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Abstract

We investigate a new problem of detecting hands and recognizing their physical
contact state in unconstrained conditions. This is a challenging inference task
given the need to reason beyond the local appearance of hands. The lack of
training annotations indicating which object or parts of an object the hand is
in contact with further complicates the task. We propose a novel convolutional
network based on Mask-RCNN that can jointly learn to localize hands and predict
their physical contact to address this problem. The network uses outputs from
another object detector to obtain locations of objects present in the scene. It uses
these outputs and hand locations to recognize the hand’s contact state using two
attention mechanisms. The first attention mechanism is based on the hand and
a region’s affinity, enclosing the hand and the object, and densely pools features
from this region to the hand region. The second attention module adaptively selects
salient features from this plausible region of contact. To develop and evaluate our
method’s performance, we introduce a large-scale dataset called ContactHands,
containing unconstrained images annotated with hand locations and contact states.
The proposed network, including the parameters of attention modules, is end-to-
end trainable. This network achieves approximately 7% relative improvement
over a baseline network that was built on the vanilla Mask-RCNN architecture
and trained for recognizing hand contact states. Code and data are available at:
https://github.com/cvlab-stonybrook/ContactHands.

1 Introduction

The objective of this work is to detect hands in images and recognize their physical contact state. By
physical contact state, we mean to recognize the following four conditions for each hand instance,
namely (1) No-Contact: the hand is not in contact with any object in the scene; (2) Self-Contact: the
hand is in contact with another body part of the same person; (3) Other-Person-Contact: the hand is in
contact with another person; and (4) Object-Contact: the hand is holding or touching an object other
than people. These conditions are not mutually exclusive, and a hand can be in multiple states; for
example, a hand can contact another person and, at the same time, hold an object. Detecting hands
and recognizing their physical contact is an important problem with many potential applications,
including harassment detection, contamination prevention, and activity recognition.

However, recognizing the contact state of a hand in unconstrained conditions is challenging because
the hand’s appearance alone is insufficient to estimate its contact state. This task also requires us to
consider the relationships between the hand and other objects in the scene. This can be a complex
inference problem for many real-world situations, especially where numerous people and objects
surround the hand. Furthermore, even for a pair of hand and object with corresponding segmentation
masks, it is not easy to recognize whether the hand is in contact with the object due to the lack of
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depth information. A heuristic-based method using occlusion or overlapping criteria would not work
well because the hand can hover in front of the object without touching it.

In this work, we propose a Contact-Estimation neural network module for recognizing the physical
contact state of hands. This module can be integrated into an object detection framework to detect
hands and recognize their contact states jointly. Together with the hand detector, we can train the
Contact-Estimation module end-to-end using training images where hands are localized and annotated
with corresponding contact states. Notably, our method does not require annotation for the contact
object or contact areas. One technical contribution of our paper is learning to recognize contact states
using such weak annotations.

Specifically, we implement our method based on Mask-RCNN [13], a state-of-the-art object detection
framework. Mask-RCNN has a Region Proposal Network (RPN) that first generates a candidate
hand proposal box. A box regression head and a mask head then obtain the bounding box and a
binary segmentation map of the hand. Additionally, we obtain the locations of other objects in
the scene using a generic object detector pre-trained on the COCO [18] dataset. We then use the
Contact-Estimation branch to recognize the contact state for detected hands. The inputs to this
new branch are: (1) the feature maps for the hand, and (2) a set of K feature maps, one for each
hand-object union box, where K is the number of detected objects.

Given the above inputs, we use the Contact-Estimation network module to compute scores for each of
the K hand-object pairs. We first combine the hand feature map with the hand-object union feature
map at particular spatial locations. Intuitively, if the location A of the hand is in contact with the
location B of the object, it would be useful to combine hand features at A with the object features at
B. We formalize this notion using a cross-feature affinity-based attentional pooling module that can
combine hand and hand-object union features from various locations based on the affinities between
them. Second, the hand-object union feature map encodes the regions between the hand and the
object and can contain possible contact regions. We propose a spatial attention method to learn to
focus on salient regions. Finally, we obtain contact state scores for each of the K hand-object pairs
independently using the cross-feature affinity-based attention module and spatial attention module.
The proposed attention modules are trained end-to-end together with the Contact-Estimation branch.

