Causal analysis of Covid-19 spread in

Germany
Atalanti A. Mastakouri Bernhard Scholkopf
Department of Empirical Inference Department of Empirical Inference

Max Planck Institute for Max Planck Institute for
Intelligent Systems Intelligent Systems
Tiibingen, Germany T{ibingen, Germany

atalanti.mastakouri@tuebingen.mpg.de bs@tuebingen.mpg.de
Abstract

In this work, we study the causal relations among German regions in terms
of the spread of Covid-19 since the beginning of the pandemic, taking
into account the restriction policies that were applied by the different
federal states. We loose a strictly formulated assumption for a causal feature
selection method for time series data, robust to latent confounders, which we
subsequently apply on Covid-19 case numbers. We present findings about the
spread of the virus in Germany and the causal impact of restriction measures,
discussing the role of various policies in containing the spread. Since our
results are based on rather limited target time series (only the numbers of
reported cases), care should be exercised in interpreting them. However, it is
encouraging that already such limited data seems to contain causal signals.
This suggests that as more data becomes available, our causal approach
may contribute towards meaningful causal analysis of political interventions
on the development of Covid-19, and thus also towards the development of
rational and data-driven methodologies for choosing interventions.

1 Introduction

The ongoing outbreak of the Covid-19 pandemic has rendered the tracking of the virus spread
a problem of major importance, in order to better understand the role of the demographics
and of non pharmaceutical interventions (NPIs) made to contain the virus. Until 15/5,/2020,
175,699 cases and 8,001 deaths were recorded in Germany, a country with a population of
83 million people, 16 federal states with independent local governments, and 412 districts
(Landkreise). In this paper, we focus on a causal time series analysis of the Covid-19 spread
in Germany, aiming to understand the spatial spread and the causal role of the applied NPIs.

Causal inference from time series is a fundamental problem in data science, and many papers
provide solutions for parts of the problem subject to necessary assumptions [IH6]. The main
difficulty in this research problem is the possibility of hidden confounding in the data, as it
is almost impossible in real datasets to have observed all the necessary information. Another
problem is a characteristic of the time series themselves, which create dependencies due to
connections in the past, hindering the formulation of necessary d-separation statements for
graphical inference [7]. Finally, many known methods cannot handle instantaneous effects
that may exist among the time series.

We consider a problem with small sample size compared to the dimension of its covariates,
yet of significant current importance: the tracking of the spread of the Covid-19 pandemic,
based only on the reported cases. Not having access to all relevant covariates and to all
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interventions that were applied at different times by different regions constitutes a heavily
confounded problem, whose causal analysis requires a method which is robust to hidden
confounders. Tracking the Covid-19 spread is of interest since it may help understand and
contain the virus. There are significant efforts to understand this based on individual location
or proximity information [8]. Other efforts try to understand and quantify the importance of
applied NPIs through modelling of the spread [9HI2]. In the present work, we focus on the
causal analysis of the spread. We perform an offline causal inference analysis of the reported
daily Covid-19 case numbers in regions of Germany, in combination with the NPIs that were
made to contain the spread.

The most common and established approach for causal inference on time-series is Granger
causality [I3HI5]. In the multivariate case, we say that X7 Granger-causes X* (k # j) if a

conditional dependence X} U Xpast | Xpast(t) exists (here, —j denotes all indices other

than j, and past(t) denotes all indices t' < t). The fundamental disadvantage of this method
is its reliance on causal sufficiency: the assumption that all the common causes in the system
are observed; in other words, that no hidden confounders can exist [I6]. Violations of this,
common in real world data, render Granger causality and its extensions [e.g. 17, [I8] incorrect,
yielding misleading conclusions.

Below, we loose an unecessarily strictly phrased assumption of the SyPI algorithm [6], a
causal feature selection method for time series with latent confounders. We apply it on
Covid-19 cases reported by German regions, with the goal to detect which regions and
which restriction policies played a causal role on the formation and modulation of the
regionally-reported daily cases. We perform this analysis on a state and on a district level.
We compare our findings with predictions of the widely used Lasso-Granger [19] and tsFCI
method [21], showing that SyPI yields more meaningful results. Note that while no ground
truth exists, our detected causes tend to be neighbouring states/regions, with discrepancies
that can often plausibly be attributed to the existence of major transportation hubs.

