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Abstract

It has long been recognized that multi-agent reinforcement learning (MARL) faces
significant scalability issues due to the fact that the size of the state and action
spaces are exponentially large in the number of agents. In this paper, we identify
a rich class of networked MARL problems where the model exhibits a local
dependence structure that allows it to be solved in a scalable manner. Specifically,
we propose a Scalable Actor-Critic (SAC) method that can learn a near optimal
localized policy for optimizing the average reward with complexity scaling with
the state-action space size of local neighborhoods, as opposed to the entire network.
Our result centers around identifying and exploiting an exponential decay property
that ensures the effect of agents on each other decays exponentially fast in their
graph distance.

1 Introduction

As a result of its impressive performance in a wide array of domains such as game play (Silver et al.,
2016; Mnih et al., 2015), robotics (Duan et al., 2016), and autonomous driving (Li et al., 2019),
Reinforcement Learning (RL) has emerged as a promising tool for decision and control and there has
been renewed interest in the use of RL in multi-agent systems, i.e., Multi-Agent RL (MARL).

The multi-agent aspect of MARL creates additional challenges compared with single agent RL. One
core challenge is scalability. Even if individual agents’ state or action spaces are small, the global state
space or action space can take values from a set of size exponentially large in the number of agents.
This “curse of dimensionality” renders the problem intractable in many cases. For example, RL
algorithms such as temporal difference (TD) learning or Q-learning require storage of a Q-function
(Bertsekas and Tsitsiklis, 1996) whose size is the same as the state-action space, which in MARL is
exponentially large in n. Such scalability issues have been observed in the literature in a variety of
settings, including Blondel and Tsitsiklis (2000); Papadimitriou and Tsitsiklis (1999); Zhang et al.
(2019); Kearns and Koller (1999); Guestrin et al. (2003).

To address the issue of scalability, a promising approach that has emerged in recent years is to exploit
problem structure, e.g., (Gu et al., 2020; Qu and Li, 2019; Qu et al., 2019). One promising form
of structure is enforcing local interactions, i.e., agents are associated with a graph and they interact
only with nearby agents in the graph. Such local interactions are common in networked systems,
including epidemics (Mei et al., 2017), social networks (Chakrabarti et al., 2008; Llas et al., 2003),
communication networks (Zocca, 2019; Vogels et al., 2003), queueing networks (Papadimitriou and
Tsitsiklis, 1999), smart transportation (Zhang and Pavone, 2016), smart building systems (Wu et al.,
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2016; Zhang et al., 2017). One powerful property associated with local interactions is the so-called
exponential decay property (Qu et al., 2019), also known as the correlation decay (Gamarnik, 2013;
Gamarnik et al., 2014) or spatial decay (Bamieh et al., 2002; Motee and Jadbabaie, 2008), which says
that the impact of agents on each other decays exponentially in their graph distance. The exponential
decay property often leads to potential for scalable, distributed algorithms for optimization and
control (Gamarnik, 2013; Bamieh et al., 2002; Motee and Jadbabaie, 2008), and has proven effective
for MARL, e.g., Qu et al. (2019).

While exploiting local interactions and exponential decay in MARL has proven effective, results so
far have been derived only in cases considering discounted total reward as the objective, e.g., (Qu
et al., 2019). This is natural since results focusing on average reward, i.e., the reward in stationarity,
are known to be more challenging to derive and require different techniques, even in the single agent
RL setting (Tsitsiklis and Van Roy, 1999). However, in many networked system applications, the
average reward is a more natural objective. For example, in communication networks, the most
common objective is the performance of the system (e.g. throughput) in stationarity.

In this paper, our goal is to derive results for average reward MARL in networked systems. However,
it is unclear whether it is possible to obtain results that parallel those of Qu et al. (2019), which
focuses on discounted reward. In the average reward case, the exponential decay property exploited
by Qu et al. (2019) will no longer be true in general because the average reward case can capture
certain NP-hard problems in the worst case. For example, Blondel and Tsitsiklis (2000); Whittle
(1988); Papadimitriou and Tsitsiklis (1999) all point out that such Markov Decision Process (MDP)
with product state and action spaces is combinatorial in nature and is intractable from a computational
complexity perspective in the worst case.