Another contribution of our paper is a large-scale dataset for development and evaluation. Our
dataset consists of around 21K images, containing bounding box annotations for 58K hands and
their physical contact states. The dataset contains many challenging images in the wild, where it
is not trivial to determine the physical contact states of hands. This dataset can be used to develop
real-world applications that require contact states of hands, such as contamination prevention and
harassment detection.

2 Related Work

We build upon two-stage object detection frameworks such as [10, 11, 13, 23]. The current object
detection frameworks recognize an object’s presence or absence at a particular region of interest by
classifying the pooled feature inside this region. However, such a framework is insufficient for our
problem. In our case, we need to detect hands and recognize their physical contact state by reasoning
about other surrounding objects.

There are prior works for hand detection [3, 6, 7, 15–17, 19, 21, 22, 26, 28, 33, 35], hand pose
estimation [12, 25, 29, 37, 38], and hand-tracking [3]. However, they do not recognize the physical
contact state of hands. One way to estimate the contact state of a hand is to reason based on its
estimated pose. However, obtaining a reasonably good hand pose in unconstrained conditions is
itself a challenging task. For example, obtaining the hand pose in low-resolution visual data such
as surveillance images in a super-market or an elevator is highly difficult. Therefore recognizing
physical contact states of hands using their pose is not a robust approach.

Some works consider hand-object interactions. Hasson et al. [12] propose to reconstruct hand and
object meshes from monocular images. Bambach et al. [2] aim to locate hands interacting with an
object, focusing on first-person videos containing only two people. Moreover, most of the activities
focus on hands playing cards or puzzles. Tekin et al. [30] propose to model hand-object interactions
by jointly estimating the 3-D poses for hand and objects. However, they only consider first-person
views. More importantly, these methods do not estimate the physical contact state of the hand.
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Figure 1: Processing pipeline for joint hand detection and contact state recognition. The bound-
ing box regression head and mask head use the hand feature map to generate the hand’s bounding box
and mask. The Contact-Estimation module takes the hand feature map and hand-object union feature
map as inputs. The cross-feature affinity-based attentional pooling pools hand-object union features
to the hand features. The spatial attention method focuses on selective regions in the hand-object
union feature map.

Closely related to our problem is the work from Shan et al. [27]. They propose a video-frame dataset
of everyday interactions scraped from Youtube and annotate them with hand locations, hand side,
contact state, and contact object location. In our work, we aim to recognize physical contact in the
wild, and the images in our dataset are unconstrained. Shan et al. [27] also developed a method
using Faster-RCNN to detect hands and predict contact based on the hand’s appearance. Our method
instead predicts hand’s contact by considering hand and other surrounding objects. Another notable
difference is that our method does not assume that a hand can only be in one contact state. [27]
treats contact recognition as a multi-class classification problem. Instead, we treat it as a multi-label
classification problem and train our method using four independent binary cross-entropy losses, one
for each of the four possible contact states.

Our method consists of two attention mechanisms. The spatial attention method shares similarities
with several visual attention methods that have gained much interest over the past years [1, 5, 9, 14,
20, 21, 24, 31, 32, 36]. The cross-feature affinity-based attentional pooling is inspired by [32]. We
design it to pool hand-object union features to hand features by considering affinities between them
at every spatial location.

3 Approach

In this section, we will describe our framework’s overall architecture and provide details of the
Contact-Estimation module used to recognize the physical contact state of a hand.

