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Abstract

A streaming algorithm is said to be adversarially robust if its accuracy guarantees
are maintained even when the data stream is chosen maliciously, by an adaptive
adversary. We establish a connection between adversarial robustness of streaming
algorithms and the notion of differential privacy. This connection allows us to
design new adversarially robust streaming algorithms that outperform the current
state-of-the-art constructions for many interesting regimes of parameters.

1 Introduction

The field of streaming algorithms was formalized by Alon, Matias, and Szegedy [3l, and has
generated a large body of work that intersects many other fields in computer science such as theory,
databases, networking, and natural language processing. Consider a scenario in which data items
are being generated one by one, e.g., IP traffic monitoring or web searches. Generally speaking,
streaming algorithms aim to process such data streams while using only a limited amount of memory,
significantly smaller than what is needed to store the entire data streamE] Typical streaming problems
include estimating frequency moments, counting the number of distinct elements in the stream,
identifying heavy-hitters in the stream, estimating the median of the stream, and much more [22, 13|
41,1341 16l 141 [15] 28, 37, 1211, 1311, 38]].

Usually, streaming algorithms can be queried a lot of times throughout the execution. The reason is
that (usually) the space requirement of streaming algorithms scales as log(1/d), where ¢ is the failure
probability of the algorithm. By a union bound, this means that in order to guarantee accuracy for m
queries (with probability 1 — §) the space only scales proportionally to log(m/4), so we can tolerate
quite a few queries without blowing up space. However, for this argument to go through, we need to
assume that the entire stream is fixed in advanced (and is just given to us one item at a time), or at
least that the choice of the items in the stream is independent of the internal state (and coin tosses) of
our algorithm. This setting is sometimes referred to as the oblivious setting. The vast majority of the
work on streaming algorithms is focused on the oblivious setting.

Now suppose that the items in the stream, as well as the queries issued to the algorithm, are chosen
by an adaptive (stateful) adversary. Specifically, every item in the stream (and each of the queries)
is chosen by the adversary as a function of the previous items in the stream, the previous queries,
and the previous answers given by our streaming algorithm. As a result, the items in the stream are
no longer independent of the internal state of our algorithm. Oblivious streaming algorithms fail to
provide meaningful utility guarantees in such a situation. In this work we aim to design adversarially
robust streaming algorithms that maintain (provable) accuracy against such adaptive adversaries,

*Bar-Ilan University and Google.

Tel Aviv University and Google.

tGoogle.

$Ben-Gurion University and Google.

>We remark, however, that streaming algorithms are also useful in the offline world, for example in order to
process a large unstructured database that is located on an external storage.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



while of course keeping the memory and runtime requirements to a minimum. We stress that such
dependencies between the items in the stream and the internal state of the algorithm may occur
unintentionally (even when there is no “adversary”). For example, consider a large system in which a
streaming algorithm is used to analyze data coming from one part of the system while answering
queries generated by another part of the system, but these (supposedly) different parts of the system
are connected via a feedback loop. In such a case, it is no longer true that the items in the stream
are generated independently of the previous answers, and the vast majority of the existing streaming
algorithms would fail to provide meaningful utility guarantees.

Recall that (typically) in the oblivious setting the memory requirement only grows logarithmically
with the number m of queries that we want to support. For the adaptive setting, one can easily show
that a memory blowup of O(m) suffices. This can be achieved, e.g., by running m independent
copies of the algorithm (where we feed the input stream to each of the copies) and using each copy in
order to answer at most one query. Can we do better?

This question has motivated a recent line of work that is focused on constructing adversarially robust
streaming algorithms [36} 23| 24} [1, 2 27,19, |8]]. The formal model we consider was recently put
forward by Ben-Eliezer et al. [8]], who presented adversarially robust streaming algorithms for many
problems in the insertion-only model (i.e., when the stream contains only positive updates). Moreover,
their results extend to turnstile streams (where both positive and negative updates are allowed),
provided that the number of negative updates is small. The question remained largely open for the
general turnstile model where there might be a large number of negative updates.

1.1 Existing Results

We now give an informal overview of the techniques of [8]. This intuitive overview is generally
oversimplified, and hides many of the difficulties that arise in the actual analysis. See [8] for the
formal details and for additional results.