Contributions. Despite the worst case intractability results, in this paper we show there are large
classes of networked systems where average reward MARL is tractable. More specifically, our main
technical result (Theorem 1) shows that an exponential decay property still holds in the average
reward setting under certain conditions that bound the interaction strength between the agents. These
conditions are general and, numerically, exponential decay holds with high probability when the
problem instance is generated randomly. Given the presence of exponential decay, we develop a
two time-scale actor-critic method (Konda and Tsitsiklis, 2000) and show that it finds a localized
policy that is a O(⇢+1)-approximation of a stationary point of the objective function (Theorem 2)
with complexity that scales with the local state-action space size of the largest -hop neighborhood,
as opposed to the global state-action space size. To the best of our knowledge, this is the first such
provable guarantee for scalable MARL with average reward for networked systems. Finally, to
demonstrate the effectiveness of our approach we illustrate its performance in a setting motivated by
protocol design for multi-access wireless communication.

The key analytic technique underlying our results is a novel MDP perturbation result. We show
that, when the local interaction between nodes is bounded, a perturbation on the state of an agent
has diminishing affect on the state distribution of far away agents, which enables us to establish the
exponential decay property that enables tractable learning. Our result has a similar flavor as some
static problems in theoretic computer science, like the Lovász local lemma (Moser and Tardos, 2010);
or the “correlation decay” in Gamarnik et al. (2014) for solving combinatorial optimization problems.
However, our result handles the more challenging dynamic setting where the states evolve over time.

Related Literature. MARL dates back to the early work of Littman (1994); Claus and Boutilier
(1998); Littman (2001); Hu and Wellman (2003) (see Bu et al. (2008) for a review) and has received
considerable attention in recent years, e.g. Zhang et al. (2018); Kar et al. (2013); Macua et al. (2015);
Mathkar and Borkar (2017); Wai et al. (2018) and the review in Zhang et al. (2019). MARL considers
widely-varying settings, including competitive agents and Markov games; however the setting most
relevant to ours is cooperative MARL. In cooperative MARL, the typical setting is that agents can
choose their own actions but they share a common global state (Bu et al., 2008). In contrast, we
study a more structured setting where each agent has its own state that it acts upon. Despite the
different setting, cooperative MARL problems still face scalability issues since the joint-action space
is exponentially large. Methods have been proposed to deal with this, including independent learners
(Claus and Boutilier, 1998; Matignon et al., 2012), where each agent employs a single-agent RL
method. While successful in some cases, such method can suffer from instability (Matignon et al.,
2012). Alternatively, one can approximate the large Q-table through linear function approximation
(Zhang et al., 2018) or neural networks (Lowe et al., 2017). Such methods can reduce computation
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complexity significantly, but it is unclear whether the performance loss caused by the function
approximation is small. In contrast, our technique not only reduces computation but also guarantees
small performance loss.

Our work adds to the growing literature that exploits exponential decay in the context of networked
systems. The exponential decay concept we use is related to the concept of “correlation decay” studied
in Gamarnik (2013); Gamarnik et al. (2014), though their focus is on solving static combinatorial
optimization problems whereas ours is on learning polices in dynamic environments. Most related to
the current paper is Qu et al. (2019), which considers the same networked MARL setting but focuses
on discounted reward. The discount factor ensures that exponential decay always holds, in stark
contrast to the more challenging average setting which is combinatorial in nature and is intractable
in the worst case. Additionally, our result in the average reward case improves the bound on the
exponential decay rate in the discounted setting (Corollary 1).

More broadly, this paper falls under the category of “succinctly described” MDPs in Blondel and
Tsitsiklis (2000, Section 5.2), which shows that when the state/action space is a product space formed
by the individual state/action spaces of multiple agents, the resulting Markov Decision Process (MDP)
is intractable in general, even when the problem has structure (Blondel and Tsitsiklis, 2000; Whittle,
1988; Papadimitriou and Tsitsiklis, 1999). In the context of these worst case complexity results, our
work identifies conditions when it is possible to develop scalable methods.

Finally, our work is related to factored MDPs, weakly coupled MDPs, and mean-field RL, though the
model and the focus are very different. In factored MDPs, there is a global action affecting every
agent whereas in our case, each agent has its own action (Kearns and Koller, 1999; Guestrin et al.,
2003; Osband and Van Roy, 2014). In weakly coupled MDPs, agents’ transitions are decoupled
(Meuleau et al., 1998) in stark contrast to our coupled setting. In mean-field RL, the agents are
coupled but are assumed to be “homohenous”, therefore the influence among agents can be well
approximated by their average (Yang et al., 2018; Gu et al., 2020). In contrast, our work does not
place homogeneity assumptions, but assumes local interactions instead.

2 Preliminaries

In this section, we formally introduce the problem and define a key concept, the exponential decay
property, that will be used throughout the rest of the paper.

