑) 91.50 (↑)
J10.0 → J0.1 86.16 (↑) 89.49 (↑) 91.86 (↑)

(b) CIFAR-100

Epochs 200 500 1000

L1.0 61.42 67.72 69.63

J1.0 → J1.0 61.80 (↑) 67.68 (↓) 70.85 (↑)
J2.0 → J0.5 62.92 (↑) 68.01 (↑) 70.22 (↑)
J5.0 → J0.2 63.58 (↑) 68.04 (↑) 70.07 (↑)
J10.0 → J0.1 64.05 (↑) 67.94 (↑) 70.03 (↑)

In Table 4, we include additional results for ImageNet under a compute-constrained scenario, where
the representations are trained for only 30 epochs on a ResNet-18 architecture. Similar to the
observations in CIFAR-10, we observe improvements in terms of linear classification accuracy of the
learned representations. This demonstrates that the curriculum learning approach (specific to ML-
CPC with re-weighting schedules, where the objective remains a lower bound to mutual information)
could be useful to unsupervised representation learning in general.

6 Conclusion
In this paper, we proposed multi-label contrastive predictive coding for representation learning, which
provides a generalization to contrastive predictive coding via multi-label classification. Re-weighted
ML-CPC is able to enjoy less bias while being a lower bound to mutual information. Our upper
bounds for the smallest α is close to the theoretical limit [36] of any distribution-free high-confidence
lower bound on mutual information estimation. We demonstrate the effectiveness of ML-CPC on
mutual information, knowledge distillation and unsupervised representation learning.

It would be interesting to further apply this method to other application domains, investigate alternative
methods to control the re-weighting procedure (such as using angular margins [33]), and develop more
principled approaches towards curriculum learning for unsupervised representation learning. From
a theoretical standpoint, it is also interesting to formally investigate the bias-variance trade-off of
ML-CPC, and see whether simple modifications to ML-CPC based on a slightly different assumption
over p(x,y) could approach the theoretical limit by McAllester and Stratos [36].

Table 4: ImageNet representation learning for 30 epochs.

Objective L1.0 J1.0 → J1.0 J2.0 → J0.5 J5.0 → J0.2 J10.0 → J0.1

Top1 43.45 43.24 (↓) 43.52 (↑) 43.86 (↑) 43.81 (↑)
Top5 67.42 67.43 (↑) 67.82 (↑) 67.67 (↑) 67.71 (↑)
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Broader Impact

Unsupervised representation learning approaches have driven a lot of the recent progresses in many
applications such as computer vision [18] and natural language processing [12]. However, training
effective unsupervised learning models would require vast amounts of growing resources including
data, compute and energy. For example, the recent GPT-3 [6] model with 175B parameters is trained
on a dataset with 400B tokens and consumes thousands of Petaflops-s/days. As a result, it becomes
ever increasingly difficult for those who does not have access to such resources to compete, leaving
much progress in deep unsupervised representation learning at the hands of a few large organizations.

In order to further democratize AI, it has become crucial to develop efficient methods that can be
reproduced by most individuals with low cost, from modeling, training to inference. Our work aims
to make a very tiny step in this direction, where we have demonstrated improvements to existing
algorithms under the same computational budget constraints. In particular, we are able to significantly
improve the representation learning capability of a model under very limited computational budgets.
Our method is also useful for other applications where estimating mutual information is involved,
such as information bottleneck.

Nevertheless, our method is not agnostic to existing biases in the dataset, so there is a potential
danger that any bias that are inherent in the data collection process are also exhibited in the learned
representations, such as bias against minority groups [45]. Our method also does not consider the
potential risks of adversarial examples [15], which could be designed to sabotage certain downstream
tasks; as well as data poisoning [28], which could harm the quality of the learned representations. We
encourage researchers to further think about these safety concerns of unsupervised representation
learning, since unsupervised data sources are more susceptible to malevolent sources who exploit the
shortage of regulators overlooking the data.
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