2 Methods and Tasks

2.1 Causal inference on time series
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Figure 1: An example full time graph of two observed (X¢, X7), one potentially hidden (Q7)
and one target (Y) time series.

For the problem of causal feature selection on time series data, we are given observations
from a target time series Y := (Y})iez whose causes we wish to find, and observations
from a multivariate time series X := ((X}, ..., X?))ez of potential causes (candidate time
series). In settings were Causal sufficiency cannot be assumed, like the one we tackle here,
unobserved multivariate time series, which may act as common causes of the observed ones
also exist. An example of such a setting is given in Figure [I]

2.2 The SyPI method

Here we use the SyPI method proposed by [6], as it can give causal conclusions in large,
dense graphs of time series, based solely on observational data and without assuming causal



sufficiency. According to [6], the method requires, as input, observations from a target time
series Y and from a multivariate time series (candidate causes) X, as defined above. Moreover,
it allows for unobserved multivariate time series, which may act as hidden confounders.
Under suitable assumptions discussed in Section [2:3] the method provably detects all the
direct causes of the target and some indirect ones, but never confounded ones (its conditions
are both necessary and suﬂiciemﬂ).

We now try to provide some intuition. Since it requires familiarity with (and terminology of)
causal structure learning, some readers may want to consult [6]. For each candidate causal
time series X° that has a dependency with the target Y at lag w;, the method performs
targeted isolation of the path X; ;| — X} - -QJ, --» Yiyy, (Where w; € Z,t' <t +w;, Q7 €
X1 or unobserved), that contains, for every candidate i, the current X; and the previous
time step X;_; of the candidate causal time series, and the corresponding node of the target
time series YHWH It does so by building a conditioning set that contains the nodes of
X~ that enter node Yitw,—1 (temporal ancestor of the target node Y;i,, of the same time
series), including the node itself. This way, it exploits the fact that if there is a confounding
path between X} and Y; ., then X} will be a collider that will unblock the path between
X}, and Y;4,, when we condition on it. Therefore, running SyPI boils down to testing
two conditions: condition 1 examines if X} and Y;,,, are conditionally dependent given
the aforementioned conditioning set, and condition 2 examines if X} ; and Y; ., become
conditionally independent if X} is included in the aforementioned conditioning set. If both
conditions hold true, then SyPI identifies X’ as a cause of Y [6].

2.3 Weakening SyPI’s assumptions

According to [6] SyPI is a sound and complete causal feature selection method in the presence
of latent common causes subject to certain graph restrictions. Among the most important
graphical assumptions required is that the target be a sink node (assumption 6 in [6]), i.e., the
target has no descendants. In Theorem [A] below, we relax this strictly phrased assumption,
proving that it suffices that none of the (direct or indirect) descendants of the target belongs
in the pool of the candidate causes. While this relaxation is important for our application,
we prefer not to repeat all assumptions and definitions from [6]. Rather, we describe below
what needs to be adapted to handle our more general setting.

The intuition behind Theorem [E is the following. The original assumption 6 ensures that
when an unconfounded path X} — Y;4,,. for some lag w; exists, the true cause X* will not
be rejected due to a parallel path X; — X7, + Y;4,, that contains a collider X7,, which
could potentially be unblocked rendering condition 2 of Theorem 2 in [6] false. Theorem 1 of
[6] remains unaffected from whether Y is a sink node or not, because in the case that it is
not, i.e., X; < Yi4w,, condition 2 will correctly reject X;.

Therefore, we only need to show that Theorem 2 of [6] remains unaffected if instead of YV
being a sink node, all of its descendants do not belong in X (we write DEY. ¢ X). In the
case that all the descendants of Y do not belong in its candidate causes X, then they will
be unobserved. Assume there is one descendant D ¢ X of Y that is also connected with
a node X} from X. Then D can only have incoming arrows from X/ and therefore D is
an unobserved collider (any out-coming arrow from D to X will violate the assumption
DElg, ¢ X). Therefore any path that contains the unobserved collider D cannot be unblocked
to create any additional dependencies, because D and any of its descendants cannot belong
in the conditioning set.