2.1 Problem Formulation

We consider a network of n agents that are associated with an underlying undirected graph G =
(N , E), where N = {1, . . . , n} is the set of agents and E ⇢ N ⇥ N is the set of edges. Each
agent i is associated with state si 2 Si, ai 2 Ai where Si and Ai are finite sets. The global
state is denoted as s = (s1, . . . , sn) 2 S := S1 ⇥ · · · ⇥ Sn and similarly the global action
a = (a1, . . . , an) 2 A := A1 ⇥ · · · ⇥ An. At time t, given current state s(t) and action a(t), the
next individual state si(t+ 1) is independently generated and is only dependent on neighbors:

P (s(t+ 1)|s(t), a(t)) =
nY

i=1

Pi(si(t+ 1)|sNi(t), ai(t)), (1)

where notation Ni means the neighborhood of i (including i itself) and sNi is the states of i’s
neighbors. In addition, for integer  � 1, we let N

i denote the -hop neighborhood of i, i.e. the
nodes whose graph distance to i is less than or equal to , including i itself. We also use z = (s, a)
and Z = S ⇥A to denote the state-action pair (space), and zi,Zi are defined analogously.

Each agent is associated with a class of localized policies ⇣✓ii parameterized by ✓i. The localized policy
⇣✓ii (ai|si) is a distribution on the local action ai conditioned on the local state si, and each agent,
conditioned on observing si(t), takes an action ai(t) independently drawn from ⇣✓ii (·|si(t)). We use
✓ = (✓1, . . . , ✓n) to denote the tuple of the localized policies ⇣✓ii , and use ⇣✓(a|s) =

Qn
i=1 ⇣

✓i
i (ai|si)

to denote the joint policy.

Each agent is also associated with a stage reward function ri(si, ai) that depends on the local state
and action, and the global stage reward is r(s, a) = 1

n

Pn
i=1 ri(si, ai). The objective is to find
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localized policy tuple ✓ such that the global stage reward in stationarity is maximized,

max
✓

J(✓) := E(s,a)⇠⇡✓r(s, a), (2)

where ⇡✓ is the distribution of the state-action pair in stationarity. We also define Ji(✓) to be
Ji(✓) = E(s,a)⇠⇡✓ri(si, ai), which satisfies J(✓) = 1

n

Pn
i=1 Ji(✓).

To provide context for the rest of the paper, we now review a few key concepts in RL. Fixing a
localized policy ✓, the Q function for the policy is defined as,

Q✓(s, a) = E✓

 1X

t=0

�
r(s(t), a(t))� J(✓)

�����s(0) = s, a(0) = a

�

=
1
n

nX

i=1

E✓

 1X

t=0

⇣
ri(si(t), ai(t))� Ji(✓)

⌘����s(0) = s, a(0) = a

�
:=

1
n

nX

i=1

Q✓
i (s, a), (3)

where in the last step, we have also defined Q✓
i , the Q-function for the local reward. We note here

that both Q✓ and Q✓
i depends on the state-action pair of the whole network, and is thus intractable to

compute and store.

Finally, we review the policy gradient theorem (Lemma 1), an important tool for our analysis. It
can be seen that the exact policy gradient relies on the full Q-function, which may be intractable to
compute due to its large size.
Lemma 1 (Sutton et al. (2000)). Recall ⇡✓

is the stationary distribution for the state-action pair

under policy ✓. The gradient of J(✓) is then given by

r✓J(✓) = E(s,a)⇠⇡✓Q✓(s, a)r✓ log ⇣
✓(a|s).

Average reward vs. discounted reward. Our objective (2) is the average reward under the sta-
tionary distribution, which is different from the more commonly studied �-discounted reward,
E
P1

t=0 �
tr(st, at) for some � 2 (0, 1), starting from some fixed initial state s0. In many appli-

cations, there is no naturally defined starting state or discounting factor, and the performance is
measured under the stationary distribution. For example, in wireless communication (Section 4), the
long standing performance metric is the throughput, which measures the average number of packets
sent under the stationary distribution. Despite its relevance in applications, it is widely known that
average reward RL is more challenging than discounted reward RL even in single-agent settings.
For example, in average reward RL, the Bellman operator is no longer a contraction in general, and
the set of fixed points is no longer unique compared to the discounted case (Tsitsiklis and Van Roy,
1999, 2002). On top of the above, in multi-agent settings, the average reward case faces additional
challenges. Specifically, as will be shown in Appendix A.2, the average reward problem captures
certain NP-hard instances, in sharp contrast to the discounted case in Qu et al. (2019) where the
hardness result does not hold.