Consider a stream of updates (a1, A1), ..., (Gm, Ap), Where a; € [n] is the ith element and A; € Z
is its weight. For ¢ € [m] we write @; = ((a1, A1), ..., (a;, A;)) to denote the first ¢ updates in the
stream. Let g : ([n] X Z)* — R be a function (for example, g might count the number of distinct
elements in the stream). At every time step 4, after obtaining the next update in the stream (a;, A;),
our goal is to output an approximation for g(a;).

Ben-Eliezer et al. [8] focused on the case where all of the weights A; are positive (this assumption
is known as the insertion-only model). To illustrate the results of [8]], let us consider the distinct
elements problem, in which the function g counts the number of distinct elements in the stream.
Specifically, after every update (a;, A;) we need to output an estimation of g(@;) = |{a; : j € [i]}|.
Observe that, in the insertion-only model, this quantity is monotonically increasing. Furthermore,
since we are aiming for a multiplicative (1 & «) error, even though the stream is large (of length
m), the number of times we actually need to modify the estimates we release is quite small (roughly
é log m times). Informally, the idea of [§]] is to run several independent sketches in parallel, and
to use each sketch to release answers over a part of the stream during which the estimate remains
constant. In more detail, the generic transformation of [8]] (applicable not only to the distinct elements
problem) is based on the following definition.

Definition 1.1 (Flip number [8])). Given a function g, the (o, m)-flip number of g, denoted as
Aa,m(9), is the maximal number of times that the value of g can change (increase or decrease) by a
Sactor of (1 + «) during a stream of length m.

The generic construction of [8]] for a function g is as follows.
1. Instantiate A > A\, ., (g) independent copies of an oblivious streaming algorithm for the
function g, and set j = 1.
2. When the next update (a;, A;) arrives:
(a) Feed (a;, A;) to all of the X copies.
(b) Release an estimate using the jth copy (rounded to the nearest power of (1 4 «)). If
this estimate is different than the previous estimate, then set j <— 5 + 1.

Ben-Eliezer et al. [8] showed that this can be used to transform an oblivious streaming algorithm for g
into an adversarially robust streaming algorithm for g. In addition, the overhead in terms of memory



is only Aa, (), which is typically small in the insertion-only model (typically Ao.m(g) < 2 logm).
Moreover, [8]] showed that their techniques extend to the turnstile model (when the stream might
contain updates with negative weights), provided that the number of negative updates is small (and so
Aa,m(g) remains small).

Theorem 1.2 ([8], informal). Fix any function g and let A be an oblivious streaming algorithm for g
that for any o, 6 > 0 uses space L(«a, 0) and guarantees accuracy o with success probability 1 — ¢
for streams of length m. Then there exists an adversarially robust streaming algorithm for g that
guarantees accuracy o with success probability 1 — 0 for streams of length m using space

0 (1(55) i)
1.2 Our Results

We establish a connection between adversarial robustness of streaming algorithms and differential
privacy, a model to provably guarantee privacy protection when analyzing data. Consider a database
containing (sensitive) information pertaining to individuals. An algorithm operating on such a
database is said to be differentially private if its outcome does not reveal information that is specific
to any individual in the database. More formally, differential privacy requires that no individual’s
data has a significant effect on the distribution of the output. Intuitively, this guarantees that whatever
is learned about an individual could also be learned with her data arbitrarily modified (or without her
data). Formally,

Definition 1.3 ([18]). Let A be a randomized algorithm that operates on databases. Algorithm A is
(e, 9)-differentially private if for any two databases S, S’ that differ on one row, and any event T', we
have

Pr[A(S) € T] < e - Pr[A(S") € T] + 6.

Our main conceptual contribution is to show that the notion of differential privacy can be used as a
tool in order to construct new adversarially robust streaming algorithms. In a nutshell, the idea is to
protect the internal state of the algorithm using differential privacy. Loosely speaking, this limits (in
a precise way) the dependency between the internal state of the algorithm and the choice for the items
in the stream, and allows us to analyze the utility guarantees of the algorithm even in the adaptive
setting. Notice that differential privacy is not used here in order to protect the privacy of the data
items in the stream. Rather, differential privacy is used here to protect the internal randomness of the
algorithm.