Theorem A (Theorems 1 and 2 from [6] still apply). Given the target time series Y
and the candidate causes X, assuming Causal Markov condition, causal faithfulness, no
backward arrows in time X} / X} ,Vt' > t,Vi, j, stationarity of the full time graph as well
as assumption A7-A9 from [6], if the target Y is not a sink node, but, instead, none of its

! Although SyPI’s conditions are necessary only for single-lag dependencies, the method has
provided satisfying results even with multiple lags [6]. The existence of multiple lags would only
result in fewer detected causes, without affecting the validity of the method in terms of false positives.

27__5? denotes a directed path, - -> denotes a collider-free path.



descendants belongs in X: DE)g, ¢ X, then Theorem 1 and 2 from [6] still apply. That means
the conditions of Theorem 1 from [G] are still sufficient for identifying direct and indirect
causes, and conditions of Theorem 2 from [6] are still necessary for identifying all the direct
unconfounded causes in single-lag dependency graphs.

We prove Theorem [A]in the Appendix (Section[9.2.2]). Moreover, in Figure |§| of the Appendix
we provide some simulated experiments ran on 100 random graphs for varying number of
observed time series, taking into account the modified assumption.

While the relaxed assumption makes the result more generally applicable, we need one
additional step to apply it to our dataset: The algorithm requires as input the candidates
and the target as two separate variables. Therefore, we need to assign one region at a time as
target. In order to comply with the aforementioned assumption, instead of directly feeding
all the remaining time series as the candidate causes of the target Y, we use as candidate
causes those other regions that have reported Covid-19 cases before the target (in
addition to the applied policies for the analysis at the federal states level). This makes it
more likely that no effects of the target exist in its candidate causes (assuming stationarity
of the graph).

SyPI assumes that the causal relations among the time series are stationary, not changing
in different time windows. However, since we do not know the ground truth, it is possible
that the policies not only cause the reported infections time series but also be caused by
it in different time windows. This possible violation of stationarity of the graph creates
problems because it also implies arrows from the target to some of the policies time series
which belong in its candidate causes. Therefore this could violate both the assumption 6 in
[6] about the target being a sink node and the relaxed proposed assumption DE%, ¢ X. We
are aware that this could happen, which is one reason we are careful in our conclusions.

2.4 Selection of statistical thresholds

Since the causal Markov condition and causal faithfulness are assumed (definitions 9.2.1[,
, there is an equivalence between d-separation statements in the graph and conditiona
independences on the probability distributions of the variables. As [6], we use SyPI for
linear relationships only (although the theory is more general), and hence resort to partial
correlations to test the conditional dependence (condition 1) and the conditional indepen-
dence (condition 2) of [6]. SyPI operates with two thresholds for those two tests: one for
rejecting conditional independencies (condition 1), and another for accepting conditional
independencies (condition 2). Since the time series of the daily reported cases since the
beginning of the pandemic in Germany include only 87 reported days (until 15/05/2020), we
decided to explore the outcomes of the algorithm for stricter and looser thresholds. We thus
examined values of threshold-1 in {0.01,0.05} and values for threshold-2 in {0.1,0.2}. We
report the causal findings for the looser combination (0.05,0.1) in Fig. [3a] and for all four in

the App. Fig.