Comparison to mean-field RL. A highly related problem to our setting is mean-field multi-agent RL
(Gu et al., 2020), where similar to our setting, the global state and action space is the product space
of local state and action spaces, leading to the same curse of dimensionality issue as our problem.
However, different to our local interaction structure (1), Gu et al. (2020) allows global interaction
but assumes the agents are identical, and only interact through “population distribution”, meaning
each agent’s transition depends on other agents only through other agents’ aggregate state and action
distribution. This difference in structural assumption makes the application scenario, algorithm
design and analysis of Gu et al. (2020) very different from ours, and we leave it as future work to
compare Gu et al. (2020) with our work in more detail.

2.2 Exponential Decay Property and Efficient Approximation of Q-Function

Given the local interaction structure in the probability transition (1), a natural question to ask is that
whether and under what circumstance, nodes that are far away have diminishing effect on each other.
This has indeed been the subject of study in various contexts (Gamarnik, 2013; Gamarnik et al.,
2014; Bamieh et al., 2002; Qu et al., 2019), where exponential decay properties or variants have
been proposed and exploited for algorithmic design. In what follows, we provide the definition of
the exponential decay property in the context of MARL and show its power in approximation of the
exponentially large Q-function.
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We define N
�i = N/N

i , i.e. the set of agents that are outside of node i’s -hop neighborhood for
some integer . We also write state s as (sN

i
, sN

�i
), i.e. the states of agents that are in the -hop

neighborhood of i and outside of the -hop neighborhood respectively. The (c, ⇢) exponential decay
property is defined below (Qu et al., 2019).
Definition 1. The (c, ⇢) exponential decay property holds for c > 0, ⇢ 2 (0, 1), if for any ✓, for any

i 2 N , sN
i
2 SN

i
, sN

�i
, s0N

�i
2 SN

�i
, aN

i
2 AN

i
, aN

�i
, a0N

�i
2 AN

�i
, the following holds,

���Q✓
i (sN

i
, sN

�i
, aN

i
, aN

�i
)�Q✓

i (sN
i
, s0N

�i
, aN

i
, a0N

�i
)
���  c⇢+1. (4)

The power of the exponential decay property is that it guarantees the dependence of Q✓
i on other

agents shrinks quickly as the distance between them grows. This naturally leads us to consider the
following class of truncated Q-functions, where dependence on far-away nodes are “truncated”,

Q̃✓
i (sN

i
, aN

i
) =

X

sN
�i

2SN
�i

,aN
�i

2AN
�i

wi(sN
�i

, aN
�i

; sN
i
, aN

i
)Q✓

i (sN
i
, sN

�i
, aN

i
, aN

�i
), (5)

where wi(sN
�i
, aN

�i
; sN

i
, aN

i
) are any non-negative weights satisfying

X

sN
�i

2SN
�i

,aN
�i

2AN
�i

wi(sN
�i
, aN

�i
; sN

i
, aN

i
) = 1, 8(sN

i
, aN

i
) 2 SNk

i
⇥ANk

i
. (6)

The following lemma shows that the exponential decay property guarantees the truncated Q-function
(5) is a good approximation of the full Q-function (3). Further, when using the truncated Q-functions
in the policy gradient (Lemma 1) in place of the full Q function, the exponential decay property
enables an accurate approximation of the policy gradient, which is otherwise intractable to compute
in its original form in Lemma 1. The proof of Lemma 2 can be found in Appendix A.1 in the
supplementary material.
Lemma 2. Under the (c, ⇢) exponential decay property, for any truncated Q-function in the form of

(5), the following holds.

(a) 8(s, a) 2 S ⇥A, |Q✓
i (s, a)� Q̃✓

i (sN
i
, aN

i
)|  c⇢+1

.

(b) Define the following approximated policy gradient,

ĥi(✓) = E(s,a)⇠⇡✓

h 1
n

X

j2N
i

Q̃✓
j (sN

j
, aN

j
)
i
r✓i log ⇣

✓i
i (ai|si). (7)

Then, if kr✓i log ⇣
✓i
i (ai|si)k  Li for any ai, si, we have kĥi(✓)�r✓iJ(✓)k  cLi⇢+1

.

The above results show the power of the exponential decay property – the Q function and the policy
gradient can be efficiently approximated despite their exponentially large dimension. These properties
can be exploited to design scalable RL algorithms for networked systems.