For many problems of interest, even in the general turnstile model (with deletions), this technique
allows us to obtain adversarially robust streaming algorithms with sublinear space. To the best of our
knowledge, our technique is the first to provide meaningful results for the general turnstile model. In
addition, for interesting regimes of parameters, our algorithm outperforms the current state-of-the-art
constructions also for the insertion-only model (strictly speaking, our results for the insertion-only
model are incomparable with [8]).

We obtain the following theorem.

Theorem 1.4. Fix any function g and fix o, 6 > 0. Let A be an oblivious streaming algorithm for
g that uses space L (1%, %) and guarantees accuracy {5 with success probability 1% for streams
of length m. Then there exists an adversarially robust streaming algorithm for g that guarantees

accuracy o with success probability 1 — ¢ for streams of length m using space

0 <L (10(‘) 110> : \/Aﬁ),m(g) log (;) log (2;)) .

Compared to [8]], our space bound grows only as v/\ instead of linearly in A. This means that in
the general turnstile model, when A can be large, we obtain a significant improvement at the cost of
additional logarithmic factors. In addition, as A typically scales at least linearly with 1/« we obtain
improved bounds even for the insertion-only model in terms of the dependency of the memory in
1/« (again, at the expense of additional logarithmic factors).




1.3 Other Related Results

Over the last few years, differential privacy has proven itself to be an important algorithmic notion
(even when data privacy is not of concern), and has found itself useful in many other fields, such
as machine learning, mechanism design, secure computation, probability theory, secure storage,
and more. [35} [17, 26, 41115, 139, 40, 133} |6] In particular, our results utilize a connection between
differential privacy and generalization, which was first discovered by Dwork et al. [17] in the context
of adaptive data analysis.

2 Preliminaries

A stream of length m over a domain [n] consists of a sequence of updates (a1, A1), ..., (am, Am)
where a; € [n] and A; € Z. Fori € [m] we write @; = ((a1,A1),. .., (a;, A;)) to denote the first ¢
updates in the stream. Let ¢ : ([n] X Z)* — R be a function (for example, g might count the number
of distinct elements in the stream). At every time step ¢, after obtaining the next update in the stream
(ai, A;), our goal is to output an approximation for ¢g(d;). We assume throughout the paper that
log(m) = ©(logn) and that g is bounded polynomially in 7.

2.1 Streaming against adaptive adversary

The adversarial streaming model, in various forms, was considered by [36} 23} 124} [1} 12, 27, 9L 8]].
We give here the formulation presented by Ben-Eliezer et al. [8]]. The adversarial setting is modeled
by a two-player game between a (randomized) StreamingAlgorithm and an Adversary. At the
beginning, we fix a function g. Then the game proceeds in rounds, where in the ¢th round:

1. The Adversary chooses an update u; = (a;, A;) for the stream, which can depend, in
particular, on all previous stream updates and outputs of StreamingAlgorithm.

2. The StreamingAlgorithm processes the new update u,; and outputs its current response
Zi.

The goal of the Adversary is to make the StreamingAlgorithm output an incorrect response z; at
some point 7 in the stream. For example, in the distinct elements problem, the adversary’s goal is that
at some step ¢, the estimate z; will fail to be a (1 + «)-approximation of the true current number of
distinct elements.

We remark that our techniques extend to a model in which the StreamingAlgorithm only needs
to release an approximation for ¢g(@;) in at most w < m time steps (which are chosen adaptively by
the adversary), in exchange for lower space requirements. For simplicity, we will focus on the case
where the StreamingAlgorithm needs to release an approximate answer in every time step.

2.2 Preliminaries from differential privacy

The Laplace Mechanism. The most basic constructions of differentially private algorithms are via
the Laplace mechanism as follows.

Definition 2.1 (The Laplace distribution). A random variable has probability distribution Lap(b) if
its probability density function is f(x) = 55 exp (—%) where © € R.

Definition 2.2 (Sensitivity). A function f : X* — R has sensitivity ¢ if for every two databases
S, 8" € X* that differ in one row it holds that | f(S) — f(S")| < L.

Theorem 2.3 (The Laplace mechanism [18]]). Ler f : X* — R be a sensitivity ¢ function. The
mechanism that on input S € X* returns f(S) + Lap(g) preserves (e, 0)-differential privacy.