3 Experiments

3.1 Dataset: Daily reported Covid-19 cases for German regions

The data are taken from the official reports of the Robert-Koch Institute, last downloaded
on 15/05/2020 [20]. They are analysed in two steps:

Causal analysis on federal state level Figure [2| depicts daily reported Covid-19 cases
for each of the 16 German federal states, each one represented by a time series, starting
from when the first report was made (28/01/2020) until 15/05/2020. The plots are sorted
chronologically, with the top left corresponding to the Bundesland (federal state) that reported
first, and the bottom right the Bundesland that reported Covid-19 cases last. In addition, we
created indicator functions for nine NPIs that were imposed separately in each Bundesland,
as gathered from the official German states’ websites and from https://calc.systemli,
org/u0o26ims15cr. The periods these measures were in effect are depicted as indicator
functions (vertically scaled to make sure all are visible) in the above plots. The policies
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are: closing of schools, closing of universities, ban of gatherings of more than 1000 people,
ban of gatherings of more than 10 people, obligatory quarantine of 14 days after returning
from risk areas, ban of gatherings of more than 2 people, closing restaurants, closing hotels,
forbidding visits in hospitals and nursing homes. We provide the data in the supplement and
here https://owncloud.tuebingen.mpg.de/index.php/s/r4dPdpSBAzP6Ee5. Note that
not all policies were applied in all federal states, and also that for the state of Niedersachsen,
no policies are provided. We apply the algorithm for each target state independently, keeping
as candidates all the federal states that have reported cases before the target one, as well
as the nine aforementioned policies for the specific target. Results are shown in Figure [3a]
The datasets were re-evaluated, as well, after four months (until 26/09/2020). The updated
time series, the data as well as the results are provided in Figure [I0] and in Section [9.6]in
the Appendix.
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Figure 2: Time series of daily reported detected Covid-19 cases in each federal state from
28/01/2020 until 15/05/2020. The blue curve represents the daily reported infections as a
function of time. In addition to the Covid-19 cases, 9 restriction measures are depicted as
indicator functions (see legend and main text). The height of the indicator functions does
not have a meaning. It is only adjusted for visibility purposes.

Causal analysis on district level To get further results, we apply the modified SyPI
method on the time series of daily reported Covid-19 cases for all 412 districts of Germany.
We apply it the following way: For every district we use SyPI twice; the first time using as
candidate causes all the neighbouring districts of the target that have reported cases before,
and the second time, using the same number of districts but from random non-neighbour
(distant) locations that have also reported cases before the target. Our hope would be that
SyPI will identify more causes among the neighbour districts than among the non-neighbour
ones. Furthermore, we would hope that (some of) the latter could be justified by a large
airport close-by. The default thresholds of SyPI (0.01,0.2) were used. For this analysis, we
created a matrix with all the neighbour districts of each district, as well as the location of the
largest airports (including the number of flights from the past years), which we also provide
in the supplement. Furthermore, for the largest airports in terms of number of passengers
per year, according to the German flight security organisation (DFS) (MUC, STR, TXL,
FDH, FMM, NUE, HAM, FRA, HHN, HAJ, NRN, CGN, DUC, DMT, DRS, BRE, KSF,
SCN), we check which districts are near (within 40km) each one of these. In total, 169 out
of the total 412 districts were found to be near one of the large airports. The 40km distance
was chosen as it corresponds to the diameter of a medium size German district. We then
categorise our results in four categories: 1. Detected causes among the neighbours of the
target, 2. Detected causes near (within 40km) the target, 3. Detected causes near (within
40km) a large airport, 4. Distant targets that cannot be categorised otherwise.
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3.2 Comparison against Lasso-Granger and tsFCI

We compare the SyPI method for the spread of Covid-19 in the German federal states, with
Lasso-Granger [19] and tsFCI [2I]. Granger causality is the most widely used method for
causal time series analysis, although it assumes causal sufficiency, which we expect to be
heavily violated in real data. The main difference between the proposed approach and tsFCI
is that SyPI pre-calculates a very concise conditioning set for each target and only requires
two conditional independence (CI) tests per candidate cause, to decide if it is a true cause of
the target. In contrast, tsFCI performs exhaustively CI tests for all possible combinations
of conditioning sets and lags, which results in very ambiguous statistical results and very
large computational times in large graphs. Of course, tsFCI aims at the full graph discovery
and not only at causal feature selection. This also justifies tsFCI’s more computationally
intensive conditions. For fair comparison we used the same threshold for all the statistical
tests of both methods (0.05). The policies were not included in this analysis, because tsFCI
algorithm cannot handle at the same time both binary and continuous data.

