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Abstract

Several sampling algorithms with variance reduction have been proposed for ac-
celerating the training of Graph Convolution Networks (GCNs). However, due
to the intractable computation of optimal sampling distribution, these sampling
algorithms are suboptimal for GCNs and are not applicable to more general graph
neural networks (GNNs) where the message aggregator contains learned weights
rather than fixed weights, such as Graph Attention Networks (GAT). The funda-
mental reason is that the embeddings of the neighbors or learned weights involved
in the optimal sampling distribution are changing during the training and not known
a priori, but only partially observed when sampled, thus making the derivation
of an optimal variance reduced samplers non-trivial. In this paper, we formulate
the optimization of the sampling variance as an adversary bandit problem, where
the rewards are related to the node embeddings and learned weights, and can vary
constantly. Thus a good sampler needs to acquire variance information about more
neighbors (exploration) while at the same time optimizing the immediate sampling
variance (exploit). We theoretically show that our algorithm asymptotically ap-
proaches the optimal variance within a factor of 3. We show the efficiency and
effectiveness of our approach on multiple datasets.

1 Introduction

Graph neural networks [13, 11] have emerged as a powerful tool for representation learning of
graph data in irregular or non-euclidean domains [3, 21]. For instance, graph neural networks have
demonstrated state-of-the-art performance on learning tasks such as node classification, link and
graph property prediction, with applications ranging from drug design [8], social networks [11],
transaction networks [14], gene expression networks [9], and knowledge graphs [17].

One major challenge of training GNNs comes from the requirements of heavy floating point operations
and large memory footprints, due to the recursive expansions over the neighborhoods. For a minibatch
with a single vertex vi, to compute its embedding h(L)i at the L-th layer, we have to expand its
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neighborhood from the (L− 1)-th layer to the 0-th layer, i.e. L-hops neighbors. That will soon cover
a large portion of the graph if particularly the graph is dense. One basic idea of alleviating such
“neighbor explosion” problem was to sample neighbors in a top-down manner, i.e. sample neighbors
in the l-th layer given the nodes in the (l + 1)-th layer recursively.

Several layer sampling approaches [11, 6, 12, 23] have been proposed to alleviate above “neighbor
explosion” problem and improve the convergence of training GCNs, e.g. with importance sampling.

However, the optimal sampler [12], q?ij =
αij‖h(l)

j ‖
2∑

k∈Ni
αik‖h(l)

k ‖2
for vertex vi, to minimize the variance

of the estimator ĥ(l+1)
i involves all its neighbors’ hidden embeddings, i.e. {ĥ(l)j |vj ∈ Ni}, which is

infeasible to be computed because we can only observe them partially while doing sampling. Existing
approaches [6, 12, 23] typically compromise the optimal sampling distribution via approximations,
which may impede the convergence. Moreover, such approaches are not applicable to more general
cases where the weights or kernels αij’s are not known a priori, but are learned weights parameterized
by attention functions [20]. That is, both the hidden embeddings and learned weights involved in
the optimal sampler constantly vary during the training process, and only part of the unnormalized
attention values or hidden embeddings can be observed while do sampling.

Present work. We derive novel variance reduced samplers for training of GCNs and attentive GNNs
with a fundamentally different perspective. That is, different with existing approaches that need to
compute the immediate sampling distribution, we maintain nonparametric estimates of the sampler
instead, and update the sampler towards optimal variance after we acquire partial knowledges about
neighbors being sampled, as the algorithm iterates.

To fulfil this purpose, we formulate the optimization of the samplers as a bandit problem, where the
regret is the gap between expected loss (negative reward) under current policy (sampler) and expected
loss with optimal policy. We define the reward with respect to each action, i.e. the choice of a set of
neighbors with sample size k, as the derivatives of the sampling variance, and show the variance of
our samplers asymptotically approaches the optimal variance within a factor of 3. Under this problem
formulation, we propose two bandit algorithms. The first algorithm based on multi-armed bandit
(MAB) chooses k < K arms (neighbors) repeatedly. Our second algorithm based on MAB with
multiple plays chooses a combinatorial set of neighbors with size k only once.