Example 2.4. Consider a database S containing the medical records of n individuals. Suppose that
we are interested in privately estimating the number of individuals with diabetes, and let f(S) denote
this number. Observe that the sensitivity of f is 1, since modifying one record in the data can change
the number of individuals with diabetes by at most 1. Therefore, Theorem [2.3] states that we can
privately estimate f(S) by adding noise sampled from Lap(). Observe that the noise magnitude is
independent of the database size. Hence, when the database S is large, the noise we add for privacy
has only a very small (relative) effect on the result.



The sparse vector technique. Consider a large number of low-sensitivity functions fi, fo,. ..
which are given (one by one) to a data curator (holding a database S). Dwork, Naor, Reingold,
Rothblum, and Vadhan [19]] presented a simple (and elegant) tool that can privately identify the first
index ¢ such that the value of f;(5) is “large”.

Algorithm AboveThreshold
Input: Database S € X ™, privacy parameter ¢, threshold ¢, and a stream of sensitivity-1 queries

fi: X* =R
1. Letf + t + Lap(2).
2. In each round 7, when receiving a query f;, do the following:
() Let f; + fi(S) + Lap(2).
(b) If fz > {, then output T and halt.
(c) Otherwise, output | and proceed to the next iteration.

Notice that the number of possible rounds unbounded. Nevertheless, this process preserves differential
privacy:

Theorem 2.5 ([19]25]). Algorithm AboveThreshold is (g, 0)-differentially private.

Privately approximating the median of the data. Given a database S € X*, consider the task of
privately identifying an approximate median of S. Specifically, for an error parameter I', we want
to identify an element € X such that there are at least |S|/2 — I elements in S that are bigger or
equal to z, and there are at least |.S|/2 — I elements in S that are smaller or equal to z. The goal is to
keep I as small as possible, as a function of the privacy parameters ¢, d, the database size | S|, and
the domain size | X|.

There are several advanced constructions in the literature with error that grows very slowly as a
function of the domain size (only polynomially with log™ | X ). [7, [12, {1} B2]] In our application,
however, the domain size is already small, and hence, we can use simpler constructions (where the
error grows logarithmically with the domain size).

Theorem 2.6. There exists an (e, 0)-differentially private algorithm that given a database S € X *
outputs an element x € X such that with probability at least 1 — 0 there are at least |S|/2 — T
elements in S that are bigger or equal to x, and there are at least |S|/2 — T elements in S that are

smaller or equal to x, where I' = O (é log (‘?—l))

Composition of differential privacy. The following theorem allows to argue about the privacy
guarantees of an algorithm that accesses its input database using several differentially private mecha-
nisms.

Theorem 2.7 ([20]). Let 0 < &,0" < 1, and let § € [0,1]. A mechanism that permits k adaptive
interactions with mechanisms that preserves (e, d)-differential privacy (and does not access the

database otherwise) ensures (', kd + §')-differential privacy, for ¢’ = \/2k1In(1/8) - € + 2ke2.

Generalization properties of differential privacy. Dwork et al. [17] and Bassily et al. [S] showed
that if a predicate h is the result of a differentially private computation on a random sample, then the
empirical average of h and its expectation over the underlying distribution are guaranteed to be close.

Theorem 2.8 ([17.5]). Lere € (0,1/3), 6 € (0,/4), and n > L log(%). Let A: X™ — 2% be
an (e, §)-differentially private algorithm that operates on a database of size n and outputs a predicate
h: X — {0,1}. Let D be a distribution over X, let S be a database containing n i.i.d. elements
from D, and let h < A(S). Then

S h@) — E b))

zeS

1
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Algorithm 1 RobustSketch

Input: Parameters o, \, 8, k, and a collection of k random strings R = (r1,...,75) € ({0,1}*)".
Algorithm used: An oblivious streaming algorithm A for a functionality g that guarantees that with
probability at least 9/10, all its estimates are accurate to within multiplicative error of (1 £ {F).