4 Results

4.1 SyPI on Covid-19 cases and policies in the federal states

In Figure the policies and federal states that were identified as causes by SyPI are
depicted with target/color specific arrows. Fig. correspond to the “looser” combination of
thresholds (0.05,0.1). Figure [5| (supplement) provides results for all four combinations. As
we can see, the result does not change dramatically with different threshold combinations,
but as expected, more causes are detected with the “looser” combination (0.05,0.1), as it
more easily accepts dependencies and independencies. We discuss the findings in Section [5.1

4.2 Enacted policies and causal roles of federal states

Here we discuss the relation between the outcome of the above causal analysis and the
applied NPIs until 15/05/2020. This time, instead of looking for causes of Covid-19 cases in
German federal states, we look at the states that helped contain the spread of the pandemic
by not causing others. We make an observation that may serve as additional sanity check
about the causal predictions of SyPI, using its stricter thresholds resultsﬂ states that were
not found to cause other states were those that closed schools and universities “early enough”
(meaning before 100 cases were reported): Bremen, Thiiringen, Saarland, Brandenburg,
Sachsen-Anhalt and Sachsen (with the exception of Mecklenburg-Vorpommern). In addition,
the German states that were found to cause others were also those that either did not take
both measures combined (Schleswig-Holstein, Nordrhein-Westfalen, Rheinland-Pfalz E[), or
they took them relatively late (i.e., > 100 cases) (Bayern, Baden-Wiirttemberg, Hamburg,
Hessen).

4.3 Causal spread of Covid-19 among the German districts

Since the number of federal states is relatively small, we ran our analysis also at a finer level of
granularity, using districts rather than states. Figure 35| depicts the map of Germany with all
the detected causal districts for each district. Arrows with solid lines show neighbour causes,
while arrows with dashed lines depict causes that do not share a border with the target. We
see that for the majority of the target districts the detected causes are neighbouring districts,
and that those that are not are generally near a large airport or within 40km distance from
the target. Note that since the dashed arrows are significantly longer than the solid ones,
the Fig. [BH] at first glance seems to show mostly dashed arrows. This is misleading; for a
numerical comparison, see Figure [{a] Distant causal districts often seem to be aligned with
the routes of the domestic connections with the highest traffic, as reported in the DFS’s
latest flight report [22].

3Notice that this result should be treated with caution as it depends on the correctness of the
above causal analysis and it may be confounded by the time order that the states reported causes.

4The arrow Rheinland-Pfalz — Thiiringen does not appear in the subplot of strict thresholds
because the p-value (0.011) for condition 1 was on the limit over the strict threshold 1 (0.01).
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Figure 3: a) Detected causal paths of the spread of Covid-19 among the German federal
states, including causes among the NPIs taken by each federal state. Each colour (in arrows
and policies) indicates causes of one state (see top legend). These findings correspond to
the looser of the four combinations of thresholds (0.05,0.1) that we tested. Results for the
remaining three combinations can be found in Fig. [5|in the Appendix. b) Detected causal
districts for the spread of Covid-19, for each district, using the modified SyPI algorithm.
Solid arrows depict causes that are neighbour districts (i.e., sharing a common border).
Dashed arrows depict causes that are not. The majority of the detected non-neighbour
causes are close to cities with larger airports (MUC, STR, TXL, FDH, FMM, NUE, HAM,
FRA, HHN, HAJ, NRN, CGN, DUC, DMT, DRS, BRE, KSF, SCN), and the majority of
the detected causes are neighbours to the target. Note that since the dashed arrows are
significantly longer than the solid ones, the Figure at first glance seems to show mostly
dashed arrows. This is misleading; for a numeric comparison, see Figure [fa] Blue cycles
indicate 40km radius around the largest airports. For the district-level analysis, the default
thresholds of SyPI were used (0.01,0.2).