3.1 Model Overview
The proposed architecture is illustrated in Figure 1. A Region Proposal Network (RPN) obtains
rectangular hand proposals. For each proposal, we extract ResNet backbone features of dimensions
h×w×d using the RoI Align operation and perform the bounding box regression and the binary
mask segmentation. Additionally, we use a pre-trained object detector to detect other objects in the
image. We use such detected objects to obtain hand-object union regions. Suppose the number of
detected objects is K. We then extract K ResNet features of dimensions h×w×d, one for each K
hand-object union regions. These features, together with the hand features, are then passed to the
Contact-Estimation module. The Contact-Estimation module then computes 4-dimensional score
vectors sk ∈ R4, 1 ≤ k ≤ K, one for each K hand-object pairs. The K score vectors are then
combined to a single vector s ∈ R4 to obtain the contact state class scores for the hand. We now
provide more details about computing the contact state class scores s ∈ R4 from the hand features
H ∈ Rh×w×d and K hand-object union features U1, · · · ,UK ∈ Rh×w×d.
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Figure 2: (a) Cross-feature Affinity-based Attentional Pooling. We pool the hand-object union
feature from U’s qth location to the hand feature H’s pth location, weighted by the affinity Apq

between them. We do this densely for all spatial locations p and q. (b) Spatial Attention. The
attention map al encodes salient regions of the hand-object union region. We use al to select scores
from such locations to obtain Zl. We finally obtain the scores tl by summing scores from all spatial
locations of Zl.

3.2 Recognizing Physical Contact using Multiple Objects

We now present the forward logic for the Contact-Estimation module. It takes two sets of inputs, the
hand feature map H ∈ Rh×w×d and K hand-object union feature maps U1, · · · ,UK ∈ Rh×w×d,
one for each K detected objects. The output of this module is a vector of contact state scores s ∈ R4.

For each hand-object pair k, 1 ≤ k ≤ K, we first obtain a vector of scores sk ∈ R4 as follows:

1. We obtain features Ψ(H,Uk) ∈ Rh×w×d by combining hand-object union features Uk with the
hand features H using the cross-feature affinity-based attentional pooling module Ψ.
2. We pass features Ψ(H,Uk),H,Uk through fully-connected layers, concatenate them, and finally
project using fully-connected layers to obtain a first set of scores s

(1)
k ∈ R4.

3. We obtain a second set of scores s
(2)
k := Ω(Uk) ∈ R4 by passing the hand-object union feature

map Uk through the spatial attention module Ω.

4. We compute the class scores sk ∈ R4 for the kth hand-object pair as sk := s
(1)
k + s

(2)
k .

Once we obtain scores sk ∈ R4 for eachK hand-object pairs, we compute the contact state scores s ∈
R4 for the hand feature H by taking the element wise maximum of K scores: s := max1≤k≤K sk.

3.3 Cross-feature Affinity-based Attentional Pooling to Combine Features

We now describe a method to combine hand features with object features. Based on the intuition that
different regions of the object have different affinities to contact the hand, we propose an attention
method that combines features at each spatial location of the hand with features from all possible
spatial locations of the hand-object union region, weighted by affinities. We parameterize these
affinities in terms of the attention module’s weights and learn them end-to-end during training. Fig. 2a
illustrates this attention method.

The attention module takes as input the hand features H ∈ Rn×d and the hand-object union features
U ∈ Rn×d. Here, n := hw denotes the number of spatial locations and d denotes each feature’s
dimensions. The attention module outputs combined features Ψ(H,U) ∈ Rn×d as:

Ψ(H,U) := H + softmax(A)U. (1)

Here, A ∈ Rn×n is a matrix such that Ap,q encodes the affinity between the pth hand features
and the qth hand-object union features and softmax(A) denotes the softmax taken along the last
dimension of A. We parameterize A using weights Wα ∈ Rd×d and Wβ ∈ Rd×d as follows:

A := (HWα)(UWβ)T . (2)

4



We implement the weights Wα and Wβ using 1×1 convolutions and learn them during training.
Notably, we can implement this attention module’s entire forward logic as a few matrix multiplications
and additions in less than five lines of PyTorch code.