1. Initialize k& independent instances Aj,...,.A; of algorithm A4 with the random strings
r1,...,Tk, respectively.
2. Let g < g(L) and denote € = 35 and g9 = £

164/ 1n(1/9)
3. REPEAT at most A times (outer loop)

(a) Let & + Lap(X)
(b) REPEAT (inner loop)
i. Receive next update (a;, A;)
ii. Insert update (a;,A;) into each algorithm Aj;,..., A; and obtain answers
Yily-- 5 Yik
i, If|{j:9¢(1+9) v} + Lap(%) < £, then output estimate § and CONTINUE
inner loop. Otherwise, EXIT inner loop.
(c) Recompute § < PrivateMed(y;1,...,Vik), where PrivateMed is an (eg,0)-
differentially private algorithm for estimating the median of the data (see Theorem [2.6).
(d) Output estimate g and CONTINUE outer loop.

3 Differential Privacy as a Tool for Robust Streaming

In this section we present our main construction — algorithm RobustSketch. Recall that the main
challenge when designing adversarially robust streaming algorithms is that the elements in the stream
can depend on the internal state of the algorithm. To overcome this challenge, we protect the internal
state of algorithm RobustSketch using differential privacy.

Suppose that we have an oblivious streaming algorithm A for a function g. In our construction we
run k independent copies of A with independent randomness, and feed the input stream to all of the
copies. When a query comes, we aggregate the responses from the k copies in a way that protects the
internal randomness of each of the copies using differential privacy. In addition, assuming that the flip
number [8] of the stream is small, we get that the number of times that we need to compute such an
aggregated response is small. We use the sparse vector technique (algorithm AboveThreshold) [19]
in order to identify the time steps in which we need to aggregate the responses of the k copies of
A, and the aggregation itself is done using a differentially private algorithm for approximating the
median of the responses.

In the next lemma we show that algorithm RobustSketch satisfies differential privacy w.r.t. the
internal randomness of the different copies of .A. In our case, it suffices to guarantee differential
privacy with a constant €, and we fix € = ﬁ.
Lemma 3.1. Denote € = ﬁ, and let 6 € (0,1) be a parameter. Algorithm RobustSketch satisfies
(e, 6)-differential privacy (w.r.t. the collection of strings R).

Proof sketch. Each execution of the outer loop consists of applying algorithm AboveThreshold and
applying algorithm PrivateMed, each of which satisfies (g, 0)-differential privacy. The lemma now
follows from composition theorems for differential privacy (see Theorem[2.7). O

Recall that algorithm RobustSketch might halt before the stream ends. In the following lemma we
show that (w.h.p.) all the answers that RobustSketch returns before it halts are accurate. Afterwards,
in Lemma[3.3] we show that (w.h.p.) the algorithm does not halt prematurely.

Lemma 3.2. Let A be an oblivious streaming algorithm for a functionality g, that guarantees that
with probability at least 9/10, all its estimates are accurate to within multiplicative error of (1 % ).
Then, with probability at least 1 — 6 all the estimates returned by RobustSketch before it halts are
accurate to within multiplicative error of (1 &+ «), even when the stream is chosen by an adaptive



adversary, provided that

sz( A-10g<(1$> -10g(2§)>.

Proof. First observe that the algorithm samples at most 2m noises from the Laplace distribution
with parameter 1/¢( throughout the execution. By the properties of the Laplace distribution, with
probability at least 1 — ¢ it holds that all of these noises are at most L log( ) in absolute value.
We continue with the analysis assuming that this is the case.

Fori € [m] let@; = ((a1,A1),. .., (a;, A;)) denote the stream consisting of the first ¢ updates. Let
A(r,d;) denote the estimate returned by the oblivious streaming algorithm .4 after the ith update,
when it is executed with the random string 7 and receives the stream &;. Note that y; ; = A(r;, ;).
Consider the following function:

fa(r) =1 {A(r, @) e (1 + %) ~g(c_ii)} .

Observe that the function fz, () is defined by @;. Recall that algorithm RobustSketch is (E—m, 6)

differentially prlvate w.r.t. the collection of strings R (see Lemma @ Also recall that the up-
dates in the stream a; are chosen (by the adversary) by post-processing the estimates returned by
RobustSketch. As differential privacy is closed under post-processing, we can view the updates
in the stream @;, as well as the function fz,(-), as the outcome of a differentially private compu-
tation on the collection of strmgs R. Therefore, by the generalization properties of differential

privacy (see Theorem , assuming that k > 1 5 log( 257") =0 (1og %), with probability at least
(1- g) =1—0(0), for every ¢ € [m] it holds that
k
1 1
» - ) <106 = —.
Ma =3 z:: = 1o

We continue with the analysis assuming that this is the case. Now observe that E,.[fz, (r)] > 9/10
by the utility guarantees of .A (because when the stream is fixed its answers are accurate to within
multiplicative error of (14 {f) with probability at least 9/10). Thus, for at least ( —10e)k = 4k/5
of the executions of A we have that f3, (r;) = 1, which means that y; ; € (1 & {5 ) 9(@;). That s,
in every time step i € [m] we have that at least 4k/5 of the y; ;’s satisfy y; ; € (1 £ ;) - 9(@;).