To summarize, (1) We recast the sampler for GNNs as a bandit problem from a fundamentally
different perspective. It works for GCNs and attentive GNNs while existing approaches apply only
to GCNs. (2) We theoretically show that the regret with respect to the variance of our estimators
asymptotically approximates the optimal sampler within a factor of 3 while no existing approaches
optimize the sampler. (3) We empirically show that our approachs are way competitive in terms
of convergence and sample variance, compared with state-of-the-art approaches on multiple public
datasets.

2 Problem Setting

Let G = (V, E) denote the graph with N nodes vi ∈ V , and edges (vi, vj) ∈ E . Let the adjacency
matrix denote as A ∈ RN×N . Assuming the feature matrix H(0) ∈ RN×D(0)

with h(0)i denoting the
D(0)-dimensional feature of node vi. We focus on the following simple but general form of GNNs:

h
(l+1)
i = σ

( N∑
j=1

α(vi, vj)h
(l)
j W (l)

)
, l = 0, . . . , L− 1 (1)

where h(l)i is the hidden embedding of node vi at the l-th layer, ααα = (α(vi, vj)) ∈ RN×N is a kernel
or weight matrix, W (l) ∈ RD(l)×D(l+1)

is the transform parameter on the l-th layer, and σ(·) is
the activation function. The weight α(vi, vj), or αij for simplicity, is non-zero only if vj is in the
1-hop neighborhood Ni of vi. It varies with the aggregation functions [3, 21]. For example, (1)
GCNs [8, 13] define fixed weights asααα = D̃−1Ã orααα = D̃−

1
2 ÃD̃−

1
2 respectively, where Ã = A+I ,

and D̃ is the diagonal node degree matrix of Ã. (2) The attentive GNNs [20, 15] define a learned
weight α(vi, vj) by attention functions: α(vi, vj) =

α̃(vi,vj ;θ)∑
vk∈Ni

α̃(vi,vk;θ)
, where the unnormalized

attentions α̃(vi, vj ; θ) = exp(ReLU(aT [Whi‖Whj ])), are parameterized by θ = {a,W}. Different

2



from GCNs, the learned weights αij ∝ α̃ij can be evaluated only given all the unnormalized weights
in the neighborhood.

The basic idea of layer sampling approaches [11, 6, 12, 23] was to recast the evaluation of Eq. (1) as

ĥ
(l+1)
i = σ

(
N(i)Epij

[
ĥ
(l)
j

]
W (l)

)
, (2)

where pij ∝ αij , and N(i) =
∑
j αij . Hence we can evaluate each node vi at the (l + 1)-th layer,

using a Monte Carlo estimator with sampled neighbors at the l-th layer. Without loss of generality,
we assume pij = αij and N(i) = 1 that meet the setting of attentive GNNs in the rest of this paper.
To further reduce the variance, let us consider the following importance sampling

ĥ
(l+1)
i = σW (l)

(
µ̂
(l)
i

)
= σW (l)

(
Eqij

[
αij
qij

ĥ
(l)
j

])
, (3)

where we use σW (l)(·) to include transform parameterW (l) into the function σ(·) for conciseness. As
such, one can find an alternative sampling distribution qi = (qij1 , ..., qij|Ni|

) to reduce the variance

of an estimator, e.g. a Monte Carlo estimator µ̂(l)
i = 1

k

∑k
s=1

αijs

qijs
ĥ
(l)
js

, where js ∼ qi.