3.4 Spatial Attention to Learn Salient Regions

The hand-object union feature map encodes both the hand and the object’s appearance and can contain
crucial contextual regions that determine the hand’s physical contact state. However, it is not trivial
to select features from such regions. This subsection proposes an attention method to learn salient
regions adaptively and predict contact state scores based on such regions’ features. The attention
module takes as input the hand-object union features U ∈ Rn×d, where n := hw denotes the number
of spatial locations and d denotes feature’s dimensions. The output of the attention module is a vector
of contact state class scores s(2) = Ω(U) ∈ R4.

To recognize the physical contact state of the hand, we first localize the areas of the hand-object union
region that are relevant for the recognition decision. Specifically, we learn L spatial attention maps
a1, · · · ,aL ∈ Rn that focus on selective regions of the hand-object union features. Corresponding to
each such attention map al, 1 ≤ l ≤ L, we obtain score vector tl ∈ R4. We do this by predicting
score vectors at each spatial location of the hand-object union region and averaging them, weighted
by the attention map. We finally obtain the contact state scores s(2) by averaging score vectors
t1 · · · , tL corresponding to all L attention maps. We illustrate the proposed attention method in
Fig. 2b.

Formally, we first define the attention maps a1, · · · ,aL ∈ Rn by al := softmax(Uwl). (3)

Here, wl ∈ Rd is a learnable weight vector for the lth attention map al.

Next, for each attention map al,we define Zl ∈ Rn×4 as Zl := al � (UΘl). (4)

Here, Θl ∈ Rd×4 are learnable weights and � denotes the element-wise multiplication by broad-
casting elements of al. Intuitively, Zl encodes scores at all n spatial locations weighted by the lth
attention map al. We then compute the score vector tl ∈ R4 corresponding to the lth attention map
al by summing scores at all spatial locations of Zl.

Finally, we compute the contact state class scores s(2) ∈ R4 by averaging scores t1, · · · , tL corre-
sponding to all L attention maps a1, · · · ,aL: s(2) := (

∑L
l=1 tl)/L.

We implement the weights wl in Eq. (3) and Θl in Eq. (4) as 1×1 convolutions and learn them end-
to-end during training. The entire arithmetic operations involved can be implemented as vectorized
operations within ten lines of PyTorch code.

3.5 Loss Function for the Proposed Architecture

We train the entire network containing the bounding box regression, mask generation, and contact-
estimation branches end-to-end by jointly optimizing the following multi-task loss:

L := Lcls + Lbox + Lmask + λLcontact. (5)

Here, Lcls, Lbox, Lmask denote the classification, the bounding box regression, and the segmentation
mask losses, respectively. These are the standard loss terms of the Mask-RCNN object detection
framework [13]. The term Lcontact denotes the loss for the physical contact state of the hand, and
λ is a tunable hyperparameter denoting the weight of the contact loss. The contact loss Lcontact
is the sum of four independent binary cross-entropy losses corresponding to four possible contact
conditions, i.e., Lcontact := L1 + L2 + L3 + L4. We define the contact loss based on independent
binary cross-entropy losses instead of a single softmax cross-entropy loss since a hand can have
multiple contact conditions. Thus, it is better to treat contact recognition as a multi-label classification
problem rather than a multi-class classification.

4 ContactHands Dataset
We collect a large-scale dataset of unconstrained images for the development and evaluation of our
model. We aim to collect images containing diverse hands with various shapes, sizes, orientations,
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Figure 3: Sample data from ContactHands. We show the bounding box annotations in green color.
To avoid clutter, we display contact states for only two hand instances per image. The notations NC,
SC, PC, and OC denote No-Contact, Self-Contact, Other-Person-Contact, and Object-Contact. We
highlight the contact state for a hand by red color. If a contact state is unsure, we highlight it in blue.
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Figure 4: ContactHands dataset statistics. There are 52,050 and 5,893 annotated hand instances in
the training and the test set. For each hand instance, we provide contact state annotations by choosing
Yes, No, or Unsure.

and skin tone. We name the proposed dataset ContactHands, and it has numerous hand instances for
which it is challenging to recognize the contact state.