These are: Berlin - Munich, Berlin - Frankfurt, Diisseldorf - Munich, Cologne/ Bonn -
Munich, Diisseldorf - Berlin, Stuttgart - Hamburg, Frankfurt - Munich, Berlin - Stuttgart,
with 1-2 Mi flights per year. These paths can be seen in Fig. as detected longer-range
dashed causal arrows. Table 2]in the Appendix includes all the causal results shown in Fig.
[3Bl We categorise the total number of 231 causes detected into the following four categories:
1. Detected causes neighbouring (sharing common borders) the target district, 2. Detected
causes near (~ 40km) to the target, 3. Detected causes close to a large airport, 4. Distant
targets that cannot be categorised otherwise. As we can see in Fig. the majority of causes
are neighbour districts, and only the 12% of the causes cannot be justified by proximity to
the target or a large airport. Fig. shows the histogram of the detected causes that are
located close to a large airport, in cases where also the target is reachable by another airport.

4.4 SyPI vs Lasso-Granger and tsFCI

Table [1] in the supplement presents all the detected causes (states and policies) of each
federal state, for the SyPI method and thresholds (0.05,0.1), as well as for the Lasso-Granger



method. With these “loose” thresholds we expect the largest number of detected causes
with SyPI (corresponding to the bottom left map in Figure . We see that Lasso-Granger
detects almost all candidates as causes. This indicates that this is a dataset with many latent
confounders, which forces Granger to give incorrect causal claims. On the other hand, SyPI
is robust against false positives due to latent common causes, and thus gives potentially more
meaningful results. Figure I? in the Appendix depicts the detected causes (federal states) of
each federal state for SyPI (thresholds 0.05,0.05) and tsFCI (threshold 0.05). As we can see,
tsFCI detected eight, while SyPI 44 directed edges (causes). Four of the detected causes by
tsFCI were a subset of the ones detected by SyPI. For the majority of the remaining states
tsFCI yielded ’«’, without being able to conclude to one direction. SyPI needed only 19
seconds to run, while tsFCI needed 15 minutes for the same dataset.
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Figure 4: a) Percentage of detected district causes (out of 231 detected causes in total) by
category of district relative to target district. Most causes of a given target turn out to be
neighbouring districts, and of the distant ones, many are close to major airports. Only 12%
of the detected causes cannot be justified by proximity to the target or to a larger airport.
b) Detected distant causes located close to the large airports. To assign a detected causes to
one of the airports it had to meet two criteria: 1. located in near the airport (see main text),
and 2. the target of this cause also needs to be located close to another big airport. We sort
the airports by the number of detected causes.
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5 Discussion

5.1 Findings of the causal analysis

We performed a causal analysis both on a federal state/policy level, and on a more fine-
grained district level. We tried normalising the case numbers in various ways (e.g., dividing
by the maximum), but the results were not much affected. We decided not to normalise
the data by population, as we felt this would unduly enhance the influence of less populous
states. For the policy analysis, we compared the findings of SyPI with the predictions of
the widely used Lasso-Granger [19] as well as tsFCI [21]. We did not compare with seqICP
[2], which is a feature selection method, since this method requires that no interventions are
applied on the target. In the present setting, the target always is subject to interventions.
Lasso-Granger detected almost every candidate region and distancing measure as causal,
which is not surprising in a confounded real-world dataset like the present one. On the
contrary, tsFCI detected very few directed arrows.

SyPI, on the other hand, yielded more meaningful results. We saw that the causes detected
by SyPI on a district level tended to be neighbouring German districts, modulo the presence
of major airports (which tend to be associated with industrial hubs). The pattern for federal
states was consistent with this, but since there are fewer federal states than districts, numbers
are small. The results in Figure seem meaningful in that much of the spread is local.
In addition, Bayern and Baden-Wirttemberg, the federal states with the largest current