Take expectation over qi, we define the variance of µ̂(l)
i =

αijs

qijs
ĥ
(l)
js

at step t and (l+1)-th layer to be:

Vt(qi) = E
[∥∥∥µ̂(l)

i (t)− µ(l)
i (t)

∥∥∥2] = E
[∥∥∥αijs(t)

qijs
h
(l)
js
(t)−

∑
j∈Ni

αij(t)h
(l)
j (t)

∥∥∥2]. (4)

Note that αij and h(vj) that are inferred during training may vary over steps t’s. We will explicitly
include step t and layer l only when it is necessary. By expanding Eq. (4) one can write V(qi) as the
difference of two terms. The first is a function of qi, which we refer to as the effective variance:

Ve(qi) =
∑
j∈Ni

1

qij
α2
ij ‖hj‖

2
, (5)

while the second does not depend on qi, and we denote it by Vc =
∥∥∥∑j∈Ni

αijhj

∥∥∥2. The optimal
sampling distribution [6, 12] at (l + 1)-th layer for vertex i that minimizes the variance is:

q?ij =
αij‖h(l)j ‖2∑

k∈Ni
αik‖h(l)k ‖2

. (6)

However, evaluating this sampling distribution is infeasible because we cannot have all the knowledges
of neighbors’ embeddings in the denominator of Eq. (6). Moreover, the αij’s in attentive GNNs could
also vary during the training procedure. Existing layer sampling approaches based on importance
sampling just ignore the effects of norm of embeddings and assume the αij’s are fixed during training.
As a result, the sampling distribution is suboptimal and only applicable to GCNs where the weights
are fixed. Note that our derivation above follows the setting of node-wise sampling approaches [11],
but the claim remains to hold for layer-wise sampling approaches [6, 12, 23].

3 Related Works

We summarize three types of works for training graph neural networks.

First, several “layer sampling” approaches [11, 6, 12, 23] have been proposed to alleviate the “neigh-
bor explosion” problems. Given a minibatch of labeled vertices at each iteration, such approaches
sample neighbors layer by layer in a top-down manner. Particularly, node-wise samplers [11] ran-
domly sample neighbors in the lower layer given each node in the upper layer, while layer-wise
samplers [6, 12, 23] leverage importance sampling to sample neighbors in the lower layer given all
the nodes in upper layer with sample sizes of each layer be independent of each other. Empirically,
the layer-wise samplers work even worse [5] compared with node-wise samplers, and one can set an
appropriate sample size for each layer to alleviate the growth issue of node-wise samplers. In this
paper, we focus on optimizing the variance in the vein of layer sampling approaches. Though the
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derivation of our bandit samplers follows the node-wise samplers, it can be extended to layer-wise.
We leave this extension as a future work.

Second, Chen et al. [5] proposed a variance reduced estimator by maintaining historical embeddings
of each vertices, based on the assumption that the embeddings of a single vertex would be close to its
history. This estimator uses a simple random sampler and works efficient in practice at the expense of
requiring an extra storage that is linear with number of nodes.

Third, two “graph sampling” approaches [7, 22] first cut the graph into partitions [7] or sample
into subgraphs [22], then they train models on those partitions or subgraphs in a batch mode [13].
They show that the training time of each epoch may be much faster compared with “layer sampling”
approaches. We summarize the drawbacks as follows. First, the partition of the original graph could
be sensitive to the training problem. Second, these approaches assume that all the vertices in the
graph have labels, however, in practice only partial vertices may have labels [14].

GNNs Architecture. For readers who are interested in the works related to the architecture of GNNs,
please refer to the comprehensive survey [21]. Existing sampling approaches works only on GCNs,
but not on more advanced architectures like GAT [20].

4 Variance Reduced Samplers as Bandit Problems

We formulate the optimization of sampling variance as a bandit problem. Basically, optimal variance
requires the knowledge of all the neighbors’ embeddings that are computation infeasible, and our
chance is to exploit the sampled good neighbors. Our basic idea is that instead of explicitly calculating
the intractable optimal sampling distribution in Eq. (6) at each iteration, we aim to optimize a sampler
or policy Qti for each vertex i over the horizontal steps 1 ≤ t ≤ T , and make the variance of the
estimator following this sampler asymptotically approach the optimum Q?i = argmin