Dataset Source. We collect two types of data, still photos and video frames. For still images, we
collect images from multiple sources. First, we select images that contain people from popular datasets
such as MS COCO [18] and PASCAL VOC [8] datasets. The COCO dataset images have everyday
objects containing various annotations, including bounding boxes, keypoints, and segmentation masks
for persons. Similarly, the PASCAL VOC is a benchmark in the visual object category recognition
and object detection. However, these datasets do not have annotation for hand bounding boxes and
their physical contact states. As a second source for still photos, we scrape some photos from Flickr
using keywords that are likely to return pictures containing people. For example, we use keywords
such as people, cafeteria, parks, party, shopping, library, students, camping, vacation, outdoors,
meeting, hanging-out, tourists, and festivals. We only collect those pictures which have appropriate
copy-right permissions. Also, we manually inspect each image to keep only those that contain at
least one person. Together with the MS COCO and PASCAL VOC dataset images, these images
form our still images group. To complement the still photos, we also collect frames sampled from
videos. For this purpose, we use the training and validation split of the Oxford Hand dataset [19] and
TV-Hand [21] dataset. Altogether, our dataset has 21,637 images.
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Annotation and Quality Control, Dataset Statistics. We annotate the data using multiple annota-
tors and subsequently verify them. We ask annotators to localize hand instances by drawing a tight
quadrilateral bounding box that contains as many hand pixels as possible. We instruct them to localize
all hands for which the minimum side of the resulting axis-parallel box has a length greater than
min(H,W )/30, whereH andW are the height and width of the image. We ask annotators to localize
truncated and occluded hands as long as the visible hand areas’ size is greater than the previously
mentioned threshold. We choose quadrilateral boxes instead of axis-parallel bounding boxes since
hands are incredibly articulate, and the axis-parallel bounding box provides poor localization for
hands. In addition to localizing hands, we ask annotators to identify the physical contact state for each
hand instance. Since hands can be in multiple contact states, we instruct the annotators to consider
the four possible contact states independently; we ask them to answer Yes, No, and Unsure for each
of the four possible contact states separately.

We collect annotations in batches. We ask an additional annotator to verify annotations for quadrilat-
eral boxes and contact states for each batch. We further verify each batch’s physical contact states’
annotations by randomly sampling a fraction of images and independently annotating contact states
for every hand instance. We then quantitatively measure the error in annotations to verify that the
error is within 2% for all annotations batches. Figure 3 shows some sample images and annotations
from our dataset ContactHands.

The total number of annotated hand instances are 58,165. We randomly sample 18,877 images from
these annotated images to be our training set and 1,629 images to be our test set. There are 52,050
and 5,983 hand instances in train and test sets, respectively. Figure 4 displays some statistics about
contact states annotations.

5 Experiments
In this section, we will provide details about model implementation and hyperparameters. We will
also explain the evaluation metric and present experimental results.

Model Implementation and Hyperparameters. We implement the proposed architecture using
Detectron2 [34]. We add a Group Normalization layer before the residual connection in the cross-
feature affinity-based attentional pooling to stabilize the training. We set the number of attention
maps L for the spatial attention module to be 32. The weight λ for the contact state loss Lcontact in
the Eq.( 5) is set to 1. The binary cross-entropy losses for all four contact states have equal weights;
i.e., we do not scale the losses. The fully-connected layers in the Contact-Estimation branch have
dimensions 1024. Note that tuning the loss weights for four states, parameter L, and dimensions for
fully-connected layers can likely give better results. We train the network using SGD with an initial
learning rate of 0.001 and a batch size of 1. We reduced the learning rate by a factor of 10 when the
performance plateaued. We do not penalize contact state predictions for Unsure contact states hand
instances during training.

Evaluation Metric. We measure the joint hand detection and contact recognition performance using
VOC average precision metric. We consider a detected hand instance to be a true positive if: (1) the
Intersection over Union (IoU) between the axis parallel bounding box of the detected hand and a
ground truth bounding box is larger than 0.5; and (2) the predicted contact state matches the ground
truth. More precisely, for each contact state, we only consider hand boxes annotated Yes for that
contact state to be ground truth boxes. We then measure the joint hand detection and contact state
recognition AP by multiplying the hand detection score with the predicted contact score. We do not
measure the performance for detections that have overlap with Unsure contact state hand instances.