While the exponential decay property is powerful, we have yet to show it actually holds under the
average reward setting of this paper. In Qu et al. (2019), it was shown that the exponential decay
property always holds when the objective is the discounted total reward. It turns out the average
reward case is fundamentally different. In fact, it is not hard to encode NP-hard problems like graph
coloring, 3-SAT into our setup (for an example, see Appendix A.2 in the supplementary material). As
such, our problem is intractable in general, and there is no hope for the exponential decay property to
hold generally. This is perhaps not surprising given the literature on MDPs with product state/action
spaces (Blondel and Tsitsiklis, 2000; Papadimitriou and Tsitsiklis, 1999), which all point out the
combinatorial nature and intractability of such multi-agent MDP problems.

Despite the worst case intractability, in the next section we show that a large class of subproblems in
fact do satisfy the exponential decay property, for which we design a scalable RL algorithm utilizing
the approximation guarantees in Lemma 2 implied by the exponential decay property.

3 Main Result

Despite the worst case intractability, in this section we identify a large subclass where learning
is tractable, and illustrate this by developing a scalable RL algorithm for such problems. To this
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end, in Section 3.1, we identify a general condition on the interaction among the agents under
which the exponential decay property holds. Then, the exponential decay property, together with
the idea of truncated Q-function and policy gradient outlined in Section 2.2, is combined with the
actor critic framework in Section 3.2 to develop a Scalable Actor Critic algorithm that can find a
O(⇢+1)-approximate stationary point of the objective function J(✓) with complexity scaling with
the state-action space size of the largest -hop neighborhood.

3.1 Exponential Decay Holds when Interactions are Bounded

Our first result is our most technical and it identifies a rich class of problems when the exponential
decay property holds.
Theorem 1. Define

Cij =

8
<

:

0, if j /2 Ni,
supsNi/j

,ai
supsj ,s0j TV(Pi(·|sj , sNi/j , ai), Pi(·|s0j , sNi/j , ai)), if j 2 Ni, j 6= i,

supsNi/i
supsi,s0i,ai,a0

i
TV(Pi(·|si, sNi/i, ai), Pi(·|s0i, sNi/i, a

0
i)), if j = i,

where TV(·, ·) is the total variation distance bewteen two distributions. If for all i 2 N ,
Pn

j=1 Cij 
⇢ < 1 and |ri(si, ai)|  r̄, 8(si, ai) 2 Si ⇥Ai, then the ( r̄

1�⇢ , ⇢) exponential decay property holds.

The proof of Theorem 1 can be found in Appendix B.1 in the supplementary material. The key analytic
technique underlying our the proof is a novel MDP perturbation result (Lemma 3 in Appendix B.1 in
the supplementary material). We show that, under the condition in Theorem 1, a perturbation on the
state of an agent has exponential decaying affect on the state distribution of far away agents, which
enables us to establish the exponential decay property.

In Theorem 1, Cij is the maximum possible change of the distribution of node i’next state as a result
of a change in node j’th current state, where “change” is measured in total-variation distance. In
other words, Cij can be interpreted as the strength of node j’s interaction with node i. With this
interpretation, Theorem 1 shows that, for the exponential decay property to hold, we need (a) the
interaction strength between each pair of nodes to be small enough; and (b) each node to have a
small enough neighborhood. This is consistent with related conditions in the literature in exponential
decay in static combinatorial optimizations, e.g. in Gamarnik (2013); Gamarnik et al. (2014), which
requires the product between the maximum “interaction” and the maximum degree is bounded.

Relation to discounted reward case. In the �-discounted total reward case in Qu et al. (2019), the
exponential decay property is automatically true with decay rate � because for an agent to affect
another far-way agent, it takes many time steps for the effect to take place, at which time the effect
will have been significantly dampened as a result of the discounting factor. This stands in contrast
with the average reward case, where it is unclear whether the exponential decay property holds or not
as there is no discounting anymore. As a result, the analysis for the average reward turns out to be
more difficult and requires very different techniques. Having said that, the result in the average reward
case also has implications for the discounted reward case. Specifically, the results in Theorem 1
also leads to a sharper bound on the decay rate in the exponential decay property for the discounted
reward case, showing the decay rate can be strictly smaller than the discounting factor �. This is
stated in the following corollary, and we provide a more detailed explanation on its setting and proof
in Appendix B.3 in the supplementary material.
Corollary 1. Under the conditions in Theorem 1, the ( r̄

1��⇢ , ⇢�) exponential decay property holds

for the �-discounted reward case.