Qi

∑T
t=1 Vte(Qi),

such that
∑T
t=1 Vte(Qti) ≤ c

∑T
t=1 Vte(Q?i ) for some constant c > 1. Each action of policy Qti is

a choice of any k-element set of sampled neighbors Si ⊂ Ni where Si ∼ Qti. We denote Qi,Si
(t)

as the probability of the action that vi chooses Si at t. The gap to be minimized between effective
variance and the oracle is

Vte(Qti)− Vte(Q?i ) ≤ 〈Qti −Q?i ,∇Qt
i
Vte(Qti)〉. (7)

Note that the function Vte(Qti) is convex w.r.t Qti, hence for Qti and Q?i we have the upper bound
derived on right hand of Eq. (7). We define this upper bound as regret at t, which means the
expected loss (negative reward) with policy Qti minus the expected loss with optimal policy Q?i .
Hence the reward w.r.t choosing Si at t is the negative derivative of the effective variance ri,Si(t) =
−∇Qi,Si

(t)Vte(Qti).

In the following, we adapt this bandit problem in the adversary bandit setting [1] because the rewards
vary as the training proceeds and do not follow a priori fixed distribution [4]. We leave the studies
of other bandits as a future work. We show in section 6 that with this regret the variances of our
estimators asymptotically approach the optimal variance within a factor of 3.

Following importance sampling, both of our samplers maintain the alternative sampling distribution
qti = (qij1(t), ..., qij|Ni|

(t)) for each vertex vi over steps t’s. We instantiate above framework under
two bandit settings. (1) In the adversary MAB setting [1], we define the sampler Qti as qti , that
samples exact an arm (neighbor) vjs ⊂ Ni from qti . In this case the set Si is the element vjs . To
have a sample size of k neighbors, we repeat this process k times. After we collected k rewards
rijs(t) = −∇qi,js (t)V

t
e(q

t
i) we update qti by EXP3 [1]. (2) In the adversary MAB with multiple

plays setting [19], it uses an efficient k-combination sampler (DepRound [10]) Q to sample any
k-element subset S ⊂ {1, 2, ...,K} that satisfies

∑
S:j∈S QS = qj ,∀j ∈ {1, 2, ...,K}, where qj

corresponds to the alternative probability of sampling j. As such, it allows us to select a set of k
distinct arms (neighbors) S =

(
K
k

)
from K arms at once. The selection can be done in O(K). After

we collected the reward −∇Qi,Si
(t)Vte(Qti), we update qti by EXP3.M [19].

Discussions. We have to select a sample size of k neighbors in GNNs. Note that in MAB setting,
exact one neighbor should be selected and followed by updating the policy. Hence strictly speaking
applying MAB to our problem is not rigorous. Applying MAB with multiple plays to our problem is
rigorous because it allows us to sample k neighbors at once and update the rewards together.
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5 Algorithms

The framework of our algorithm is: (1) pick k arms with a sampler based on the alternative sampling
distribution qti for any vertex vi, (2) establish the unbiased estimator, (3) do feedforward and
backpropagation, and finally (4) calculate the rewards and update the sampler with a proper bandit
algorithm. We show this framework in Algorithm 1. Note that the variance w.r.t qi in Eq. (4) is
defined only at the (l + 1)-th layer, hence we should maintain multiple qi’s at each layer. In practice,
we find that maintain a single qi and update it only using rewards from the 1-st layer works well
enough. The time complexity of our algorithm is same with any node-wise approaches [11]. In
addition, it requires a storage in O(|E|) to maintain the alternative sampling distribution, |E| is the
number of edges used for message passing operations in GNNs. Beyond that, no further storage is
required. This is true even for more sophisticated architectures where messages are passed between
neighbors beyond one hop.

It remains to instantiate the estimators, variances and rewards related to our two bandit settings. We
name our first algorithm GNN-BS under adversary MAB setting, and the second GNN-BS.M under
adversary MAB with multiple plays setting. We first assume the weights αij’s are fixed, then extend
to attentive GNNs that αij(t)’s change.

Algorithm 1 Bandit Samplers for Training GNNs.