Case (a) If the algorithm outputs an estimate on Step [3(b)i11}, then, by our assumption on the noise
magnitude we have that

e 2) w2 2 (20) 2 %

where the last inequality follows by asserting that

sz(alologi?) =Q< A- 10g<5>log<?>>.

So, for at least 4k/5 of the y; ;’s we have that y; ; € (1 £ 1) - g(d;), and for at least 4k/10 of them
we have that § € (1 & §) - y; ;. Therefore, there must exist an index j that satisfies both conditions,
in which case g € (1 & «) - g(@;), and the estimate we output is accurate.

Case (b) If the algorithm outputs an estimate on Step then it is computed using algorithm
PrivateMed, which is executed on the database (y; 1, ..., i k). By theorem assuming thalﬂ

k=9 ilog ilogn =0 A - log E - log ilogn ,
€0 ad 0 ad

5We assume that the estimates that A returns are in the range [—n°, —1/n°] U {0} U [1/n°, n°] for some
constant ¢ > 0. In addition, before running PrivateMed we may round each y; ; to its nearest power of
(14 %), which has only a small effect on the error. There are at most X = O(-: logn) possible powers
of (1 + {f) in that range, and hence, PrivateMed guarantees error at most I' = O( - log (25 logn)) with
probability at least 1 — §/\. See Theorem




then with probability at least 1 — §/\ algorithm PrivateMed returns an approximate median § for
the estimates y; 1, . . ., ¥s k. satisfying

4k 4k
‘{j ylv] —g}|— 10 and |{j y’h] —g}| = 10
Since 4k /5 of the y; ;’s satisfy y; ; € (1 £ {5) - 9(d@;), such an approximate median must also be in
the range (1 £ 1) - 9(@;). This holds s1multaneously for all the estimates computed in Step [3d| with
probability at least 1 — 4. Note that in Case (b) our estimate is actually accurate to within %)
rather than (1 £ «).

Overall, with probability at least 1 — O(6), all the estimates returned by the algorithm are accurate to
within a multiplicative error of (1 £+ «). O

We now show that, with high probability, the algorithm does not halt before the stream ends.

Lemma 3.3. Let algorithm RobustSketch be executed with a parameter A > )\a/lo’m(g). With
probability at least 1 — 0, the algorithm does not halt before the stream ends.

Proof. As in the proof of Lemma[3.2] with probability at least 1 — ¢ it holds that

1. All of the Laplace noises sampled throughout the execution are at most —- log(Tm) in absolute
value,

2. All of the estimates returned on Step [3d|are accurate to within a multiplicative error of (1 £ ),

3. Inevery time step 7 € [m] we have that at least 4k /5 of the y; ;’s satisfy y; ; € (1 £ {5) - g(@;).

We continue with the proof assuming that these statements hold. For i € [m] let g; denote the ith
estimate that we output. Let i; < i3 € [m] denote sequential time steps in which the algorithm
outputs an estimate on Step [3d](and such that between i, and i we compute the estimation using
Step @ Since we do not change our estimate between time steps 4; and i3, we know that
gzg 1— gzl

Now, since in time step i we exit the inner loop (in order to output the estimate using Step[3d), it

holds that m
L o
002 (2) w2 %

Since at least 4k/5 of the y;, ;’s satisty y;, ; € (1 £ {5) - g(&m) there must exist a y;, ; such that
glz 1 ¢ (1:': ) Yiz,j and Yisj € (1 + 10) g(azz) HCI]CG gzz 1 ¢ (1 + ) g(alz)

Now recall that since in time step ¢; we return the estimate §;, = §;,—1 using Step it holds that
Giy = Gin—1 € (1 £ {5) - 9(d@;, ). So, we have established that g;, 1 ¢ (1 + §) - g(@;,) and that
Gin—1 € (1 £ {5) - g(as, ), which means that
9(@) ¢ (1+15) - 9(@,).