Finally, beyond the theoretic result, we also numerically verify that the exponential decay prop-
erty holds widely for many randomly generated problem instances. We report these findings in
Appendix B.4 in the supplementary material.

3.2 Scalable Actor-Critic Algorithm and Convergence Guarantee

Given the establishment of the exponential decay property in the previous section, a natural idea for
algorithm design is to first estimate a truncated Q function (5), compute the approximated policy
gradient (7) and then do gradient step. In the following, we combine these ideas with the actor-
critic framework in Konda and Tsitsiklis (2000) which uses Temporal Difference (TD) learning to
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estimate the truncated Q-function, and present a Scalable Actor Critic Algorithm in Algorithm 1.
In Algorithm 1, each step is conducted by all agents but is described from agent i’s perspective,
and for the ease of presentation, we have used z (Z) to represent state-action pairs (spaces), e.g.
zi(t) = (si(t), ai(t)) 2 Zi = Si ⇥ Ai, zN

i
(t) = (sN

i
(t), aN

i
(t)) 2 ZN

i
= SN

i
⇥ AN

i
. The

algorithm runs on a single trajectory and, at each iteration, it consists of two main steps, the critic
(step 5 and 6) and the actor (step 7 and 8), which we describe in detail below.

• The Critic. In line with TD learning for average reward (Tsitsiklis and Van Roy, 1999),
the critic consists of two variables, µ̂t

i, whose purpose is to estimate the average reward; and
Q̂t

i, the truncated Q function, which follows the standard TD update. We note here that Q̂t
i is

one dimension less than the Q̃i defined in (5). In more detail, Q̃i 2 RZN
i is defined on all

state-action pairs in the neighborhood, but for Q̂t
i we select an arbitrary dummy state-action

pair z̃N
i
2 ZN

i
, and Q̂t

i 2 RẐN
i is only defined on ẐN

i
= ZN

i
/{z̃N

i
}. In other words,

Q̂t
i(zN

i
) is not defined for zN

i
= z̃N

i
, and when encountered, Q̂t

i(z̃N
i
) is considered as 0. The

reason for introducing such dummy state-action pair is mainly technical and is standard in value
iteration for the average reward MDP, see e.g. Bertsekas (2007).

• The Actor. The actor computes the approximated gradient using the truncated Q-function
according to Lemma 7 and follows a gradient step. Note that the step size in the gradient
step contains a rescaling scalar factor �(Q̂t) which depends on the truncated Q-functions
Q̂t = {Q̂t

i}ni=1. Such a rescaling factor is used in Konda and Tsitsiklis (2000) and is mainly
an artifact of the proof used to guarantee the actor does not move too fast when Q̂t

i is large. In
numerical experiments, we do not use this rescaling factor.

Algorithm 1 Scalable Actor-Critic (SAC)
Input: ✓i(0); parameter ; step size sequence {↵t, ⌘t}.

1 Initialize µ̂0
i = 0 and Q̂0

i to be the all zero vector in RẐN
i ; start from random zi(0) = (si(0), ai(0))

2 for t = 0, 1, 2, . . . do

3 Receive reward ri(t) = ri(si(t), ai(t)).
4 Get state si(t+ 1), take action ai(t+ 1) ⇠ ⇣✓i(t)i (·|si(t+ 1))

/* The critic. */
5 Update average reward µ̂t+1

i = (1� ↵t)µ̂t
i + ↵tri(t).

6 Update truncated Q function. If zN
i
(t) = z̃N

i
, then set Q̂t+1

i (zN
i
) = Q̂t

i(zN
i
), 8zN

i
2 ẐN

i
.

Otherwise, set

Q̂t+1
i (zN

i
(t)) = (1� ↵t)Q̂

t
i(zN

i
(t)) + ↵t(ri(t)� µ̂t

i + Q̂t
i(zN

i
(t+ 1))),

Q̂t+1
i (zN

i
) = Q̂t

i(zN
i
), for zN

i
2 ẐN

i
/{zN

i
(t)},

with the understanding that Q̂t
i(z̃N

i
) = 0.

/* The actor. */
7 Calculate approximated gradient ĝi(t) = r✓i log ⇣

✓i(t)
i (ai(t)|si(t)) 1n

P
j2N

i
Q̂t

j(zN
j
(t)).

8 Conduct gradient step ✓i(t + 1) = ✓i(t) + �tĝi(t), where �t = ⌘t�(Q̂t) and �(Q̂t) =
1

1+maxj kQ̂t
jk1

is a rescaling scalar.