Require: step T , sample size k, number of layers L, node features H(0), adjacency matrix A.
1: Initialize: qij(1) = 1/ |Ni| if j ∈ Ni else 0, wij(1) = 1 if j ∈ Ni else 0.
2: for t = 1 to T do
3: Read a minibatch of labeled vertices at layer L.
4: Use sampler qti or DepRound(k, qti) to sample neighbors top-down with sample size k.
5: Forward GNN model via estimators defined in Eq. (8) or Proposition 1.
6: Backpropagation and update GNN model.
7: for each vi in the 1-st layer do
8: Collect vi’s k sampled neighbors vj ∈ Sti , and rewards rti = {rij(t) : vj ∈ Sti}.
9: Update qt+1

i and wt+1
i by EXP3(qti , wti , rti , Sti ) or EXP3.M(qti , w

t
i , r

t
i , S

t
i ).

10: end for
11: end for
12: return GNN model.

5.1 GNN-BS: Graph Neural Networks with Bandit Sampler

In this setting, we choose 1 arm and repeat k times. We have the following Monte Carlo estimator

µ̂i =
1

k

k∑
s=1

αijs
qijs

ĥjs , js ∼ qi. (8)

This yields the variance V(qi) = 1
k Eqi

[∥∥∥αijs

qijs
hjs −

∑
j∈Ni

αijhj

∥∥∥2] . Following Eq. (5) and

Eq. (7), we have the reward of vi picking neighbor vj at step t as

rij(t) = −∇qij(t)V
t
e(q

t
i) =

α2
ij

k · qij(t)2
‖hj(t)‖2. (9)

5.2 GNN-BS.M: Graph Neural Networks with Multiple Plays Bandit Sampler

Given a vertex vi, an important property of DepRound is that it satisfies
∑
Si:j∈Si

Qi,Si
= qij ,∀vj ∈

Ni, where Si ⊂ Ni is any subset of size k. We have the following unbiased estimator.
Proposition 1. µ̂i =

∑
js∈Si

αijs

qijs
hjs is the unbiased estimator of µi =

∑
j∈Ni

αijhj given that Si
is sampled from Qi with DepRound, where Si is the selected k-subset neighbors of vertex i.

The effective variance of this estimator is Ve(Qi) =
∑
Si⊂Ni

Qi,Si
‖
∑
js∈Si

αijs

qijs
hjs‖2. Since the

derivative of this effective variance w.r.t Qi,Si
does not factorize, we instead have the following

approximated effective variance using Jensen’s inequality.
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Proposition 2. The effective variance can be approximated by Ve(Qi) ≤
∑
js∈Ni

αijs

qijs
‖hjs‖2.

Proposition 3. The negative derivative of the approximated effective variance
∑
js∈Ni

αijs

qijs
‖hjs‖2

w.r.t Qi,Si
, i.e. the reward of vi choosing Si at t is ri,Si

(t) =
∑
js∈Si

αijs

qijs (t)
2 ‖hjs(t)‖2.

Follow EXP3.M we use the reward w.r.t each arm as rij(t) =
αij

qij(t)2
‖hj(t)‖2,∀j ∈ Si. Our proofs

rely on the property of DepRound introduced above.

5.3 Extension to Attentive GNNs

In this section, we extend our algorithms to attentive GNNs. The issue remained is that the attention
value αij can not be evaluated with only sampled neighborhoods, instead, we can only compute the
unnormalized attentions α̃ij . We define the adjusted feedback attention values as follows:

α′ij =
∑
j∈Si

qij ·
α̃ij∑
j∈Si

α̃ij
, (10)

where α̃ij’s are the unnormalized attention values that can be obviously evaluated when we have

sampled (vi, vj). We use
∑
j∈Si

qij as a surrogate of
∑

j∈Si
α̃ij∑

j∈Ni
α̃ij

so that we can approximate the truth

attention values αij by our adjusted attention values α′ij .