Baselines. Given the hand’s location, one might think of learning a classifier on such hand crops to
obtain its contact state. To see how such a method performs, we train ResNet-101 based classifiers
on hand crops from the training set of the ContactHands dataset. We consider two types of hand
crops, one corresponding to the hand’s axis-parallel bounding box, and another corresponding to
the quadrilateral bounding box. To construct a rectangular image from a quadrilateral box, we first
obtain a rotated rectangular bounding box and then build an axis-parallel image crop. We further
consider two variants for each type of hand crop, the exact bounding box and the extended bounding
box to provide surrounding context information. To obtain this extended bounding box, we increase
each side of the hand crop’s length by 50% so that the expanded bounding box has an area 2.25
times the original bounding box area. Altogether, there are four variants, and we train four different
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Axis-Parallel Quadrilateral Pose Heuristic

Contact State Exact Extended Exact Extended

No-Contact 24.49 % 45.82 % 40.90 % 29.27 % 35.50 %
Self-Contact 24.76 % 38.57 % 34.63 % 30.16 % 38.29 %
Other-Person-Contact 3.49 % 3.99 % 4.11 % 3.92 % 4.48 %
Object-Contact 51.63 % 65.88 % 62.19 % 58.53 % 61.30 %

mAP 26.10 % 38.56 % 35.46 % 30.47 % 34.89 %

Table 1: Hand contact recognition APs of ResNet-101 classifiers and a method based on human
pose estimation. The performance is evaluated on the test set of the ContactHands dataset.

Method M-RCNN Proposed M-RCNN Proposed Proposed Proposed Proposed

Train data 100DOH 100DOH C-Hands C-Hands 100DOH C-Hands 100DOH + C-Hands

Test data 100DOH 100DOH C-Hands C-Hands C-Hands 100DOH 100DOH C-Hands

No-Contact 67.30 % 68.23 % 60.52 % 62.48 % 44.45% 47.13 % 70.16 % 63.90 %
Self-Contact 54.94 % 58.52 % 51.62 % 54.31 % 32.03 % 38.85 % 58.66 % 59.30 %
Other-Person 6.56 % 12.94 % 33.79 % 39.51 % 7.32 % 6.77 % 21.15 % 42.01 %
Object-Contact 90.34 % 92.70 % 67.43 % 73.34% 49.68 % 74.27 % 88.21% 70.49 %

mAP 54.78 % 58.10 % 53.31 % 57.41 % 33.37 % 41.76 % 59.54 % 58.93 %

Table 2: Joint hand detection and contact recognition APs using different methods and datasets.
M-RCNN denotes Mask-RCNN. 100DOH denotes video frames dataset [27] and C-Hands denotes
our dataset ContactHands.

ResNet-101 classifiers and evaluate contact recognition performance on the test set of ContactHands.
We summarize the results in Table 1. These results show that learning a classifier directly on hand
crops is not adequate for recognizing their contact states.

Given the success of 2D human pose estimation methods, we want to know if we can use the
relationship between a hand and joint locations of humans to reason about the hand’s contact state.
For this purpose, we build a feature vector h ∈ R52 for each hand instance using the following
heuristic. We use [4] to detect keypoints corresponding to 25 human joints. Additionally, we use
an object detector to detect all possible objects in the scene. Then for each hand instance, we build
three types of features. First, we construct a vector hs ∈ R24 of distances from the wrist joint to the
other 24 joints of the same person. Second, we obtain a vector hp ∈ R25 of average distances from
the wrist joint to 25 joint locations of other people in the scene. Here, the average is with respect to
other people. Finally, we obtain a vector ho ∈ R3 encoding the relationship between the hand and
the detected objects. Precisely, the first component of ho is the mean distance of the hand from the
detected objects. The second and third components of ho are the mean overlap, and the mean IoU
of the hand with the detected objects. We obtain the final feature vector h ∈ R52 for the hand by
concatenating hs, hp and ho. We use such hand feature vectors h to train a classifier on the training
set of ContactHands. The last column of Tab 1 summarizes the performance of the classifier on the
test set of ContactHands. The results show that human pose heuristic methods are insufficient to
estimate hands’ contact states in unconstrained conditions.