9 end

In the following, we prove a convergence guarantee for Scalable Acotr Critic method introduced
above. To that end, we first describe the assumptions in our result. Our first assumption is that the
rewards are bounded, a standard assumption in RL (Tsitsiklis and Van Roy, 1997).
Assumption 1. For all i, and si 2 Si, ai 2 Ai, we have 0  ri(si, ai)  r̄.

Our next assumption is the exponential decay property, which as shown in Section 3.1, holds broadly
for a large class of problems.
Assumption 2. The (c, ⇢) exponential decay property holds.

7



Our next assumption is on the step size and is standard (Konda and Tsitsiklis, 2000). We note that
our algorithm uses two-time scales, meaning the actor progresses slower than the critic.
Assumption 3. The positive step sizes ↵t, ⌘t are deterministic, non-increasing, square summable

but not summable
1

and satisfy
P1

t=0(
⌘t

↵t
)d < 1 for some d > 0.

Our next assumption is that the underlying problem is uniformly ergodic, which is again standard
(Konda and Tsitsiklis, 2000).
Assumption 4. Under any policy ✓, the induced Markov chain over the state-action space Z = S⇥A
is ergodic with stationary distribution ⇡✓

. Further, (a) For all z 2 Z , ⇡✓(z) � � for some � > 0. (b)

kP ✓ � 1(⇡✓)>kD✓  µD for some µD 2 (0, 1), where D✓ = diag(⇡✓) 2 RZ⇥Z
and k · kD✓ is the

weighted Euclidean norm kxkD✓ =
p
x>D✓x for vectors x 2 RZ

, and the corresponding induced

norm for matrices.

Note that, for Markov chains on the state-action pair that are ergodic, Assumption 4 are automatically
true for some � > 0 and µD 2 (0, 1).2 Assumption 4 also requires that it is true with constant �, µD

holds uniformly for all ✓. Such a uniform ergodicity assumption is common in the literature on
actor-critic methods, e.g. Konda and Tsitsiklis (2003). Lastly, we assume the gradient is bounded and
is Lipschitz continuous, again a standard assumption (Qu et al., 2019).

Assumption 5. For each i, ai, si, kr✓i log ⇣
✓i
i (ai|si)k  Li. We let L :=

qP
i2N L2

i . Further,

r✓i log ⇣
✓i
i (ai|si) is L0

i-Lipschitz continuous in ✓i, and rJ(✓) is L0
-Lipschitz continuous in ✓.

We can now state our main convergence result. Note that the guarantee is asymptotic in nature. This
is to be expected since, to the best of our knowledge, the finite time performance of two-time scale
actor-critic algorithms on a single trajectory has long remained an open problem until the very recent
progress of (Wu et al., 2020; Xu et al., 2020). We leave a finite time analysis of our algorithm as
future work.
Theorem 2. Under Assumptions 1-5, we have lim infT!1 krJ(✓(T ))k  L c⇢+1

1�µD
.

Briefly speaking, Theorem 2 is a consequence of the power of exponential decay property in approxi-
mating the Q-function (Lemma 2), and its proof also uses tools from the stochastic approximation
literature (Konda and Tsitsiklis, 2003). The complete proof of Theorem 2 is provided in Appendix D
in the supplementary material. We comment that the asymptotic bound in Theorem 2 does not depend
on parameters like L0, r̄, but these parameters will affect the convergence rate of the algorithm. From
Theorem 2, our Scalable Actor Critic algorithm can find an approximated stationary point with
gradient size O(⇢+1) that decays exponentially in . Therefore, even for a small , our algorithm
can find an approximate local minimizer in a scalable manner, with the complexity of the algorithm
only scales with the state-action space size of the largest -hop neighborhood due to the use of the
truncated Q function, which could be much smaller than the full state-action space size (which are
exponentially large in n) when the graph is sparse.

Comparison of Theorem 2 to the discounted case. Despite the similarity in the overall structure of the
algorithms, the analysis of the algorithm in our case (Theorem 2) is very different from that in the
discounted reward setting in Qu et al. (2019). Algorithmically, in Qu et al. (2019), at each time, there
is a (long) inner loop of critic (TD-learning) steps that estimate the Q-function to a good accuracy
during which the policy is fixed. This makes the analysis of the critic “decoupled” from the policy
updates (actor). In our work, there is no inner loop, and the critic (TD-learning) and actor (policy
update) steps are performed simultaneously. This creates many challenges in the analysis, as the
critic no longer operates under a fixed policy, and the analysis of it cannot be decoupled from the
actor. Therefore, our proof of Theorem 2 is drastically different from that in Qu et al. (2019) and
requires tools from two-time-scale stochastic approximation (Konda and Tsitsiklis, 2003).