6 Regret Analysis

As we described in section 4, the regret is defined as 〈Qti − Q?i ,∇Qt
i
Vte(Qti)〉. By choosing the

reward as the negative derivative of the effective variance, we have the following theorem that our
bandit sampling algorithms asymptotically approximate the optimal variance within a factor of 3.

Theorem 1. Using Algorithm 1 with η = 0.4 and δ =
√

(1−η)η4k5 ln(n/k)
Tn4 to minimize the effective

variance with respect to {Qti}1≤t≤T , we have

T∑
t=1

Vte(Qti) ≤ 3

T∑
t=1

Vte(Q?i ) + 10

√
Tn4 ln(n/k)

k3
(11)

where T ≥ ln(n/k)n2(1− η)/(kη2), n = |Ni|.

Our proof follows [16] by upper and lower bounding the potential function. The upper and lower
bounds are the functions of the alternative sampling probability qij(t) and the reward rij(t) respec-
tively. By multiplying the upper and lower bounds by the optimal sampling probability q?i and using
the reward definition in (9), we have the upper bound of the effective variance. The growth of this
regret is sublinear in terms of T . The regret decreases in polynomial as sample size k grows. Note
that the number of neighbors n is always well bounded in pratical graphs, and can be considered as a
moderate constant number. Compared with existing layer sampling approaches, this is the first work
optimizing the sampling variance of GNNs towards optimum. We will empirically show the sampling
variances in experiments.

7 Experiments

In this section, we conduct extensive experiments compared with state-of-the-art approaches to show
the advantage of our training approaches. We use the following rule to name our approaches: GNN
architecture plus bandit sampler. For example, GCN-BS, GAT-BS and GP-BS denote the training
approaches for GCN, GAT [20] and GeniePath [15] respectively. Please find our implementations
at https://github.com/xavierzw/gnn-bs. We run all the experiments using one machine with
Intel Xeon E5-2682 and 512GB RAM.

The major purpose of this paper is to compare the effects of our samplers with existing training
algorithms, so we compare them by training the same GNN architecture. We use the following
architectures unless otherwise stated. We fix the number of layers as 2 as in [13] for all comparison
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Table 1: Dataset summary. “s” dontes multi-class task, and “m” denotes multi-label task.
Dateset V E Degree # Classes # Features # train # validation # test

Cora 2, 708 5, 429 2 7 (s) 1, 433 1, 208 500 1, 000
Pubmed 19, 717 44, 338 3 3 (s) 500 18, 217 500 1, 000

PPI 56, 944 818, 716 15 121 (m) 50 44, 906 6, 514 5, 524
Reddit 232, 965 11, 606, 919 50 41 (s) 602 153, 932 23, 699 55, 334
Flickr 89, 250 899, 756 10 7 (s) 500 44, 625 22, 312 22, 313

algorithms. We set the dimension of hidden embeddings as 16 for Cora and Pubmed, and 256 for
PPI, Reddit and Flickr. For a fair comparison, we do not use the normalization layer [2] particularly
used in some works [5, 22]. For attentive GNNs, we use the attention layer proposed in GAT. we set
the number of multi-heads as 1 for simplicity.

We report results on 5 benchmark data that include Cora [18], Pubmed [18], PPI [11], Reddit [11],
and Flickr [22]. We follow the standard data splits, and summarize the statistics in Table 1.

We summarize the comparison algorithms as follows. (1) GraphSAGE [11] is a node-wise layer
sampling approach with a random sampler. (2) FastGCN [6], LADIES [23], and AS-GCN [12]
are layer sampling approaches based on importance sampling. (3) S-GCN [5] can be viewed as an
optimization solver for training of GCN based on a simply random sampler. (4) ClusterGCN [7] and
GraphSAINT [22] are “graph sampling” techniques that first partition or sample the graph into small
subgraphs, then train each subgraph using the batch algorithm [13]. (5) The open source algorithms
that support the training of attentive GNNs are AS-GCN and GraphSAINT. We denote them as
AS-GAT and GraphSAINT-GAT.