Main Results. We now present the proposed method’s results and compare it to Faster-RCNN and
Mask-RCNN to detect and recognize hand contact states. For this purpose, we use the training
and test splits from the ContactHands dataset and the 100DOH [27] dataset. The 100DOH is a
video-frame dataset and has 79,920 training images and 9,983 test images. We conduct experiments
by training the proposed architecture and compare it to a modified Mask-RCNN that can detect hands
and recognize contact states. We summarize the results of these experiments in Table 2.

The proposed method has better performance than the Mask-RCNN since it considers surrounding
objects into account when making a contact decision. We also experimented by using Faster-RCNN
instead of Mask-RCNN, and it performs similarly to Mask-RCNN. Specifically, we found that Faster-
RCN has 54.04 % mAP when trained and tested on the 100DOH dataset and 53.23 % mAP when
trained and tested on the ContactHands dataset.

The fifth and sixth columns show the cross dataset evaluation performance. We can see that a model
trained on the ContactHands dataset has better cross dataset generalization performance than the
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Figure 5: Qualitative results and failure cases. The first three rows show some good qualitative
results, and the last row shows some failure cases from our method. We visualize detected hand
instances by their predicted contact state color. We add additional contact state labels if a hand is in
more than one contact state.

100DOH dataset model. These results show the benefit of our data. The last two columns show that a
model trained on a combination of the 100DOH dataset and the Contact-Hands data performs better
than models trained on individual datasets separately.

Ablation Studies. We conduct experiments to study the effect of different components of the Contact-
Estimation Branch. Specifically, we train the proposed network on the training set of ContactHands
by removing the cross-feature affinity-based attention module, the spatial attention module, and both.
We evaluate these methods on the test set of ContactHands, and they achieve 56.08%, 55.91%, and
55.12% mAP on the joint task of detecting hands and recognizing their contact. Comparing these
results with the full architecture that has 57.41% mAP shows that both the attention methods are
useful for estimating hand’s contact state.

Qualitative Results and Failure Cases. Figure 5 shows some qualitative results from the proposed
model, trained on the ContactHands dataset. The first three rows show good results, and the last row
shows failure cases. The failure cases are mainly from two sources, false hand detections and bad
contact state predictions. First, sometimes other skin areas are being mistaken for hands, and thus
hand detections are not perfect. Second, even if a hand is detected correctly, it’s predicted contact
state can be incorrect; when a hand is surrounded or occluded by other objects, the lack of depth
information can make the contact decision challenging.

6 Conclusions

We investigated a new problem of hand contact recognition. We introduced a novel Contact-Estimation
neural network module that can be trained end-to-end with any two-stage object detector to detect
hands and recognize their physical contact states simultaneously. We also collected a challenging
large-scale dataset of unconstrained images annotated with hand locations and their contact states.
Hand contact recognition is a less-explored problem with important applications. It is also a challeng-
ing problem, especially in unconstrained environments, and there is massive room for improvement.
We hope our work will further spark the community’s interest in addressing this important problem.
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7 Broader Impact

We can broadly classify hand contact estimation methods into two types, contact recognition, and
contact detection. While the contact recognition methods categorize hand instances into pre-defined
states, contact detection methods aim to detect contact objects and contact areas. In our work, we
investigated hand contact recognition, particularly in unconstrained images. We believe that our work
can help the community accelerate the research in this area and shed light on contact detection. While
our dataset is quality controlled and beneficial to the community, biases can be present in the sources
from which we collected the dataset. For example, the dataset might not be representative of all
demographics. As such, applications that use our dataset can inherit such biases, and the community
should be aware of this.
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