Relationship between Theorem 1 and Theorem 2. The conclusion of Theorem 1 is stated as Assump-
tion 2 for Theorem 2. Other than that, Theorem 1 and Theorem 2 are independent results. On one
hand, Theorem 1 focuses on the exponential decay property of Q functions, which can be useful for

1A sequence ↵t is square summable if
P1

t=0 ↵
2
t < 1; is not summable if

P1
t=0 ↵t = 1.

2Assumption 4(b) is standard in the study of average reward TD learning, e.g. Tsitsiklis and Van Roy (1999,
Sec. 4.3).
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Figure 1: Setup of users and access points. Figure 2: Average reward over the training process.

many types of RL methods beyond the actor-critic method studied in Theorem 2. On the other hand,
the conditions in Theorem 1 might be conservative and the exponential decay may hold beyond the
conditions in Theorem 1. Therefore, the conclusion of Theorem 2 may hold even if the conditions in
Theorem 1 are not met.

4 Numerical Experiments

We consider a wireless network with multiple access points (Zocca, 2019; Lin et al., 2020), where there
is a set of users N = {u1, u2, · · · , un}, and a set of network access points Y = {y1, y2, · · · , ym}.
Each user ui only has access to a subset Yi ✓ Y of the access points. We define the interaction graph
as the conflict graph, in which two users i and j are neighbors if and only if they share an access point.
Each user i maintains a queue of packets defined as follows. At time step t, with probability pi, user
i receives a new packet with an initial deadline di. Then, user i can choose to send the earliest packet
in its queue to one access point in its available set Yi, or not sending at all. If an action of sending to
yk 2 Yi is taken, and if no other users send to the same access point at this time, then the earliest
packet in user i’s queue is transmitted with success probability qk which depends on the access point
yk; however, if another user also chooses to send to yk, then there is a conflict and no transmission
occurs. If the packet is successfully transmitted, it will be removed from user i’s queue and user i
will get a reward of 1. After this, the system moves to the next time step, with all deadlines of the
remaining packets decreasing by 1 and packets with deadline 0 being discarded. In this example, the
local state si of user i is a characterization of its queue of packets, and is represented by a di binary
tuple si = (e1, e2, · · · , edi) 2 Si = {0, 1}di , where for each ` 2 {1, . . . , di}, e` 2 {0, 1} indicates
whether user i has a packet with remaining deadline `. The action space is Ai = {null} [ Yi, where
null represents the action of not sending.

In the experiments, we set the deadline as di = 2, and all parameters pi (packet arrival probability for
user ui) and qk (success transmission probability for access point yk) is generated uniformly random
from [0, 1]. We consider a grid of 6 ⇥ 6 users in Figure 1, where each user has access points on
the corners of its area. We run the Scalable Actor Critic algorithm with  = 1 to learn a localized
soft-max policy, starting from a initial policy where the action is chosen uniformly random. We
compare the proposed method with a benchmark based on the localized ALOHA protocol (Roberts,
1975), where each user has a certain probability of sending the earliest packet and otherwise not
sending at all. When it sends, it sends the packet to a random access point in its available set,
with probability proportion to the success transmission probability of this access point and inverse
proportion to the number of users that share this access point. We also compare our algorithm to the
independent learner actor-critic algorithm Tan (1993); Lowe et al. (2017), where each agent runs a
single-agent actor-critic algorithm using its local states and local actions. The results are shown in
Figure 2. It shows that the proposed algorithm can outperform the ALOHA based benchmark, despite
the proposed algorithm does not have access to the transmission probability qk which the benchmark
has access to. The proposed approach also outperforms the independent learner algorithm, which is
to be expected as the independent learner approach does not take into account the interactions from
neighbors.
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Broader Impact

This paper contributes to the theoretical foundations of multi-agent reinforcement learning, with the
goal of developing tools that can apply to the control of networked systems. The work can potentially
lead to RL-based algorithms for the adaptive control of cyber-physical systems, such as the power
grid, smart traffic systems, communication systems, and other smart infrastructure systems. While the
approach is promising, as with other all theoretical work, it is limited by its assumptions. Applications
of the proposed algorithm in its current form should be considered cautiously since the analysis here
focuses on efficiency and does not consider the issue of fairness.

We see no ethical concerns related to this paper.
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