We save the model based on the best results on validation and report results on testing data in
Section 7.1. We do grid search for the following hyperparameters in each algorithm, i.e., the learning
rate {0.01, 0.001}, the penalty weight on the `2-norm regularizers {0, 0.0001, 0.0005, 0.001}, the
dropout rate {0, 0.1, 0.2, 0.3}. By following the exsiting implementations3, we save the model
based on the best results on validation, and restore the model to report results on testing data in
Section 7.1. For the sample size in GraphSAGE, S-GCN and our algorithms, we set 1 for Cora
and Pubmed, 5 for Flickr, 10 for PPI and reddit. We set the sample size in the first and second
layer for FastGCN/LADIES and AS-GCN/AS-GAT as 256 and 256 for Cora and Pubmed, 1, 900
and 3, 800 for PPI, 780 and 1, 560 for Flickr, and 2, 350 and 4, 700 for Reddit. We set the batch
size of all the layer sampling approaches and S-GCN as 256 for all the datasets. For ClusterGCN,
we set the partitions according to the suggestions [7] for PPI and Reddit. We set the number of
partitions for Cora and Pubmed as 10, for flickr as 200 by doing grid search. We set the architecture
of GraphSAINT as “0-1-1”4 which means MLP layer followed by two graph convolution layers. We
use the “rw” sampling strategy that reported as the best in their original paper to perform the graph
sampling procedure. We set the number of root and walk length as the paper suggested.

Table 2: Comparisons on the GCN architecture: testing Micro F1 scores.

Method Cora Pubmed PPI Reddit Flickr
GraphSAGE 0.731(±0.014) 0.890(±0.002) 0.689(±0.005) 0.949(±0.001) 0.494(±0.001)
FastGCN 0.827(±0.001) 0.895(±0.005) 0.502(±0.003) 0.825(±0.006) 0.500(±0.001)
LADIES 0.843(±0.003) 0.880(±0.006) 0.574(±0.003) 0.932(±0.001) 0.465(±0.007)
AS-GCN 0.830(±0.001) 0.888(±0.006) 0.599(±0.004) 0.890(±0.013) 0.506(±0.012)
S-GCN 0.828(±0.001) 0.893(±0.001) 0.744(±0.003) 0.943(±0.001) 0.501(±0.002)
ClusterGCN 0.807(±0.006) 0.887(±0.001) 0.853(±0.001) 0.938(±0.002) 0.418(±0.002)
GraphSAINT 0.815(±0.012) 0.899(±0.002) 0.787(±0.003) 0.965(±0.001) 0.507(±0.001)
GCN-BS 0.855(±0.005) 0.903(±0.001) 0.905(±0.003) 0.957(±0.000) 0.513(±0.001)

3Checkout: https://github.com/matenure/FastGCN or https://github.com/huangwb/AS-GCN
4Checkout https://github.com/GraphSAINT/ for more details.

7

https://github.com/matenure/FastGCN
https://github.com/huangwb/AS-GCN
https://github.com/GraphSAINT/


Table 3: Comparisons on the attentive GNNs architecture: testing Micro F1 scores.

Method Cora Pubmed PPI Reddit Flickr
AS-GAT 0.813(±0.001) 0.884(±0.003) 0.566(±0.002) NA 0.472(±0.012)
GraphSAINT-GAT 0.773(±0.036) 0.886(±0.016) 0.789(±0.001) 0.933(±0.012) 0.470(±0.002)
GAT-BS 0.857(±0.003) 0.894(±0.001) 0.841(±0.001) 0.962(±0.001) 0.513(±0.001)
GAT-BS.M 0.857(±0.003) 0.894(±0.000) 0.867(±0.003) 0.962(±0.000) 0.513(±0.001)
GP-BS 0.811(±0.002) 0.890(±0.003) 0.958(±0.001) 0.964(±0.000) 0.507(±0.000)
GP-BS.M 0.811(±0.001) 0.892(±0.001) 0.965(±0.001) 0.964(±0.000) 0.507(±0.000)