This means that every time we recompute § on Step[3d] it holds that the true value of g has changed
by a multiplicative factor larger than (1 + {5 ) or smaller than (1 — ). In that case, the number
of times we recompute g on Stepcannot be bigger than A, /10, m(lg Thus, if the algorithm is
executed with a parameter A > A, /107m( ), then (w.h.p.) the algorithm does not halt before the
stream ends. O

The next theorem is obtained by combining Lemma [3.2]and Lemma

Theorem 3.4. Let A be an obllvzous streaming algorithm for a functionality g, that uses space
L({5 10) and guarantees accuracy {j with.success probability 1% for streams of length m. Th.en
there exists an adversarially robust streaming algorithm for g that guarantees accuracy o with
success probability 1 — § for streams of length m using space

o) (L (fo 110) : \/Al@-o,m(g) log (;) log (2})) .




4 Applications

Our algorithm can be applied to a wide range of streaming problems, such as estimating frequency
moments, counting the number of distinct elements in the stream, identifying heavy-hitters in the
stream, estimating the median of the stream, entropy estimation, and more. As an example, we now
state the resulting bounds for F5 estimation.

Definition 4.1. The frequency vector of a stream (a1, A1), ..., (@m, Aw), where (a;, A;) € ([n] X
7), is the vector f € R™ whose {(th coordinate is

fo= Z A;.

i:a; =~
We write f) to denote the frequency vector restricted to the first i updates.

In this section we focus on estimating F5, the second moment of the frequency vector. That is, after
every time step ¢ we want to output an estimation for

173 =S [
{=1

2

We will use the following definition.

Definition 4.2 ([29])). Fix any 7 > 1. A data stream (a1, A1), ..., (am, Ap), where (a;, A;) €
[n] x {1, =1}, is said to be an F» T-bounded deletion stream if at every time step i € [m] we have

113 = = - AP,
T
where h is the frequency vector of the stream with updates (a;,|A;|).

The following lemma relates the bounded deletion parameter 7 to the flip number of the stream.
Lemma 4.3 ([8]). The Aom(|| - ||3) flip number of a T-bounded deletion stream is at most
O (ﬁ log m).

The following theorem is now obtained by applying algorithm RobustSketch with the oblivious
algorithm of [30] that uses space O (2 log”(2)).

Theorem 4.4. There is an adversarially robust Fy estimation algorithm for T-bounded deletion
streams of length m that guarantees o accuracy with probability at least 1 — %n The space used by

the algorithm is
VT

In contrast, the F, estimation algorithm of [8] for 7-bounded deletion streams uses space
O (ﬁ ~10g3(n)). Specifically, the space bound of [8] grows as -, whereas ours only grows
as a—‘@ (at the cost of additional log(m) factors). As we mentioned, our results are also meaningful
for the insertion-only model. Specifically,

Lemma 4.5 ([8]). The Ao (|| - |3) flip number of an insertion-only stream is at most O (i log m).

The following theorem is~ obtained by applying algorithm RobustSketch with the oblivious algorithm
of [10] that uses space O (% log(m) log(%)),

Theorem 4.6. There is an adversarially robust F5 estimation algorithm for insertion-only streams
of length m that guarantees o accuracy with probability at least 1 — i The space used by the

algorithm is
~( 1
0 (042_5 ~1og4(m)> .

In contrast, the F5 estimation algorithm of [8]] for insertion-only streams uses space O (% . 1og2 (m))
Our bound, therefore, improves the space dependency on « (at the cost of additional logarithmic
factors).



Broader Impact

Our work applies differential privacy and generalization bounds to make streaming algorithms robust
to adversarial attacks and feedback loops (in which the value reported by the algorithm affects future
updates). The idea of using differential privacy as a tool to protect against adversarial attacks on the
randomness of the algorithm may be applicable more generally, when a randomized ML model that
reports continuously is exposed to a dangerous feedback loop or malicious users. We believe that
the connection we establish in this work is only the beginning, and that, following our work, ideas
from the literature of differential privacy will continue to find new applications in the field of robust
streaming and other related areas.
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