Covid-19 incidencesﬂ have almost no arrows coming in from other states (see also Fig. .
In the district-level analysis only 38 out of 167 detected causes of targets in these two
federal states belonged to another state. The majority of detected causes was due to internal
mobility (84.7% for Baden-Wiirttemberg and 73% for Bayern). This finding is also in line
with mobility charts in Germany that show a gradual increase from April on, mostly on the
states of Baden-Wiirttemberg, Bayern and Berlin ﬂ It is believed that those states (which
lie in the South) had a strong influx of cases from Italy and Austria, where the pandemic
took hold earlierm As a noteworthy detail, our algorithm identified Tirschenreuth (northeast
Bavaria) as the cause of all its neighbouring districts (Wunsiedel im Fichtelgebirge, Bayreuth,
Neustadt an der Waldnaab). On March 7th, a large festival took place in Mitterteich in the
district of Tirschenreuth, with a strong subsequent local COVID-19 outbreakﬂ Furthermore,
we saw that for the federal states, different restriction policies were found as causal, yet
the analysis until the 15/05/2020 showed that for the majority of states the closing of the
universities and schools was detected as causal. Our findings about the causal role of banning
gatherings of more than 1000 people, followed by closing of schools and ban of meetings of
more than 2 people, are also in agreement with the modeling analysis of [9].

5.2 Validity of assumptions made

A potential issue is the time delay between the application of a restriction measure and the
observation of its effects on the target. Note that schools and universities were (often) closed
later than some other measures were taken, e.g., the ban on larger gatherings. With SyPI, it
is hard to infer which policy had the strongest effect unless we knew exactly the incubation
time of each measure and actually shift the time series of cases by a corresponding amount.
As we learn more about epidemiological parameters of Covid-19 (e.g., the typical time delay
between infection and being tested positive), we may be able to perform the latter analysis.

As mentioned in Section we assume that the policies affect the target (Covid-19 cases)
and not the other way around, in order to comply with our requirement that none of the
descendants of the target belongs in its candidate causes. This may be violated if policies
were adjusted based on the observed number of positive cases. We can be sure from the
theoretical point of view that the detected causes are not confounded covariates. However,
the method will likely have failed to detect all the true causes, if the aforementioned violation
applies. With Theorem [A] we relaxed the strictly phrased assumption of SyPI about the
target being a sink node, by requiring only that it has no descendants among its candidates.
In practice, we try to ensure this by selecting as candidates only regions that have already
reported cases before the target. This makes it likely that no (or few) effects of the target
exist in its candidate causes.

5.3 Contributions & conclusions

Motivated by an application on Covid-19 spreading, we relaxed a strictly phrased assumption
of the causal feature selection algorithm SyPI of [6], making it applicable to a causal
analysis of daily reported Covid-19 cases of German states and districts, and state-wise
social distancing measures. While ground truth is not available, our results as discussed
in Section [5.1] seem meaningful. Possibly the biggest weakness of our approach lies in the
fact that the data we used is confined: (1) we only look at case numbers, in contrast to
more sophisticated methods to track the spread of an epidemic using contact tracing or even
genetic analyses [23]. Moreover, (2) the sample size is small (the pandemic still be relatively
new), and (3) the political interventions considered are binary and thus also provide relatively
little information. It is encouraging, however, that already such limited data seems to contain
causal signals pertaining to a highly non-trivial task. This suggests that our approach may
contribute towards meaningful causal analysis of political interventions on the spread of
Covid-19 as more data becomes available.
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6 Broader Impact

The causal analysis proposed in this paper aims at contributing to the broader effort of
scientists to understand the spread of the Covid-19 pandemic and the causal role of political
interventions such as social distancing. The causal method being applied and assayed in
this work can provide trustworthy causal results, since it is robust against false positives
in the presence of latent confounders in time series — note that in Covid-19 data science
problems, with our limited present understanding, it is likely that relevant covariates are
unobserved, leading to confounded problems. Despite the theoretical validity of the causal
method, caution should be exercised in the interpretation of the results of the present study,
due to the limited data available for this analysis (only daily reported Covid-19 cases for
different regions, and some political interventions), and the sheer difficulty of the task.
At present, we would thus not recommend that our empirical findings be used
to guide public policy. However, we find our results encouraging, given the hardness
of causal structure learning from observational real-world data, known to practitioners in
the field [1I]. We therefore believe that methods such as the one used above, and further
developments based upon it, can contribute towards rational approaches for choosing and
balancing restriction measures for pandemics such as Covid-19.
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