7.1 Results on Benchmark Data

We report the testing results on GCN and attentive GNN architectures in Table 2 and Table 3
respectively. We run the results of each algorithm 3 times and report the mean and standard deviation.
The results on the two layer GCN architecture show that our GCN-BS performs the best on most
of datasets. Compared with layer sampling approaches, GCN-BS performs significantly better in
relative dense graphs, such as PPI and Reddit. This shows the efficiency of our sampler on selecting
neighbors. The results on the two layer attentive GNN architecture show the superiority of our
algorithms on training more complex GNN architectures. GraphSAINT or AS-GAT do not compute
the softmax of learned weights, but simply use the unnormalized weights to perform the aggregation.
As a result, most of results from AS-GAT and GraphSAINT-GAT in Table 3 are worse than their
results in Table 2. Thanks to the power of attentive structures in GNNs, our algorithms perform the
best results on PPI and Flickr.
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Figure 1: The convergence on validation in terms of epochs.

7.2 Convergence

In this section, we analyze the convergences of comparison algorithms on the two layer GCN and
attentive GNN architectures in Figure 1 in terms of epoch. We run all the algorithms 3 times and
show the mean and standard deviation. Our approaches converge much faster with lower variances in
most datasets. The GNN-BS algorithms perform very similar to GNN-BS.M, even though strictly
speaking GNN-BS does not follow the rigorous MAB setting.

The convergences on validation in terms of timing (seconds), compared with layer sampling ap-
proaches, in Fig. 2 show the similar results.

7.3 Sample Size Analysis

We analyze the sampling variances and accuracy as sample size varies using PPI data. Note that
existing layer sampling approaches do not optimize the variances once the samplers are specified.
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Figure 2: The convergence on validation in terms of timing.
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Figure 3: Comparisons on PPI by varying the sample sizes: F1 score (left), sample variances (middle).
Convergence on toy data with different degrees (right).

As a result, their variances are simply fixed [23], while our approaches asymptotically appoach
the optimum. For comparison, we train our models until convergence, then compute the average
sampling variances. We show the results in Figure 3 (left and middle). The results are grouped in
two categories, i.e. results for GCN and attentive GNNs respectively. Our approaches’ sampling
variances are smaller in each group. This explains the performances of our approaches on Micro F1
scores. Note that the overall sampling variances of node-wise approaches are way better than those
of layer-wise approaches.

To further show the convergence while we simulate graphs with different degrees and fix the sample
size of different algorithms, we set up the following experiments. We randomly sample 100 labeled
nodes {1,...,i,...,100} with each µi uniformly sampled from [-10, 10]. For each labeled node i we
generate k neighbors, and its neighbors’ features are 1-dimensional scalars in real field that are
sampled from uniform(µi − σ, µi + σ) with σ = 5. Each node i’s label is generated by simply
averaging its neighbors’ 1-dimensional scalar features. We use a GCN architecture with mean
aggregators. We compare the convergence (mean squared error loss) with a random sampler by
increasing k = 50 to 100 and 200 in Figure 3 (right). All the samplers use a fixed sample size 10. It
shows that our bandit sampler works much better compared with a uniform sampler on graphs with
different degrees.

8 Conclusions

In this paper, we show that the optimal layer samplers based on importance sampling for training
general graph neural networks are computationally intractable, since it needs all the neighbors’ hidden
embeddings or learned weights. Instead, we re-formulate the sampling problem as a bandit problem
that requires only partial knowledges from neighbors being sampled. We propose two algorithms
based on multi-armed bandit and MAB with multiple plays. We show the variance of our bandit
sampler asymptotically approaches the optimum within a factor of 3. We empirically show that
our algorithms achieve much better convergence results with much lower variances compared with
state-of-the-art approaches.
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Broader Impact

This paper presents an approach for fast training of graph neural networks with theoretical guarantees.
It may have impacts on training approaches related to any models based on message passing. The
graph neural networks may have positive impacts on recommendater systems, protein analyses, fraud
detection and so on. This work does not present any foreseeable societal consequence.
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